

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

22520

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.		Answer						
1.	(a) Ans.		Attempt any FIVE of the following: Differentiate between IPv4 and IPv6. (any two)						
	Ans.	Sr. No.	IPv4	IPv6					
		1	IPv4 addresses are 32 bits i.e. 4 bytes length	IPv6 addresses are 128 bits i.e. 16 bytes length	Any two points				
		2	Header length is 20 bytes	Header length is 40 bytes	1M each				
		3	Checksum is available in header	No Checksum in header					
		4	IPv4 allows 5 different classes of IP address	IPv6 allows storing an unlimited of IP address					
		5	No packet flow identification	Packet flow identification is available					
		6	Limited addresses	Larger address space					
	(b) Ans.	State	the four advantages of IPv6	•	2M				

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code: 22520

	 Advantages of IPv6: Larger address space. Better header format. New options for additional functionalities. Allowance for extension. Support for more security. More efficient routing More efficient packet processing 	Any four advanta ges ½M each		
	 Directed data flows Simplified Network configuration Support for new services Support for Security Auto configuration 	2M		
(c)	•			
Ans.	 Need of domain name system: Since IP addresses are difficult to remember and names are easier to remember Domain Name System is used and DNS servers are used for converting these names into IP addresses. Large number to hosts and servers connected in the internet can be classified using Domain name system so that hierarchical naming system is implemented. To identify an entity, TCP/IP protocols use the IP address. An IP is uniquely identifies the connection of a host to internet. Use for mapping can map a name to an address or an address to a name. 	Any one Need 2M		
(d) Ans.	State the use of 6 flags in TCP header.There are 6, 1-bit control bits that control connection establishment, termination, abortion, flow control etcURGACKPSHRSTSYNFIN1) URG: Urgent pointerIf this bit field is set the receiving TCP should interpret the urgent pointer field.2) ACK: AcknowledgementIf this bit field is set the ACK field described earlier is valid.3) PSH: Push function Request for push4) RST: Reset the connection If this bit is present it signals the receiver that sender is aborting the	2M Correct use 2M		

WINTER - 2019 EXAMINATION

				(ODEL AN		IION			
Subj	ject: Adva	anced Comput	er Networ	·k		Subjec	t Code:	22	.520
		ACK: Ackr	hronize it field in sequence ore data finn.	n present f numbers com sender O s valid f nt is valid S	hen the s . If this bit R RST: Reset t SYN: Synch		it termin n nce numb	ates	
		URG	ACK	PSH	RST	SYN	FIN		
		←───		6 b	its			•	
	(e)	List two adva	0	0		P.			2M
	Ans.	 UDP is response p UDP is fa Useful wh 	onnection s not requin transaction protocols. ster since i ten time se	less and u re to maintan oriented t does not n nsitivity is	nreliable t ain a conne and suita require ack more impo	ection. able for sinnowledgme	imple q		Any two advanta ges 1M each
	(f) Ans.	State the tran Transmission			FTP.				2M
	A115.	1. Stream mo	de						Correct

		0011000
	2. Block mode	modes
	3. Compressed mode	<i>2M</i>
(g)	State the concept of fragmentation in IPv4.	2M
Ans.	Fragmentation: When the maximum size of datagram is greater than	
	maximum size of data that can be held a frame then the network layer	
	divides the datagram received from x-port layer into fragments.	Fragme
	OR	ntation
	Fragmentation is the division of a IP datagram into smaller units.	definitio
	After fragmentation, each fragment will have its own header with few	n 1M
	fields changed and few fields remaining same.	
	OR	

Г

٦

Subj	ect: Adv	anced Computer Net	work	Subject Code:	22520
		fields of the original three fields Flags, Fr	header are copied in agmentation offset an	to smaller units. Most of the to the fragment header. The d Total length are altered.	
2.	(a)	Attempt any THRE Compare TCP and	E of the following: UDP (any four poin	ts).	12 4M
	Ans.	Characteristics	ТСР	UDP]
		Connection	TCP is connection oriented Protocol	UDP is connection less Protocol	
		Reliability	It provides reliable delivery of messages	It provides unreliable delivery of messages	
		Error Handling	TCP makes checks for errors and reporting	UDP does error checking but no reporting.	
		Flow controlling	TCP has flow control	UDP has no flow control	Any four
		Data transmission order	TCP gives guarantee that the order of the data at the receiving end is the same as the sending end	No guarantee of the data transmission order	- points 1M eac
		Header Size	20 bytes	8 bytes	
		Acknowledgment	TCP acknowledges the data reception	UDP has no acknowledgment Section	
		Use	Used where reliability is important	Used where time sensitivity is more important.	
		Data Interface to application	Stream-based: No particular structure for data	Message based data: Data sent in discrete packages by application	
		Overhead	Low	Very low	
		Speed	High	Very high	
		Application	FTP, Telnet, SMTP, DNS,	DNS, BOOTP, DHCP, TFTP, RIP	

Г

Subject: Adv	anced Computer Netwo	Computer Network Subject Code: 225			
(b) Ans.	 (b) Explain ICMP protocol. Describe the header format of ICMP. The Internet Control Message Protocol (ICMP) supports the unreliable and connectionless Internet Protocol (IP). ICMP messages are encapsulated in IP datagrams. There are two categories of ICMP messages report problems that a router or a host (destination) may encounter when it processes an IP packet. The query messages, which occur in pairs, help a host or a network manager get specific information from a router or another host. The checksum for ICMP is calculated using both the header and the data fields of the ICMP message. There are several tools that can be used in the Internet for debugging. We can find if a host or router is alive and running. Two of these tools are ping and traceroute. Header Format: An ICMP message has an 8-byte header and a variable-size data section. Although the general format of the header is different for each message type, the first 4 bytes are common to all. As Figure shows, The first field, ICMP type, defines the type of the message. The code field specifies the reason for the particular message type. The test of the header is specific for each message type. 				1 ana 2M
	Header Format:				
	8 bits	8 bits 8 bits	8 bits		
	Туре	Code	Checksum		
		Rest of the header		Form	
		Data section		11	1
	 section. Although the each message type, the shows, The first field, ICM The code field sp type. The last common sp type. The rest of the hesist of the hesist sp type. The data section 	general format of the first 4 bytes are of the first 4 bytes are of MP type, defines the pecifies the reason the field is the checksur rader is specific for end in error messages.	the header is different common to all. As Fig type of the message. for the particular mess n field for checking err	for gure sage cors for ges,	-

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

43.4

(c)	Explain working of V	WWW.	4M			
	(Note: Description exp	plaining the concept shall be considered).				
	The Web is a reposit	cory of information in which the documents,				
Ans.	called web pages, ar	e distributed all over the world and related				
	documents are linked t	ogether.				
	The WWW today is	a distributed client-server service, in which a	Explana			
	-	can access a service using a server.	tion 4M			
	Ū.	s distributed over many locations called <i>sites</i> .				
	-	more web pages. Each web page can contain				
		b pages in the same or other sites.				
		ge has no links to other web pages.				
		b page has one or more links to other web				
	pages.	1.0				
		with a name and address.				
	The web page is stored at the web server. Each time a request arrives,					
	the corresponding document is sent to the client.					
(d)	Describe the sub-net	work address if the destination address is	4 M			
	200.45.34.56 and the	subnet mask is 255.255.240.0				
Ans.						
	To find the subnet add	dress we have to AND the IP address and the				
	subnet mask as shown	below:				
	200.45.34.56					
	Destination address:	11001000.00101101.00100010.00111000				
			Identifyi			
	255.255.240.0	AND	ng			
	2001200121010		subnet mask/			
	Subnet mask	11111111.1111111.11110000.00000000	netid			
			and host			
	ANDing		id 2M			
	200.45.32.0	$\overline{\mathbf{V}}$				
	Subnet address	11001000 . 00101101 . 0010 0000.00000000	Correct			
			Answer			
	Thus subnet address is		<i>2M</i>			
		OR				
		ress, keep the network bits in the IP address as				
	it is, and make all host	bits as 0's.:				

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

		200.45	5.34.56				
			. 11	01101 . 00100010.00111000			
		With sare 12 .		etwork bits are 20 and host bits			
		Keepii	eeping first 20 bits as it is, and making host bits as 0, the subnet				
		addres	s is obtained as given below.				
		Subne	t address 11001000 . 0010	1101 . 0010 0000.00000000			
		Thus s	subnet address is 200.45.32.0				
3.		Attem	pt any THREE of the followin	g:	12		
	(a)	Expla	in difference between distance	vector and link state routing.	4 M		
		(Any f	four points).				
	Ans.						
		Sr.	Distance Vector Routing	Link State Routing			
		No.					
		1	Routing tables are updated	Complete topology is			
			by exchanging information	distributed to every router to			
		2	with the neighbours.	update a routing table.	Any		
		$\frac{2}{3}$	It update full routing table. It uses Bellman-Ford	It updates only link states. It uses Dijkstra algorithm.	four		
		5	algorithm	it uses Dijkstra argoritimi.	points		
		4	Distance Vector routing	Link state routing works best	1M each		
			doesn't have any hierarchical	for hierarchical routing			
			structure.	design.			
		5	CPU and memory utilization	Higher utilization of CPU			
			is lower than Link state	and memory than distance			
			routing.	vector routing.			
		6	Bandwidth required is less	Bandwidth required is more			
			due to local sharing, small	due to flooding and sending			
			packets and no flooding.	of large link state packets.			
		7	Example protocols are RIP and IGRP.	Example protocols are OSPF and IS-IS.			
		8	Slow convergence.	Fast convergence.			
		9	Summarization is automatic	Summarization is manual.			
		10	Easier to configure	Harder to configure			
		11	Count to infinity problem	No count to infinity problem			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

22520 **Subject Code: Subject: Advanced Computer Network** IPv4 header IPv6 header Payload IPv6 header IPv6 header Tunnel IPv6 IPv6 Payload Payload host host IPv4 region **Header Translation** In this case, the header format must be totally changed through header translation. The header of the IPv6 packet is converted to an IPv4 header see figure. IPv6 header IPv6 header IPv4 header IPv6 IPv4 Payload Payload Payload host host r Header IPv6 region translation done here **Fig. Header Translation Explain the working of TELNET. 4M (c) TELNET:** TELNET is an abbreviation for TErminaLNETwork. It is Ans. the standard TCP/IP protocol for virtual terminal service. **TELNET Working:** TELNET is a client-server application that allows a user to log on to a remote machine, giving the user access to the remote system. Working descripti The user sends the keystrokes to the terminal driver, where the ٠ on 2M local operating system accepts the characters but does not interpret them. A terminal driver correctly interprets the keystrokes on the local ٠ terminal or terminal emulator. The characters are sent to the TELNET client, which transforms •

Subj	ject: Adv	anced Computer Network Subject Code: 22	520		
	Ans.	The UDP header has four parts, each of two bytes. That means we get the following interpretation of the header. i) Source port number = $BC82_{16} = 48258$ ii) Destination port number = $000D_{16} = 13$ iii) Total length = $002B_{16} = 43$ bytes iv) Since the header is 8 bytes the data length is $43 - 8 = 35$ bytes.	Each correct answer carries 1M		
4.	(a) Ans.	Attempt any THREE of the following: Construct a diagram to show the application of cookies in a scenario in which the server uses cookies for advertisement. (Note: Any other diagram shall be considered) Use of Cookies for advertisements: A cookie is also used by advertising agencies. An advertising agency can place banner ads on some main website that is often visited by users. The advertising agency supplies only a URL that gives the banner address instead of the banner itself. When a user visits the	12 4M		
		main website and clicks on the icon of an advertised corporation, a request is sent to the advertising agency. The advertising agency sends the banner, a GIF file, for example, but it also includes a cookie with the ill of the user. Any future use of the banners adds to the database that profiles the Web behaviour of the user. The advertising agency has compiled the interests of the user and can sell this information to other parties. This use of cookies has made them very controversial. Hopefully, some new regulations will be devised to preserve the privacy of users.			
		The user's web browser requests a page from Web Site A. Web Site A (diff) and the user's web browser requests the objects on Web Server X. Web Site A (diff) and the user's web Browser Web Site X Cookle (diff) and the user's web browser retains. Web Server X (diff) arty Server X subsequently uses this third-party cookie to "tag" and uniquely identify this user's web browser each and every time it ever asks for anything again.			
		Fig. Use of Cookies in advertisement OR			

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

	;	Command	Version	Reserved			
		Far	nily	All 0s	Message		
	ed		Network address				
	Repeated		Al	0s	diagram 2M		
	Rej		Al	0s	2111		
			Dist	ance			
		>'	Fig. RIP m	essage format			
		ommand: 8-bit		(2)			
		The type of mes ersion: 8-bit	ssage: request (1) or response (2)			
		Define the RIP	version				
		ll Os					
		solely to provi varieties of RIP	This field is not actually used by RFC 1058 RIP; it was added solely to provide backward compatibility with pre-standard varieties of RIP. Its name comes from its defaulted value, zero.				
	0	TCP/IP, value is	hily: 6-bit field defines the family of the protocol used. For CP/IP, value is 2				
	0	14 bytes for t	nes the address his field to b	s of the destination network and be applicable to any protocol. y 4 bytes, the rest are all 0s			
			-	int from the advertising router to			
(c)	(Note.	ibe the HTTP r	esponse messa	ge format. he actual contents of the format	4M		
Ans.							
	Status using The st	a code as well as	s a status phrase	onse it indicates response status e. ol version, then status code and	Descript ion 2M		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

	- • -				
E.g: 1	HTTP/1.1 200 OK				
Headers					
Three type	es of headers are present HTTP Response message which				
are as follo	DWS.				
Genera	l Header				
The ge	The general header gives general information about the message				
and can	and can be present in both a request and a response.				
	e.g. Date: Mon, 27 Jul 2009 12:28:53 GMT				
	c.g. Date. Woll, 27 Jul 2007 12.20.55 GW1				
Respor	ise Header				
_	ponse header can be present only in a response message. It				
	s the server's configuration and special information about				
the requ	• ·				
e.g.	Server: Apache/2.2.14 (Win32)				
Entity	Header				
The er	tity header gives information about the body of the				
docume	ent.				
e.g. (Content-Length: 88				
e.g. (Content-Type: text/html				
Blank Lir	le				
An empty	v line (i.e., a line with nothing preceding the CRLF)				
indicating	the end of the header fields				
Body					
It contains	actual content. This part is optional.				
	Status line				
	Headers				
	A blank line	Diagram			
		<i>2M</i>			
	Body (present only in				
	some messages)				
	Response message				
	hesponse message				

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code: 22520

		OR	
	Status Line	Version sp Status sp Phrase cr If	
	Header Lines	Header Name : sp Value cr If Header Name : sp Value cr If Header Name : sp Value cr If	
	Blank Line	cr If	
	Body	Variable Number of Lines (Present only in some messages)	
		sp: Space cr: Carriage Return If: Line Feed	
(d)	-	CP connection establishment using a three way	4 M
	handshake mec		
Ans.	Connection Est	ablishment hree way handshaking mechanism to establish a	
		een client and server machines.	
	The three steps in three way handshaking mechanism are as follows. SYN:		
		the first segment, a SYN segment, in which only the	Each
	SYN flag is set	t. This segment is for synchronization of sequence	step
	numbers. SYN + ACK		descripti
		s the second segment, a SYN +ACK segment, with 2	on carries
	flag bits set.		1M
	ACK		
		s the third segment. This is just an ACK segment. It ompletion of three way handshaking.	

WINTER – 2019 EXAMINATION MODEL ANSWER

22520 **Subject Code: Subject: Advanced Computer Network** Server Client A: ACK flag S: SYN flag Active seq: 8000 Passive open Diagram A open S *1M* SYN seq: 15000 ack: 8001 S SYN + ACK seq: 8000 ack: 1 ACK Time Time Fig. TCP Connection Establishment : Three way Handshaking (e) Explain about standard and non standard protocols at the **4M** application layer. (Note: Any other protocol shall be considered). HTTP Ans. The Hypertext Transfer Protocol (HTTP) is a Application layer protocol used mainly to access data on the World Wide Web. HTTP uses the services of TCP on well-known port 80. ٠ FTP FTP (File Transfer Protocol) is standard TCP/IP protocol to • transfer files. It uses the services of TCP. It needs two TCP connections. Any 4 The well-known port 21 is used for the control connection and the protocol ٠ descripti well-known port 20 for the data connection. **SMTP** on 1M It stands for Simple Mail Transfer Protocol. It is a part of the each TCP/IP standard protocol. Using a process called "store and forward," SMTP moves your ٠ email on and across networks. It works closely with something called the Mail Transfer Agent (MTA) to send your communication to the right computer and email inbox. Port number for SMTP is 25.

Sub	ject: Adva	anced Computer Network Subject Code: 22	520
		TELNET	
		 TELNET is an abbreviation for TErminaLNETwork. It is the standard TCP/IP protocol for virtual terminal service TELNET enables the establishment of a connection to a remote system in such a way that the local terminal appears to be a terminal at the remote system. There are two parties involved TELNET Client and TELNET server. DNS It stands for Domain Name Service. Every time you use a domain 	
		name, therefore, a DNS service must translate the name into the corresponding IP address.For example, the domain name www.abc.com might translate to 100,105,222,1	
		198.105.232.4.Port number for DNS is 53.	
		DHCP	
		• It stands for Dynamic Host Configuration Protocol (DHCP). It gives IP addresses to hosts.	
		 There is a lot of information a DHCP server can provide to a host when the host is registering for an IP address with the DHCP server. Port number for DHCP is 67, 68. 	
		DOD	
		 POP3 Post Office Protocol, version 3 (POP3) is simple and limited in functionality. POP works as a Message Access Agent. 	
		 The client POP3 software is installed on the recipient computer; the server POP3 software is installed on the mail server. Mail access starts with the client when the user needs to download e-mail from the mailbox on the mail server. 	
5.	(a)	Attempt any TWO of the following: Explain how TCP connections are established using the 3 way handshake. What happens when 2 hosts simultaneously try to establish a connection?	12 6M
	Ans.	(Note: Any other explanation of the concept shall be considered).	

Subject: Advanced Computer Network Subject Code: 2	2520
Connection EstablishmentTCP uses a Three way handshaking mechanism to establish a connection between client and server machines.The three steps in three way handshaking mechanism are as follows.SYN:The client sends the first segment, a SYN segment, in which only the	1M Diagra m
SYN flag is set. This segment is for synchronization of sequence numbers.	3M Steps
 SYN + ACK The server sends the second segment, a SYN +ACK segment, with 2 flag bits set. ACK The client sends the third segment. This is just an ACK segment. It 	2M for simulta neous connect
Client	ion
Active seq: 8000 open A S	
SYN seq: 15000 ack: 8001 A S SYN + ACK SYN + ACK ACK Time	
If 2 host Simultaneously try to establish connection: Simultaneous Open: • It's possible for two applications to send a SYN to each other to	
start a TCP connection, although the possibility is small, because both sides have to know which port on the other side to send to. This process is called "Simultaneous Open", or "simultaneous active open on both sides".	
 In a simultaneous open, both applications issue active opens. This is a rare situation in which there is no client or server; 	

Subject: Adva	nced Computer Network	Subject Code:	22520	
	 communication is between two peers that numbers. Both TCPs go through SYN-SENT at before going to the ESTABLISHED state Both processes act as client and server. The two SYN+ACK segments acknowled and open the connection. OR Simultaneous Close: It's permitted in TCP for both sides to do called "Simultaneous Close". During "S packets are exchanged, the same as in norr. In this situation, both ends issue an active of Both TCPs go to the FIN-WAIT-1 state a that are in transit simultaneously. After receiving the FIN segment, each end state and sends an ACK segment. The CLOSING state takes the place of FI 	nd SYN-RCVD st dge the SYN segm "active close", whic imultaneous Close nal situations. close. and send FIN segm l goes to the CLOS	tates ents ch is ", 4 ents ING	
(b)	WAIT in a common scenario. Explain TCP connection management w	-	FCP 6N	1
Ans.	Passive open / - RST / - Close / RST / - LISTEN Send / SYN Time-out / + SYN / SYN + ACK Simultaneous open	shall be considered)). diag m	gra

٦

Subject: Adva	anced Computer N	letwork	Subject Code:	22520	
	connection establ TCP is specified a TCP State Mach • TCP uses	a three way handshake to close co	, and data transf M onnection	0	
	 The figure shows combined in one of Ovals/rectang Transition from lines. Each line has The first string The second is The dotted blasserver normal The solid blass goes through. Sometimes in 	the FIN bit in the packet header the two FSMs used by the TCH diagram. le represents states. om one state to another is show two strings separated by a slash. g is the input, what TCP receives. the output, what TCP sends. ack lines in the figure represent the ly goes through; ck lines show the transitions that a some situations, a server transclient transitions through a dotted	P client and ser wn using direc he transition tha t a client norma nsitions through	ver <i>expl</i> tion ste ted at a ally	ı of
	State	Description]	
	CLOSED	No connection exists			
	LI STEN	Passive open received; waiting for SYN			
	SYN- SENT	SYN sent; waiting for ACK			
	SYN- RCVD	SYN+ACK sent; waiting for ACK			
	ESTABLI SHED	Connection established; data transfer in pro	ogress		
	FI N- WAI T- 1	First FIN sent; waiting for ACK			
	FI N- WAI T- 2	ACK to arst FIN received; waiting for seco	ond FIN]	
	CLOSE- WAI T	First FIN received, ACK sent; waiting for a	application to close	1	
	TI ME- WAI T	Second FIN received, ACK sent; waiting for	or 2MSL time-out	1	
	LAST- ACK	Second FIN sent; waiting for ACK		1	
	CLOSI NG	Both sides decided to close simultaneously	1	1	
				-	

Subjec	t: Adva	nced Computer N	etwork		Subject Code: 2	2520
	(c)	protocol is intr changed? Explain	oduced, does n in details.		d IPv6. When IPv6 rotocol have to be	
	Ans.	An IPv4 Address	<u>:</u> ess is a 32-bit :	addraga		
			lresses are uniq			IPv4 2M
		Address space rul	-	ue.		11 / 7 21/1
		· · · ·	ss space in a pr	otocol That use	s N-bits to define	
				94 is 2 ³² 0r4,294	,967,296.	
		Address Space N				
		Binary No		101 00011101	11101010	
			cimal notation)101 00011101 N	1 11101010	
		1000000	00001011	00000011	00011111	
			Dotted-decir	nal notation		
		• Hexadecir	nal Notation			
		0111 0101	1001 0101	0001 1101	1110 1010	
		75	95	1D	EA	
			Hexadecim	al Notation		
		1000001	00001011	00001011	11101111	IPv6 2M
			129.1	1.11.23	9	11 VO 21VI
					•	
		Exan IPv6 Address Re		-decimal Notat	uon.	
				<u>2xamples</u> :):0000:09C0:87	6A:130B	400 214
			:130f::9c0:876			ARP 2M
			0:0:0:0:0:0:1>>			
			:0:0:0:1 >>> ::			
		0:0:0:0	:0:0:0:0>>> ::			

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code: 22520

		Notations in 128 hit	
		Notations in 128 bit Dotted decimal 123.145.20.34	
		 hexadecimal notation. 23BA:1234:00B1:0000:BF30:3456:000A:FFFF 	
		 Mixed representation 23BA:1234:123:56:BF30:3456:000A:FFFF 	
		• CIDR notation. FDC1:AB23:0:FFFF/27	
		• $3.4 * 10^{38}$ possible addressable nodes	
		• 5 * 10 ²⁸ addresses per person	
6.		Attempt any TWO of the following:	12
	(a)	Explain the 3 intra domain routing protocols.	6M
		(Note: Explanation of any other protocols shall be considered).	_
	Ans.	i) Distance Vector Routing:	
		- Require only local state (less overhead smaller footprint)	
		- Harder to debug	
		- Can suffer from loops	
		• Distance vector Routing Protocol:	
		Here Distance vector:	
		\checkmark Current best known cost to reach a destination	Any 3
		\checkmark Idea: exchange vectors among neighbors to learn about	protoc
		lowest cost paths.	ols
		✓ Distance vector protocols advertise their routing table to all	2M
		directly connected neighbors at regular frequent intervals	each
		using a lot of bandwidth and are slow to converge.	
		\checkmark When a route becomes unavailable, all router tables must be	
		updated with that new information.	
		\checkmark The problem is with each router having to advertise that new	
		information to its neighbors, it takes a long time for all	
		routers to have a current accurate view of the network.	
		\checkmark Distance vector protocols use fixed length subnet masks	
		which aren't scalable.	
		- periodically (on the order of several seconds to minutes)	
		- whenever table changes (called triggered update)	
		• Each update is a list of pairs:	
		- (Destination, Cost)	
		• Update local table if receive a "better" route	
		- smaller cost	
		- from newly connected/available neighbor	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject: Adva	anced Computer Network	Subject Code:	22520
	• Refresh existing routes; delete if they time of i.e. RIP-Routing Information Protocol	out	
	 ii) Link State Routing: Have a global view of the network Simpler to debug Require global state Link State Strategy each router shares the information neighborhood with every other router in Send to all nodes (not just neighbors) Send only information about directly entire routing table) 	the internetwork.	
	Link State Packet (LSP) - ID of the node that created the LSP - Cost of link to each directly connected n - Sequence number (SEQNO) Time-to-live (TTL) for this packet i.e. OSPF-Open Shortest Path First	neighbor	
	 iii) RIPv2: _ Runs over UDP port 520 _ Limits networks to 15 hops (16 = 1) _ Depends on count to infinity for loops _ Supports split horizon, poison reverse _ RFC 1812 specifies what options routers shows a specifies what options routers a specifies what options routers a specifies what options routers specifies what options routers specifies what options routers a specifies what options routers specifies what options routers specifies what options routers a specifies what option	hould or must have	÷.
	 iv) MOSPF (Multicast Open Shortest Path Fit. This protocol is an extension of the OS multicast link state routing to create sour The protocol requires a new link state associate the unicast address of a host w or addresses the host is sponsoring. This group membership LSA. In this way, we tree only the hosts (using their unicast at to a particular group. Thus a tree that contains all the hosts the but we use the unicast address of the host. For efficiency, the router calculates the 	PF protocol that u ce-based trees. ate update packet vith the group addr s packet is called we can include in addresses) that belo belonging to a gro t in the calculation	to ress the the ong oup,

Subject: Adv	anced Computer Network	Subject Code:	22520
	 demand (when it receives the first r In addition, the tree can be saved i use by the same source/group pair. MOSPF is a data-driven protocol router sees a datagram with a giver the router constructs the Dijkstra sh 	in cache memory for future l; the first time an MOSPF n source and group address	7
	 v) Multicast Distance Vector Routing (D) The Distance Vector Multicast Routing implementation of multicast distance vector routing. It is protocol, based on RIP. Unicast distance vector routing is v support multicast routing is complianely Multicast routing does not allow a table to its neighbors. The idea is to create a table from sec from the unicast distance vector table Multicast distance vector routing us the router never actually makes a root When a router receives a multicast packet as though it is consulting a r After its use (after a packet is destroyed. To accomplish this, the multicast uses a process based on four decisionely and the sector destroyed. 	Protocol (DVMRP) is an s a source-based routing very simple; extending it to cated. a router to send its routing cratch using the information bles. uses source-based trees, bur outing table. ast packet, it forwards the couting table. s forwarded) the table is c distance vector algorithm	g g h t S
	 vi) PIM-DM (Protocol Independent Mu PIM-DM is used when there is a poinvolved in multicasting (dense mo In this environment, the use of a ppacket is justified because almost the process. PIM-DM is a source-based tree rou and pruning/grafting strategies for point of the process of the process of the process. Its operation is like DVMRP; ho does not depend on a specific unication. It assumes that the autonomous protocol and each router has a table 	ossibility that each router is ode). protocol that broadcasts the all routers are involved in uting protocol that uses RPF multicasting. owever, unlike DVMRP, in asting protocol. system is using a unicast	e 1 7 t

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Ad	vanced Computer Network Subject Code: 22	520
	 interface that has an optimal path to a destination. This unicast protocol can be a distance vector protocol (RIP) or link state protocol (OSPF). 	
(b)	Describe modern computer use dynamic routing. Explain with example how distance vector routing is used to route the packet & why count-to-infinity problem arises and how does it get solved?	6M
Ans.	 (Note: Any other description of the concept shall be considered.) Dynamic routing uses a dynamic routing protocol to automatically select the best route to put into the routing table. So instead of manually entering static routes in the routing table, dynamic routing automatically receives routing updates, and dynamically decides which routes are best to go into the routing table. This intelligent and hands-off approach that makes dynamic routing so useful in modern era. Dynamic routing protocols vary in many ways and this is reflected in the various administrative distances assigned to routes learned from dynamic routing. These variations take into account differences in reliability, speed of convergence, and other similar factors. 	2M for Dyna mic routin g conce pt
	 Distance vector routing: 1. Distance Vector Routing is one of the dynamic routing algorithm. 2. It is suitable for packet switched network. 3. In distance vector routing, each router maintains a routing table. 4. It contains one entry for each router in the subnet. 5. This entry has two parts: a. The first part shows the preferred outgoing line to be used to reach the destination. b. Second part gives an estimate of the time or distance to the destination. In distance vector routing, a node tells its neighbor about its distance to the destination. 	2M for Distan ce vector routin g and
	 to every other node in the network. Count to infinity problem: One of the important issue in Distance Vector Routing is Count to Infinity Problem. Count to infinity is just another name for a routing loop. In distance vector routing, routing loops usually occur when an 	1M for Count to infinity proble m

Subject: Adv	anced Computer Network		Subje	ct Code:	22520	
	 C and A, so it corrects its table and changes infinity to 3 (1 for B to C, and 2 for C to A, as C said). Once again, routers exchange their tables. When C receives B's routing table, it sees that B has changed the weight of its link to A from 1 to 3, so C updates its table and changes the weight of the link to A to 4 (1 for C to B, and 3 for B to A, as B said). This process loops until all nodes find out that the weight of link to A is infinity. This situation is shown in the table below In this way, Distance Vector Algorithms have a slow convergence rate. One way to solve this problem is for routers to send information only to the neighbors that are not exclusive links to the destination. 					
		В	С	D		
	Sum of Weight to A after link cut	∞, A	2, B	3, C		
	Sum of Weight to A after 1 st updating	3, C	2, B	3, C		
	Sum of Weight to A after 2 nd updating	3, C	4, B	3, C		
	Sum of Weight to A after 3 rd updating	5, C	4, B	5, C		
	Sum of Weight to A after 4 th updating	5, C	6, B	5, C		
	Sum of Weight to A after 5th updating	7, C	6, B	7, C		
	Sum of Weight to A after n th updating					
	<u>∞</u>	∞	∞	∞		
(c)	Describe E-mail security over no (Note: Any other explanation			shall b	e 6M	[
Ans.	 <i>considered.</i>) Email security describes difference sensitive information in email secure against unauthorized activity 	fferent techi il communic	niques fo	or keeping d account	g	

Subject: Advanced Computer Network	Subject Code:	22520	
 Email is often used to spread malwa attacks. Attackers use deceptive messa to part with sensitive information, open hyperlinks that install malware on the v Email encryption involves encryptin content of email messages to proteinformation from being read by anyor recipients. Email encryption often inclu Email allows attackers to use it as a w attempt to profit. Whether through spata and phishing attacks, sophisticated targ email compromise (BEC), attackers try lack of security of email to carry out the Since most organizations rely on attackers exploit email in an atter information. Because email is an open format, it ca who can intercept it. It can be easily reatemail by intercepting it. Email Security Policies can be estat contents of emails flowing through t important to understand what is in the act appropriately. After these baselin effect, an organization can enact varie those emails. These email security policies can be as executable content from emails to more sending suspicious content to a sandt analysis. If security incidents are detected I organization needs to have actionable scope of the attack. Enforce email encryption policies to information from falling into the wrong An email gateway scans and proce outgoing email and makes sure that thm Because attacks are increasingly security measures, such as block attachments, are no longer effective. 	ages to entice recipients attachments or click or rictim's device. g, or disguising, the ct potentially sensitive one other than intended ides authentication. ay to cause problems in am campaigns, malware eted attacks, or business to take advantage of the eir actions. email to do business mpt to steal sensitive and the contents of ar oblished by viewing the cheir email servers. It's entire email in order to bus security policies or a simple as removing al re in-depth actions, like boxing tool for detailed by these policies, the e intelligence about the prevent sensitive email g hands. sses all incoming and reats are not allowed in sophisticated, standard	Any poir 1M e	ıts

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Advanced Computer Network

Subject Code:

	• Deploy a secure email gateway that uses a multi-layered approach.	
	• It's also important to deploy an automated email encryption solution as a best practice. This solution should be able to analyze all outbound email traffic to determine whether the material is sensitive.	
	 If the content is sensitive, it needs to be encrypted before it is emailed to the intended recipient. This will prevent attackers from viewing emails, even if they were to intercept them. The Pretty Good Privacy (PGP) provides e-mail with privacy, integrity, and authentication can be used over non secure channel such as internet. It is used for signing, encrypting and decrypting texts, e-mails, files, directories and whole disk partitions and to increase the security of e-mail communications. Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The protocol is an enhancement of the Multipurpose Internet Mail 	
	Extension (MIME) protocol. This allows user to digitally sign the email to enhance privacy and data security.	