

WINTER - 19 EXAMINATION

Subject Name: Fluid Mechanics & Machinery Model Answer S

Subject Code:

22445

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub. Q. No.	Answer	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10 Marks
	a)	Compare water and oil of specific gravity 0.8 on the basis of density & viscosity.	
	Ans	Soil = (Density) _{oil} / (Density) _{water}	
		$0.8 = (\text{Density})_{\text{oil}} / 1000$	
		$(Density)_{oil} = 800 \text{ kg/ } \text{m}^3$	02 Marks
		Here it is not possible to find out viscosity	
	b)	The pressure in the tyres of the four wheeler was measured as 33. State the unit of pressure in this case. Name the device use to measure this pressure.	
	Ans	The unit of pressure 33 in this case is PSI (Pound per square Inch).	01 Mark
		The name of device used to measure is Bourdon Tube Pressure Gauge	01 Mark
	c)	Show the difference between hydraulic gradient line & total energy line with the help of suitable diagram.	

Ans	Image: Second state Image: Second st	02 Marks
d)	Write Chezy's equation for frictional losses and list all the terms involved in it.	
Ans	V=C\sqrt{mi}	01 Mark
	Where; V = velocity of water in pipe, m = hydraulic mean depth =A/P = d/4 I = loss of head per unit length, C = Chezy's constant	01 Mark
e)	State the need of surge tank in hydroelectric power plant.	
Ans	 It is the tank provided in the path of penstock to avoid pulsating discharge at inlet of turbines. To reduce effect of water hammer surge tanks are provided. During flow of water from reservoir to turbine through penstock pressure surges are created to compensate these surges surge tank is provided. 	01 Mark for each point (any 2 point)
f)	State the difference between Static head & Manometric head in centrifugal pump.	
Ans	Static head: The sum of suction head & delivery head is known as static head.	01 Mark
	Manometric head: It is the total head that pump is required to develop. This include all losses. This is equal to difference between pressure head at inlet & outlet of pump.	01 Mark
g)	Draw indicator diagram for reciprocating pump showing the effect of accelerating head and frictional head.	
Ans	peoul enessed had had had had had had had had had had	02 Mark

1		1
	Total Pressure = W.A.X	
	$= 9810 \times 9.62 \times 3$	
	= 283149.78 N	
	Total Pressure = 283.149 KN	01 Mark
	Centre of pressure = $\frac{I_{\text{F}}}{A_{\text{X}}}$. sinto + \overline{X}	
	$= \frac{7.366}{9.62 \times 3} \times \sin^2 45 + 3$	
	: Centre of pressure = 3.1276 M	01 Mark
c)	Explain Bernoulli's theorem with neat sketch. State its two important assumptions.	
Ans	This theorem states that whenever there is continuous flow of liquid the total energy at every section remains same provided that there is no any addition or loss of energy.	01 Mark
	$P/W + V^2/2g + Z = constant$	for statement
	Where, $P/W = Pressure energy$	statement
	$V^2/2g = Kinetic energy$	
	Z = Potential energy	
	Let us consider a conduit having 2-sections.	
	Now, By using Bernoulli's Theorem,	
	Total head at section $1 =$ Total head at section 2	01 Mark
	$P_1/W + V_1^2/2g + Z_1 = P_2/W + V_2^2/2g + Z_2$	

	Assumptions: (any two)	01 Mark for sketch
	 The fluid is ideal. The flow is steady & continuous. The flow is incompressible. Velocity is uniform over the cross section. The flow is irrotational. 	01 Mark
d)	Compare i) Steady and uniform flow	
	ii) Laminar and turbulent flow (Two important points)	
Ans	Steady flow:- The flow is said to be steady when the flow characteristics, such as velocity, pressure,density and temperature do not change with time.Water flowing through a tap at a constant rate is an example of steady flow.	01 Mark
	 Uniform flow:- The flow in which velocity at a given time does not change with respect to space (length of direction of flow) is called as uniform flow. This term is generally applied to flow in channels. 	01 Mark
	Laminar flow:- The flow in which each liquid particle has definite path and path of individual particles do not cross each other is called as laminar flow.e.g. Movement of blood in human body, the flow of thick oil through a small tube.	01 Mark
	Turbulent flow:- Flow in which each liquid particle does not have a definite path and the path of individual particles also cross each other is called as turbulent flow.e.g. The flow of river at the time of flood is turbulent flow.	01 Mark

	Attempt any THREE of the following	12
a)	An oil of specific gravity 0.7 is flowing through venturimeter having inlet diameter 35 cm and throat diameter 20cm. The oil-mercury differential manometer shows a reading of 30 cm. Calculate discharge of oil through the horizontal venturimeter. Take Co : 0.98.	
Ans:	Given data: i) $Sd = 0.8$ ii) $Sh = 13.6$ iii) Reading of differential manometer = 25 cm iv) dia at inlet d1=35 cm v) dia at throat d2=20 cm.	
	Difference of pressure head = $h = x\{ Sh/Sd - 1\} \bullet = 25\{13.6/0.7 - 1\} = 552.8 \text{ cm of oil.}$	
	Area at inlet (a1) = $\pi/4 \ge \pi/4 \ge 35^2 = 962.11 \text{ cm}^2$	01
	Area at throat (a2) = $\pi/4 \ge d2^2 = \pi/4 \ge 20^2 = 314.16 \text{ cm}^2$	01
	Discharge Q = cd x al $a2/(a1^2 - a2^2)^{1/2} x (2gh)^{1/2}$	01
	$Q = 0.98 \times 962.11 \times 314.16 / (925655.6 - 98696.5)^{1/2} \times (2 \times 981 \times 552.8)^{1/2}$	
	= 339161.9 cm3 /sec = 339.17 lit/sec	01
b)	Explain water hammer phenomenon and state the remedies measures to avoid it.	
Ans:	Water hammer phenomenon: commonly occurs when a valve closes suddenly at an end of a pipeline system, and a pressure wave propagates in the pipe. Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe. Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to equipment.	2 Marks
	 Effects of water hammer are as follows 1) Due to rise in pressure the pipe may burst. 2) Erosion of inside surface of pipe. 3) Pressure drop in pipe Remedies for water hammer: 1) Controlling Velocity of flow. 2) Use of appropriate length of pipe. 3) Elastic properties of pipes. 	2 Marks
	 4) Provide surge tank before the valve on main pipe line. 5) Provide bypass pipe near the valve. 6).Provide Air traps or stand pipes (open at the top) to absorb the potentially damaging forces. caused by the moving water. 7) Use high strength pipes. 	
c)	 4) Provide surge tank before the valve on main pipe line. 5) Provide bypass pipe near the valve. 6).Provide Air traps or stand pipes (open at the top) to absorb the potentially damaging forces. caused by the moving water. 	

	b) Sudden contraction of pipe			
	c) Pipe fittings			
	d) Bend in pipe			
	e) Loss of head at Entry.			
	f) Loss of head at Exit.			
	$Expansion Minor Loss, b_{k} = \frac{(V_{k} - V_{k})^{2}}{2g}$ When V1, V2 are velocities on the two sides or the section at which sudden enlargement occurs. The head loss resulting from pipe expansion may be greatly reduced by	02 Marks		
	introducing gradual pipe transition known as diffuser.			
 d)	Drow valoaity diagram for symmetrical and maving symped yong when ist strikes at any and			
d)	Draw velocity diagram for symmetrical and moving curved vane when jet strikes at one end			
	with certain velocity at certain angle and meaning the vane from other end. State the			
	meaning of terminologies used in the diagram.			
Ans:	velocity diagram for symmetrical and moving curved vane:			
		02 Marks		
	• V1 = Velocity of the jet (AB), while entering the vane,			
	• V2 = Velocity of the jet (EF), while leaving the vane,			
	 u1, u2 = Velocity of the curved vane at inlet & outlet (AC, FG) α = Angle with the direction of motion of the vane, at which the jet enters the vane, β = Angle with the direction of motion of the vane, at which the jet leaves the vane, 	02 Marks		
	• Vr1 = Relative velocity of the jet and the vane (BC) at entrance (it is the vertical difference between V1 and u1)			
	 Vr2 = Relative velocity of the jet and the vane (EG) at exit (it is the vertical difference between V2 and u2) Θ = Angle, which Vr1 makes with the direction of motion of the vane at inlet (known as 			
	vane angle at inlet), • β = Angle, which Vr2 makes with the direction of motion of the vane at outlet (known as			
	vane angle at outlet),			
	• Vw1 = Horizontal component of V1 (AD, equal to). It is a component parallel to the direction of motion of the yang (known as valuative of whirl at inlet)			
	direction of motion of the vane (known as velocity of whirl at inlet), V_{W2} = Horizontal component of V2 (EH, equal to). It is a component parallel to the			
	• $Vw2$ = Horizontal component of V2 (FH, equal to). It is a component parallel to the direction of motion of the wave (known as valority of whirl at outlet)			
	 direction of motion of the vane (known as velocity of whirl at outlet), Vf1 = Vertical component of V1 (BD, equal to). It is a component at right angles to the 			
	direction of motion of the vane (known as velocity of flow at inlet),			

		• $Vf2 = Vertical component of V2$ (EH, equal to). It is a component at right angles to the direction of motion of the vane (known as velocity of flow at outlet)	
	e)	A jet of water of diameter 30 mm moving with velocity of 35 m/s ,strikes a curved symmetrical plate at the center Find the force exerted by jet of water in direction of jet. If jet is deflected through an angles of 150° at outlet of curved plate. If the vane is moving with the velocity of 20 m/s in the direction of jet .Find out the force exerted .	
	Ans:	Velocity of jet V = 35 m/s Velocity of vane u = 20 m/s The value of θ i.e. angle made by tip of vane at outlet as Θ = 180 – angle of deflection = 180-150 = 30° Calculate : Force exerted ny jet diameter of nozzle as 30 mm a = $\pi/4$ x d ² = $\pi/4$ x 0.03 ² = 7.07 x 10 ⁻⁴ Force exerted by the jet on vane $Fx = Pa (v - u)^2 (1 + cos\theta)$ Fx = 1000x 7.07 x 10 ⁻⁴ (35-20) ² (1+ cos 30)= 296.83 N Force exerted by the jet on vane = 296.83 N	2 Marks 2 Marks
4		Attempt any THREE of the following	
	a)	Draw the layout of hydroelectric power plant and classify the turbines used in it.	
		Layout of hydroelectric power plant:	2 Marks
		HEAD RACE DAM PENSTOCK URBINE GROSS HEAD (H _g) UNOZZLE NOZZLE TAIL RACE Layout of a hydro-eletric power plant.	
		Classification of the hydraulic turbines: According to the type of energy available at inlet to the turbine 1)impulse turbine and 2) Reaction turbine According to direction of flow through runner	2 Marks
		1)tangential flow turbine 2) radial flow turbine 3) axial flow turbine 4) mixed flow turbine According to the head available at inlet to the turbine	

	(ISO/IEC - 27001 - 2013 Certified)	
	 1) Low head turbine (2 m to 15 m) 2)Medium head turbine (16 m to 70 m) 3)High head turbine (71 m and above) According to the specific speed of the turbine 1)low specific speed 2)medium specific speed 3)High specific speed 	
b)	Explain the Need of draft tube in reaction turbine .state the types of draft tube used in it	
Ans:	Draft tube is a pipe of gradually increasing diameter which connects the exit of runner of turbine to tail race. In case of reaction turbine , one part of available head is converted into K.E before entry to runner and rest of energy is in the form of pressure energy. This pressure energy is gradually converted into runner, thus the velocity leaving the runner is at high velocity. Draft converts K.E to pressure head . also 1) To decrease the pressure at the runner exit to a value less than atmospheric pressure and thereby increase the effective working head. ii) To recover a part of electric energy into pressure head at the exit of draft tube. This enables easy discharge to atmosphere.	2 Marks
	Types of draft tube: i. Conical draft tube. ii. Simple elbow draft tube. iii. Moody spreading draft tube. iv. Elbow draft tube with circular cross section at inlet and rectangular at outlet.	2 Marks
c)	Draw and explain performance and operating characteristics curves of a Pelton turbine	
Ans:	The followings are the important characteristic curves of a turbine : Main Characteristic Curves or Constant Head Curve The speed of the turbine is varied by changing load on the turbine . For each value of the speed, the corresponding values of the power (P) and discharge (Q) are obtained.	2 Marks

	T					4 3 4 1
		Types of pump		Pressure range (In bar)		4 Marks
		External gear p		300		Any four
		Internal gear pu		350		points
		Fixed vane pur Variable vane		175 125		points
		Screw pump	pump	175		
		Axial piston ty	ne	700 More than 500 bar)		
				beed of pump is increased beyond its rated spec	ed then	
			-	s takes place. This problem directly affect on (
		working of hydr		1 1		
		3) Flow of pressurized oil: Vol. of oil at output is measured in litre per min have flow				
		of oil deciding speed of actuators				
		4) Efficiency of pump:				
		Selection of pump depends on required efficiency like volumetric efficiency ,				
		mechanical efficiency, overall efficiency				
		5) Oil compatibility				
		The meaning of	compati	ibility is nothing but acceptance .each pump is	compatible to	
		6) cost of pump:	a annere	nt oil, then pump will not give a good perform	lance.	
			ent varie	ties o pumps available in market according to	application	
				nomical aspect cost of pump & its spares shou		
				nomieur uspeer eost of pump ee no spures snou	10 00 10551	
5						12
5		Attempt any TWO of	the follo	owing:		
	a)	Derive equation for disc	charge th	prough orifice meter with the help of neat sket	ch.	
	Ans:					
		Orifice Meter or orific	e Plate	: It is a device used for measuring the rate of f	low of a fluid	
		through a pipe. It is Che	eaper de	vice as compared to venturimeter. It also work	as on the same	
		principle as that of vent	urimetei	r. It consist of flat circular plate which has a ci	rxular sharp	
		adged hole called orific	a which	is concentric with the pipe. The orifice diame	ter is kent	
		-			-	
		generally 0.5 times the	diameter	r of the pipe, though it may vry from 0.4 to 0.8	3 times the	
		pipe diameter.				
			or is cor	marted at saction (1) which is at a distance of	f about 1 5 to	
				nected at section (1), which is at a distance of		
		2.0 times the pipe diame	eter upst	tream from the orifice plate, and at section (2),	, which is at a	
		distance of about half th	ne diame	eter of the orifice on the downstream side from	the orifice	
		plate.				
1						

a)	Explain Construction and working of Francis Turbine with neat sketch.	
	Attempt any TWO of the following: Evaluin Construction and working of Francis Turbing with post skatch	12
5		12
	• Hence Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum.	
	 Because it contains (1+cosθ) term and as θ varies between to (1+cosθ)90 ⁰ cosθ is positive and (1+cosθ) is always greater than 1. 	2 Marks
	maximum.	
	 Justification: Force excerted by jet on symmetrical curved vane at centre with tip angle θ is 	
	Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum.	
	$F = \rho A V^2 (1 + \cos \theta)$	
	iii) Force Excerted by jet on symmetrical curved vane at centre with tip angle θ	2 Marks
	ii) Force excerted by jet on flate plate inclined at an angle $\theta = \rho A V^2 \sin \theta$	1 Marks
A	i) Force excerted by jet on flate plate normally $=\rho AV^2$	1 Marks
c)	A jet moving with a velocity of V m/s is made to strike a stationary i) flat plate normally ii) flat inclined at an angle θ iii)symmetrical curved vane at centre with tip angle θ In which case the force exerted by the jet is maximum? Justify with suitable sketch and formula.	
	$\mathbf{A} = \mathbf{A} = $	
	$\eta = (H-h_f)/H = (509.7-101.94)/509.7 = 0.8 = 80\%$	2 Marks
	2) Efficiency of power Transmission	
	d=0.1069 m	
	d ^{3/2} =0.035	2 Marks
	110 x 10 ³ =1000 x 9.81x (Π /4) x d ² x d ^{1/2} x (509.7 - 101.94)	226.1
	110 x 10 ³ =1000 x 9.81x (Π /4) x d ² x v x (509.7 - 101.94)	
	Power trasnmitted through pipe $P = \rho g Q (H-h_f) / 1000 \text{ kW}$	
	Head available at the end of pipe = $H-h_f$	
	$v= 19.06 d^{1/2}$	2 Marks
	$101.94 = 0.0055 \text{ x } 1000 \text{ x } \text{ v}^2 / (2 \text{ x } 9.81 \text{ d})$	2 Marks
	$h_f = fLV^2/2gd$	

	1						
	Ans:	 The main parts of the Francis turbine are: Penstock: It is the large pipe which conveys water from the upstream of the reservoir to the turbine runner. Spiral casing: It is a closed passage whose cross sectional area gradually decreases along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. Draft tube: It is gradually expanding tube which discharges the water passing 	2 Marks				
		 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 					
	 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 						
		Shaft Guide blades Spiral casing	2 Marks				
		2.5 to 3 D 0.5 to 1 D From penstock					
		Guide wheel Guide blades/vanes					
	Ans:	Given:					
		H _m =Manometric head=14.5m					
b)		N=1000rpm , Φ =Vane angle at outlet=30 ⁰					
		D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & $\eta_{mano} = 0.95 \ \& \eta_{over} = 0.90$					

Solution:	
1) Theoretical Discharge	
$Q_{th} = ALN/60$	
$= (\Pi/4) \ge D^2 \ge LN/60$	2 Marks
$= (\Pi/4) \ge 0.3^2 \ge 0.3 \ge 50/60$	
$= 0.0176 \text{ m}^{3}/\text{s}$	
2) Slip = Q_{th} - Q_{act} =0.021-0.0176 = 0.0034 m ³ /s	2 Marks
3) Power required to run the pump	
$P = \rho g A LN (Hs+Hd) / 60000 kW$	2 Marks
P=1000 x 9.81 x (П/4) x 0.3 ² x0.3 x 50 x (3.5+11.5) /60000	
P= 2.6 kW	