MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Membrane Technology

Subject code 22513

Page **1** of **28**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Membrane Technology

Subject code 22513

Page **2** of **28**

Q No.		Answer	Marking		
			scheme		
	1	Attempt any FIVE of the following			
1	a	Fouling of membrane:	2		
		Membrane fouling is a process whereby a solution or a particle is deposited on			
		a membrane surface or in membrane pores in a processes such as in			
		a membrane bioreactor, reverse osmosis, forward			
		osmosis, membrane distillation, ultrafiltration, microfiltration, or nanofiltration			
		so that the membrane's performance is negatively affected.			
1	b	Applications of nano technology: (any 2)			
		1. Medicine	each		
		2. Construction materials			
		3. Food			
		4. Fuel			
		5. Military goods			
		6. Electronics			
		7. Purification and environmental clean up			
		8. Biotechnology			
1	c	Hydrophilic membrane: They are water loving. Hydrophilic membrane			
		filters, are commonly used for clarification and sterilization of water-based			
		fluids but are not typically used for venting applications.			
		Hydrophilic membrane They are water repellent. While hydrophobic	1		
		membrane filters are ideal for air and gas filtration, they are not suitable for			
		filtering aqueous solutions.			

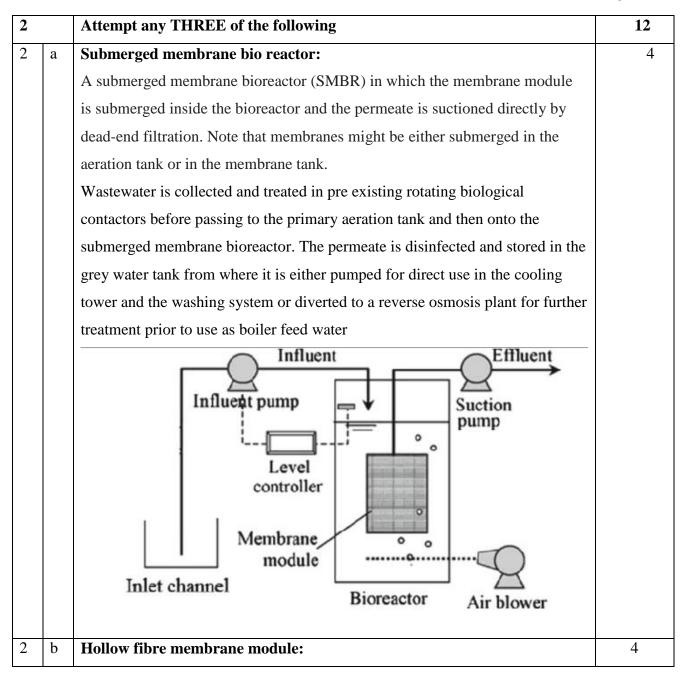
WINTER-19 EXAMINATION **Model Answer**

Subject title: Membrane Technology

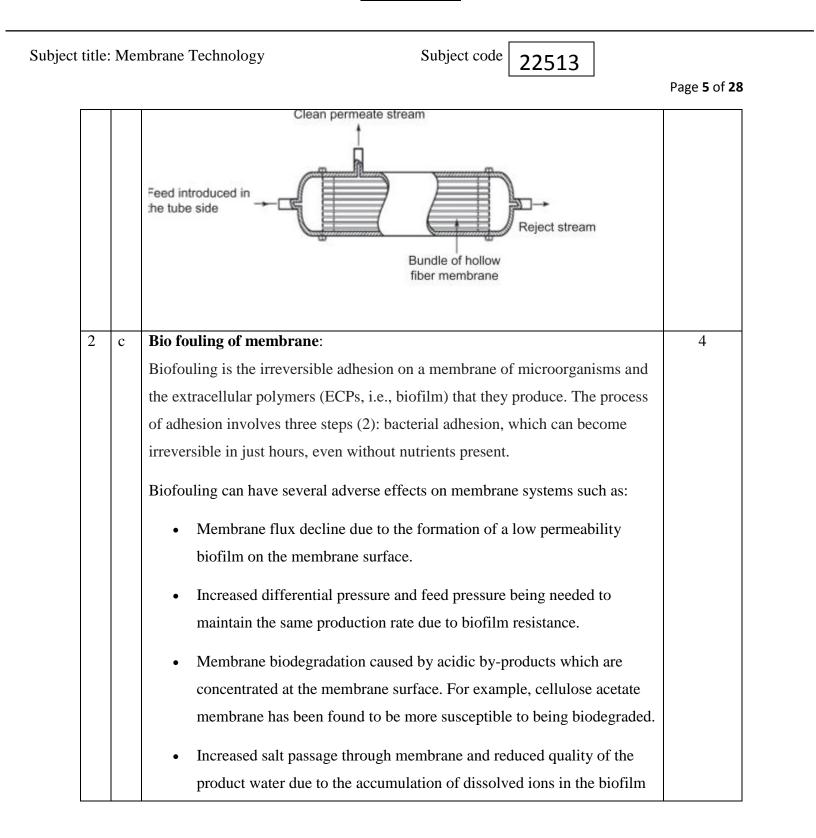
Subject code 22513

Page **3** of **28**

1	d	Membrane distillation separation process:	¹∕₂ mark			
		1. Direct contact membrane distillation	each			
		2. Air gap membrane distillation				
		3. Sweeping gas distillation				
		4. Vacuum membrane distillation.				
1	e	Principle of membrane separation process:	2			
		It is a tool for separation of liquid mixtures, especially dehydration of liquid				
		hydrocarbons. It is a membrane separation process in which one or more				
		dissolved species flow across a selective barrier in response to a difference in				
		concentration.				
1	f	Transmembrane pressure:				
		Transmembrane pressure is defined as the difference in pressure between two				
		sides of a membrane. It is a valuable measurement because it describes how				
		much force is needed to push water (or any liquid to be filtered referred to as				
		the "feed") through a membrane.				
		Permeate flux:				
		The membrane permeation flux is defined as the volume flowing through the				
		membrane per unit area per unit time. For the case of transport of gases and				
		vapors, the volume is strongly dependent on pressure and temperature.				
1	g	Dead end and cross flow filtration:				
		Dead-end filtration means the fluids flow is vertical to the filter surface, and	1			
		the retained particles rapidly solidify on the surface of the filter to form a so-				
		called filter cake.				
		Cross-flow filtration means turbulence will happen on the surface of the	1			
		membrane.				



WINTER-19 EXAMINATION Model Answer


Subject title: Membrane Technology

Subject code 22513

Page 4 of 28

Subject title: Membrane Technology

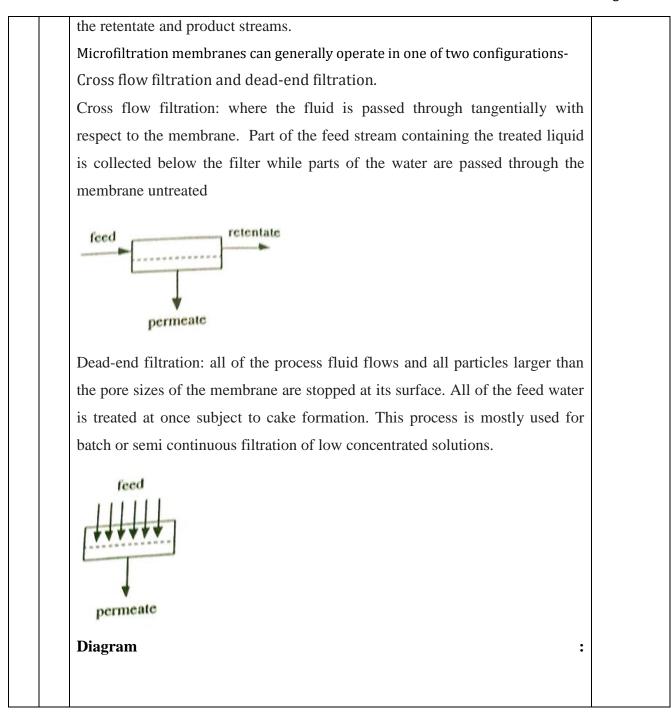
Subject code 22513

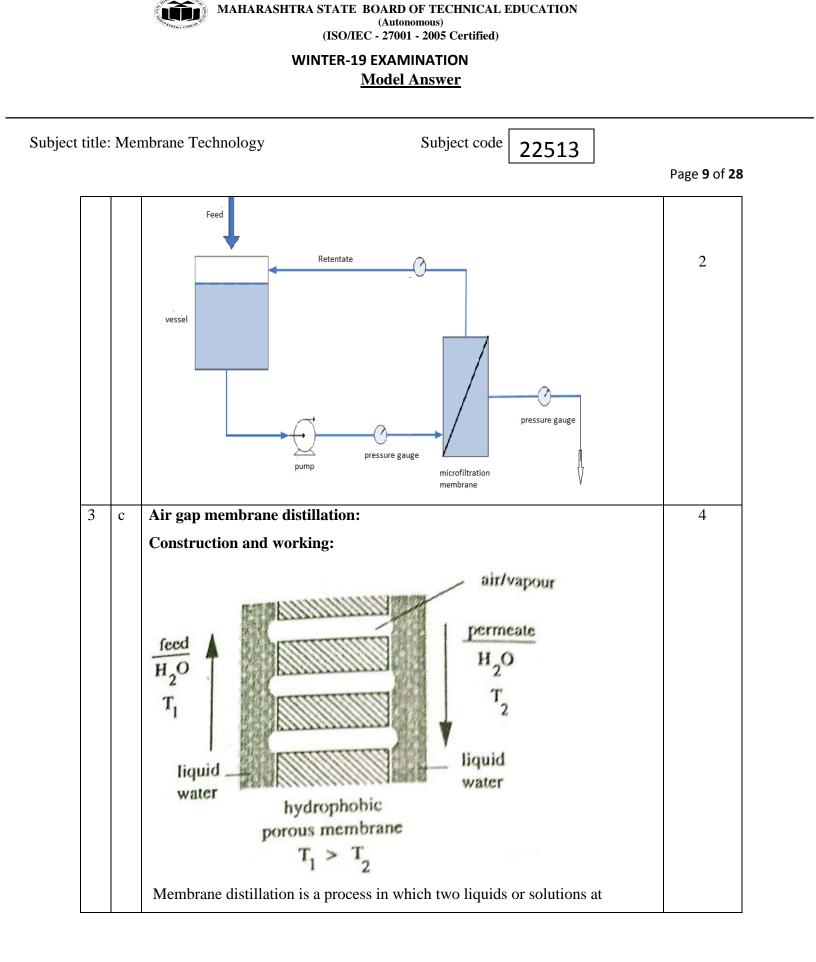
		 at the membrane surface thus increasing the degree of concentration polarization. Increased energy consumption due to higher pressure being required to overcome the biofilm resistance and the flux decline. 				
2	d	Ultrafiltration:	2			
		Principle : Ultrafiltration (UF) is a membrane filtration process similar to				
		Reverse Osmosis, using hydrostatic pressure to force water through a semi-				
		permeable membrane. Suspended solids and solutes of high molecular weight				
		are retained, while water and low molecular weight solutes pass through				
		the membrane. It is a type of membrane filtration in which hydrostatic				
		pressure forces a liquid against a semipermeable membrane. A semipermeable				
		membrane is a thin layer of material capable of separating substances when a				
		driving force is applied across the membrane.				
		Working:				
		Ultrafiltration is one membrane filtration process that serves as a barrier to	2			
		separate harmful bacteria, viruses, and other contaminants from clean				
		water. An ultrafiltration water system forces water through a .02 micron				
		membrane. Suspended particles that are too large to pass through the				
		membrane stick to the outer membrane surface. Only fresh water and dissolved				
		minerals pass through.				
3	1	Attempt any THREE of the following				
3	a	Reversible and irreversible fouling of membrane: Membrane fouling can be divided into reversible (removable, irremovable) and irreversible fouling based on the attachment strength of particles to the	4			
		interversione rounning based on the attachment strength of particles to the				

Subject title: Membrane Technology

Subject code 22513

Page **7** of **28**


	1				
		membrane surface. Removable fouling caused by loosely attached foulants			
		can be eliminated by physical cleaning, whereas irremovable fouling can be			
		eliminated by chemical cleaning Formation of a strong matrix of fouling layer			
		with the solute during a continuous filtration process will result in reversible			
		fouling being transformed into an irreversible fouling layer. Irreversible			
		fouling is the strong attachment of particles which cannot be removed by			
		physical or chemical cleaning. The cleaning procedure must be adapted to the			
		type of substances responsible for fouling in each application, reducing the			
		amount of irreversible fouling. However, identifying the foulants can be			
		difficult, as the amount of material deposited on the membrane surface is			
		usually small.			
3	b	Microfiltration membrane process :			
		Description:			
		Microfiltration is defined as a membrane separation process using membranes			
		with a pore size of approximately 0.03 to 10 micronas (1 micron = 0.0001	2		
		millimeter), a molecular weight cut-off (MWCO) of greater than 1000,000			
		daltons and a relatively low feed water operating pressure of approximately			
		100 to 400 kPa (15 to 60psi) Materials removed by MF include sand, silt,			
		clays, algae, and some bacterial species.			
		Membrane filtration processes can be distinguished by three major			
		characteristics: driving force, retentate stream and permeate streams. The			
		microfiltration process is pressure driven with suspended particles and water as			
		retentate and dissolved solutes plus water as permeate. The use of hydraulic			
		pressure accelerates the separation process by increasing the flow rate (flux) of			
		the liquid stream but does not affect the chemical composition of the species in			
1	1				



Subject title: Membrane Technology

Subject code 22513

Page 8 of 28

Subject title: Membrane Technology

Subject code 22513

Page **10** of **28**

		different temperatures are separated by a porous membrane. The liquids or				
		solutions must not wet the membrane otherwise the pores will be filled				
		immediately as a result of capillary action. ie hydrophobic membranes must be				
		used in the case of aqueous solutions. If the temperature of one of the two				
		phase is higher than that of the other, a temperature difference exists across the				
		membrane, resulting in a vapour pressure difference. Thus vapour molecules				
		will transport through the pores of the membrane from the high vapour				
		pressure side, Such transport occurs in a sequence of three steps: evaporation				
		on the high temperature side, transport of vapour molecules through the pores				
		of the hydrophobic porous membrane, condensation on the low temperature				
		side. The only function of the membrane is to act as a barrier between the two				
		phases.				
		Liquid to be treated is circulated in direct contact with the feed side of the				
		membrane in the AGMD(Air Gap Membrane Distillation) cell. A cold liquid				
		solution is circulated in direct contact with a cooling plate on the permeate side				
		of the membrane. Both the feed and the cooling solutions are circulated				
		tangentially while using pumps at low or no hydrostatic pressures. An air gap				
		is created between the permeate side of the membrane and the cooling plate				
		where permeate is condensed and collected through a permeate collection tube				
		at the bottom of the gap.				
3	d	Economic feasibility study of membrane based separation process (any	4			
		one eg):				
		Membrane distillation (MD) is an emerging technology for brackish water				
		desalination. MD is a thermal, vapor-driven transportation process through				
		microporous and hydrophobic membranes. MD is applied as a nonisothermal				

Subject title: Membrane Technology

Subject code 22513

Page 11 of 28

membrane process in which the driving force is the partial pressure gradient across a membrane that is porous, not wetted by the process liquid. In this process, saline water is heated to increase its vapor pressure, which generates the difference between the partial pressure at both sides of the membrane. Hot water evaporates through nonwetted pores of hydrophobic membranes, which cannot be wetted by the aqueous solutions in contact with and only vapor and noncondensable gases should be present within the membrane pores. The passing vapor is then condensed on a cooler surface to produce fresh water. . The recovery of MD process is higher than the RO process for seawater desalination. Fouling and scaling are two important mechanisms that affect stability of the MD process and lead to reduce the overall efficiency. Membrane fouling increases the costs by increasing (1) energy consumption, (2) system down time, (3) necessary membrane area, and (4) construction, labor, time, and material costs for washing and cleaning processes. It is a general conclusion that pretreatment has an important positive influence on MD. In MD, desalination plant is operated in conjunction with a power plant or any other source of waste heat, the cost of energy for heating the feed water is negligible, hence thermally polluted water can be treated economically. Other sources of energy such as renewable solar or geothermal energy could be utilized to heat the feed water. As opposed to warm condenser water, use of renewable sources would involve higher capital investment. However, this investment may eventually be paid off by lower operating costs. MD could be convenient to utilize cheap heat sources such as solar energy, geothermal energy, and waste heat. Therefore, in combination with such cheap energy, MD was a process of phase transition, and utilization of heat energy could

Subject title: Membrane Technology

Subject code 22513

Page **12** of **28**

		decrease due to latent heat of vaporization. It has some significant advantages			
		over RO process, including lower operating temperature and pressure, and thus			
		possible to use energy sources such as renewable solar heat or waste heat,			
		product quality, and higher resistance to fouling.			
4	1	Attempt any THREE of the following			
4	a	Polymerics and ceramics membrane materials:			
		Polymeric membrane materials.			
		All polymers can be used as barrier or membrane material but the chemical	2		
		and physical properties differ so much that only a limited number will be used			
		in practice. A classification will be made between the open porous membrane,			
		which are applied in micro filtration and ultrafiltration and the dense non			
		porous membranes applied in gas separation and pervaporation. For the porous			
		micro filtration / ultrafiltration membranes the choice of the material is mainly			
		determined by the processing requirements, fouling tendency and chemical and			
		thermal stability of the membrane. For the dense non porous membrane, the			
		choice of the material directly determines the membrane performance			
		Eg. Polyacrylonitrile, High density) polyethylene, Polytetrafluoroethylene			
		Ceramic membrane materials:			
		They are inorganic membranes formed by the combination of a metal with	2		
		nonmetal in the form of an oxide, nitride or carbide. They are having good			
		thermal and chemical resistance. Their melting points are very high. The high			
		temperature resistant makes these materials very selective for gas separation at			
		high temperatures. They can be used at any pH and in any organic solvent. It is			
		easy to clean and all kinds of cleaning agents can be used, allowing strong acid			
		and alkali treatment. Lifetimes of inorganic membranes are greater than that of			

Subject title: Membrane Technology

Subject code 22513

Page **13** of **28**

		polymeric membranes.	
		Eg Aluminium oxide / Alumina, Silicon carbide, Titanium dioxide / Titania	
4	b	Electrodialysis:	
		Description:	
		Electrodialysis is a method in which ions are pulled out of the salt solution by	2
		passing direct current using electrodes and thin rigid plastic membrane pair	
		(natural or synthetic).	
		An electrodialysis cell consists of a large number of paired sets of rigid	
		electrically charged plastic membranes. Salt water is passed under a pressure	
		of about 5-6kgf /cm2 between membrane pairs and an electric field is applied	
		perpendicular to the direction of water flow. When direct electric current is	
		passed through the salt solution, ions are separated and they started moving	
		towards oppositely charged electrode through the membrane.	
		Diagram:	
		Cathode 1 Anode	2
		+veions +veions Membraue Membroat	
		concentrated salt - pure water concentrated salt - solution	
4	c	Industrial application of membrane bioreactor (any 4):	1 mark

Subject title: Membrane Technology

Subject code 22513

		1. For the treatment and reuse of industrial and municipal wastewater.	each
		2. Production of organic chemicals.	
		3. Production of food products.	
		4. Production of pharmaceuticals, hormones, vitamins	
4	d	Membrane fouling control method (any one):	4
		Some common preventative measures to avoid membrane fouling are	
		1. Scheduled cleaning	
		2. Pretreatment	
		3. System design	
		Scheduled cleaning	
		A systematic cleaning regimen can help to prevent foulants from building up	
		on the membrane. Cleaning cycles should be scheduled monthly or at other	
		regular intervals to provide the greatest benefit. Maintenance strategies can	
		vary depending upon the membrane filtration system design and the types of	
		contaminants involved, and can employ one or more cleaning methods, such	
		as:	
		(i). Mechanical cleaning involves the use of physical force to loosen	
		contaminants from the membrane and flush them out of the system. Typical	
		approaches include vibration, as well as backward or forward flushing, where	
		water or a cleaning solution is run through the unit at a faster speed or higher	
		pressure than in a normal service cycle, resulting in turbulence that removes	
		foulants from the membrane. In a related process known as air scouring, air is	
		added to the backwash/forward flush solution to further increase turbulence.	
		(ii). Chemical cleaning involves the application of detergents, caustics, acids,	
		antiscalants, or dispersants to loosen and remove foulants from the membrane	

Subject title: Membrane Technology

Subject code 22513

Page 15 of 28

surface. Cleaning chemicals are selected based on the type of contaminants present, with consideration also given to the membrane material to ensure that the chemicals used do not damage it.

Pretreatment

RO/NF membranes have smaller pores than MF/UF membranes, therefore, they are more likely to require some form of pretreatment to avoid membrane fouling or other issues. Streams with high concentration of contaminants may also demand pre-treatment ahead of membrane filtration units in order to minimize the risk of membrane fouling. Pre-treatment options can include coagulation if colloidal particles are present, as well as gravity settling(sedimentation), flocculation and media filtration for the removal of larger or coagulated particles. Other types of pre-treatment can include chemical pH adjustment and ion exchange to prevent adsorption or deposition of foulants on the membrane.

System design

Preventing membrane fouling is best accomplished by good planning and design. There are many variables that play a role in proper system function for a membrane filtration system, each of which should be considered when replacing a membrane or installing a new system. These include:

(i) Membrane material: Filtration membranes may be fabricated from a wide variety of synthetic polymers, ceramic, and metallic materials. Properties of the membrane material, such as its surface ionic charge, hydrophobicity, and pH tolerance range, determine whether the membrane will be resistant to certain types of fouling, and how well it will withstand process conditions and the necessary maintenance regimen.

Subject title: Membrane Technology

Subject code 22513

Page **16** of **28**

		(ii) Membrane pore size: Pore size is the key factor to ensuring efficient				
		removal of targeted contaminants by a membrane filtration unit. Additionally,				
		selection of the proper membrane pore size can help to avoid fouling by				
	optimizing permeate flux in light of other factors, such as feed water qua					
		temperature, and salt concentration.				
		(iii) Operating conditions: Membrane fouling can be exacerbated by certain				
		ranges of temperature, pH, transmembrane pressure, and flow rate. A well-				
		designed system will balance these variables to ensure that foulants do not				
		collect on the membrane surface. Several approaches can be taken to minimize				
		membrane fouling:				
		a. Optimize pH and ionic strength of the feed solution to minimize the				
		adsorption or deposition of the feed materials.				
		b. Select an appropriate pre-filtration procedure or other means to remove				
		large molecules, since the presence of larger molecules or particles could cause				
		a steric hindrance to the passage of smaller molecules through the membrane.				
		c. Select a membrane with an optimum pore size to result in good separation				
		performance as well as optimized permeate flux.				
		d. Optimize the operating conditions. This includes increasing transmembrane				
		pressure to maximize flux without introducing more fouling potential.				
		e. Increase the cross-flow velocity, which generally results in an improvement				
		in permeate flux.				
4	e	Economic feasibility study of membrane separation process for sea water	4			
		desalination:				
		Reverse osmosis (RO) membranes are the leading technology for desalination				
		of sea water because of their strong separation capabilities and exhibiting a				

Subject title: Membrane Technology

Subject code 22513

Page 17 of 28

great potential for treatment of waters worldwide A typical RO system consists of four major subsystems: pretreatment system, high-pressure pump, membrane module, and post treatment system.

The membrane manufacturers offer high salt rejection membranes for RO plants, and the membranes do not retain the initial salt rejection throughout the membrane's lifetime (up to 7 years with effective pretreatment). Temperature, salinity, target recovery, and cleaning methods can affect salt passage through normal membrane.

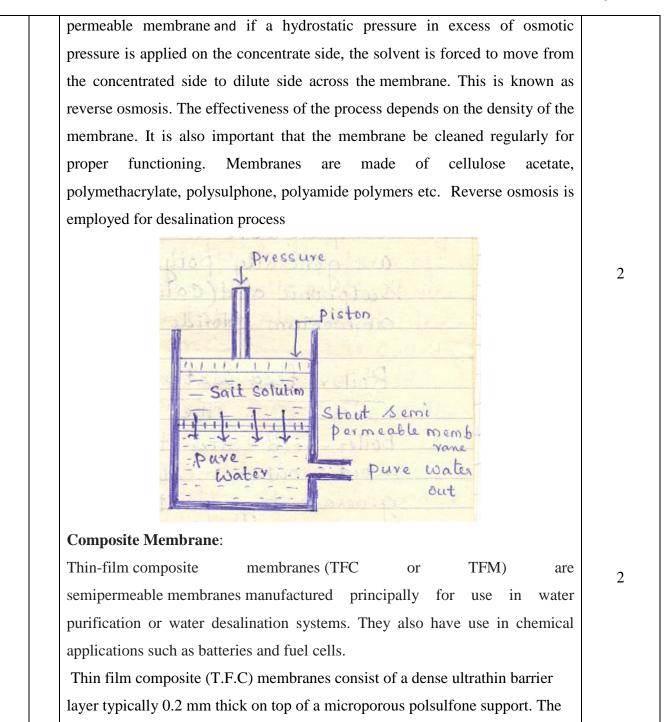
The main drawbacks of RO technology are the limited recovery and the environmental impact of rejected brines. Recovery and brine concentration are limited because increasing the brine concentration in RO would increase osmotic pressure and thus the energy consumption as well as scaling on the membrane surface. Recovery of the seawater RO plant is 35 to 45%.

The key limiting factor to widespread use of inland desalination is the exorbitant cost of concentrate disposal. Membrane fouling is a major obstacle in RO. Fouling increases resistance, which in turn reduces permeate flux. Fouling can be controlled by feed pretreatment and membrane cleaning. Sometimes conventional pretreatment is not effective. An excessively advanced pretreatment system significantly increases the installation cost. In RO Plant, for occurrence of reverse osmosis, a very high pressure is to be applied on the concentrated solution and is directly related to the feed pressure and flow rate. The high salt concentrations found in seawater require elevated hydrostatic pressures (up to 7000 kPa); the higher the salt concentration, the greater the pressure and pumping power needed to produce a desired permeate flux. High-pressure pump sets and approximately 70% energy required for

Subject title: Membrane Technology

Subject code 22513

Page 18 of 28


these pump sets. As the recovery of a RO unit increases, the osmotic pressure increases on the feed side of the membrane, thus increasing the feed pressure required. However, as the recovery increases, the feed flow required decreases (for a specific product flux), and for lower recoveries (35–50%), the overall energy requirement decreases with increasing recovery. Thus, a minimum energy requirement exists, typically at a recovery between 50 and 55%, which varies with feed salinity. In RO process, the rejected brine effluent will be having high pressure and having a considerable percentage of feed pressure. This available residual brine pressure can advantageously be utilized to boost the feed pressure of the raw water by suitable arrangement/device. This is called energy recovery system.. Hydro turbines and impulse turbines are the two types of devices for recovering the residual energy available from the high-pressure feed stream. Energy recovery devices can provide net energy transfer efficiency from the concentrate stream to the feed stream of more than 95%. The coupling of energy sources with RO desalination plants has been an increased interest to development. Wind and photovoltaic solar energy are commonly paired with RO desalination. Overall, the energy sources most often used are solar energy (70% of market) and RO which has the majority (62%) of the renewable energy desalination market. The energy recovery devices installed in the RO process can lead to 25 to 30% of energy saving. Energy recovery devices play vital role in cost-effective production of fresh water by RO desalination. 5 Attempt any TWO of the following 12 5 **Principle of reverse osmosis process:** a When two solutions of unequal concentrations are separated by a semi 2

Subject title: Membrane Technology

Subject code 22513

Page **19** of **28**

Subject title: Membrane Technology

Subject code 22513

Page **20** of **28**

	advantages of these membrane are that they operate at higher flux and lower					
	pressure, have greater chemical stability, have higher salt rejection, they are					
	not biodegradable, they have higher rejection of other materials (silica, <u>nitrate</u> ,					
	organics). Operating ranges of these mem	branes are pH of 2 to 12 and				
	temperatures of 0°C to 40°C.					
b	Differentiate between Inorganic an	d Organic nano particle: (any 6)	1 mark			
			each			
	Inorganic nano particle	Organic nano particle				
	Inorganic nanoparticles are	For starch nanoparticles,				
	prepared by sol gel method,	acid hydrolysis, reactive				
	mechano-chemical processing and	extrusion, gamma				
	physical vapor synthesis etc.,	irradiation,				
	depending upon the type of	ultrasonication, high				
	inorganic nanoparticle	power homogenization				
		and nanoprecipitation				
		are used for their				
		preparation				
	Prepared with inorganic elements	Prepared with organic				
		polymers				
	Less biodegradability	have an upper edge in				
		terms of				
		biodegradability				
	extensively used as antimicrobial	they result in bio-				
	agents in the food packaging	nanocomposites when				
	b	pressure, have greater chemical stability, not biodegradable, they have higher reject organics). Operating ranges of these mem temperatures of 0°C to 40°C. b Differentiate between Inorganic and particle Inorganic nano particle Inorganic nanoparticles are prepared by sol gel method, mechano-chemical processing and physical vapor synthesis etc., depending upon the type of inorganic nanoparticle Prepared with inorganic elements Less biodegradability extensively used as antimicrobial Extensively used as antimicrobial	not biodegradable, they have higher rejection of other materials (silica, nitrate, organics). Operating ranges of these membranes are pH of 2 to 12 and temperatures of 0°C to 40°C. b Differentiate between Inorganic and Organic nano particle: (any 6) Inorganic nano particle Organic nano particle: (any 6) Inorganic nano particles are prepared by sol gel method, mechano-chemical processing and physical vapor synthesis etc., depending upon the type of inorganic nanoparticle For starch nanoparticion, high power homogenization are used for their preparation Prepared with inorganic elements Prepared with organic polymers Less biodegradability have an upper edge in terms of biodegradability extensively used as antimicrobial they result in bio-			

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Membrane Technology

Subject code 22513

		systems.	blended with a		
			biodegradable polymer		
		titanium dioxide, zinc oxide,	starch and chitosan are		
		magnesium oxide, gold and silver	organic nano particles		
		are inorganic nano particles			
		Inorganic in nature	Organic in nature		
5	c	Disadvantages of membrane separation	n process: (any 6)		1 mark
		1. Membrane processes selde	om produce 2 pure products, t	that is,	each
		one of the 2 streams is alm	ost always contaminated with	h a	
		minor amount of a second	component. In some cases, a	product	
		can only be concentrated a	s a retentate because of osmo	otic	
		pressure problems. In other cases the permeate stream can			
		contain significant amount of materials which one is trying to			
		concentrate in the retentate because the membrane selectivity is			
		not infinite.			
		2. Membrane processes cannot be easily staged compared to			
		processes such as distillati	on, and most often membrane	e	
		processes have only one of	r sometimes two or three stag	ges. This	
		means that the membrane	being used for a given separa	tion	
		must have much higher se	lectivities than would be nece	essary	
		for relative volatilities in d	istillation. Thus the trade-off	is often	
		high selectivity/few stages	for membrane processes ver	sus low	
		selectivity/many stages for	other processes.		
		3. Membranes can have chem	nical incompatibilities with p	rocess	
		solutions. This is especiall	y the case in typical chemical	1	

Subject title: Membrane Technology

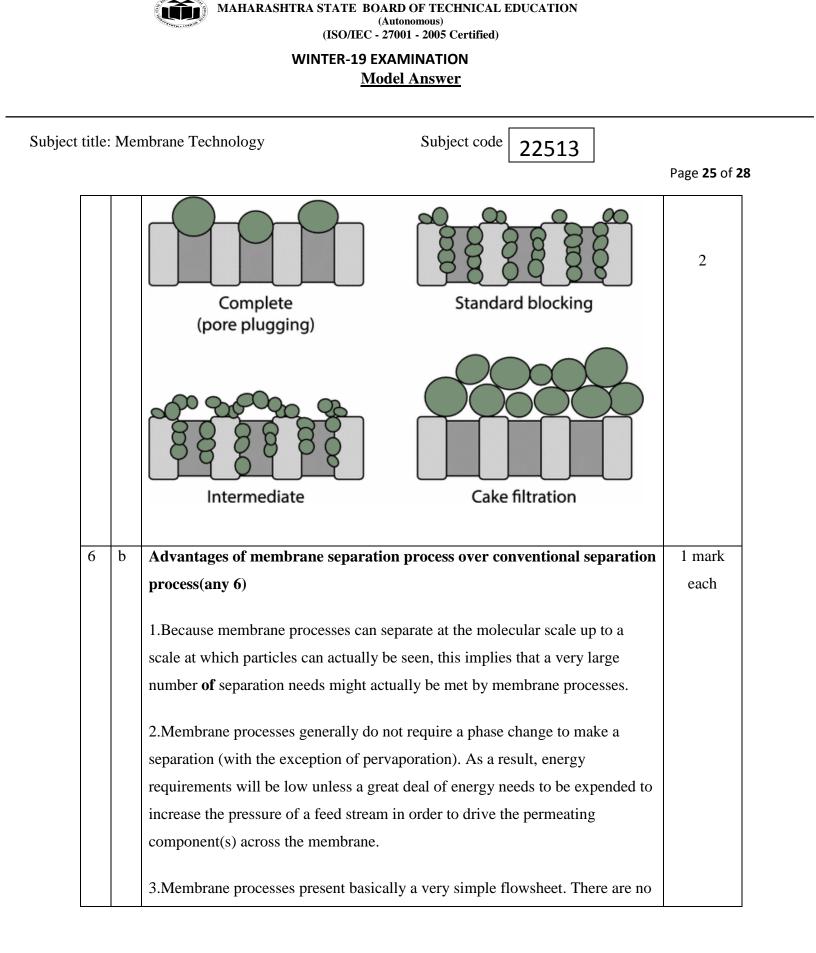
Subject code 22513

Page **22** of **28**

	industry solutions which can contain high concentrations of	
	various organic compounds. Against such solutions, many	
	polymer-based membranes (which comprise the majority of	
	membrane materials used today), can dissolve, or swell, or	
	weaken to the extent that their lifetimes become unacceptably	
	short or their selectivities become unacceptably low.	
4.	Membrane modules often cannot operate at much above room	
	temperature. This is again related to the fact that most	
	membranes are polymer-based, and that a large fraction of these	
	polymers do not maintain their physical integrity at much above	
	100 °C. This temperature limitation means that membrane	
	processes in a number of cases cannot be made compatible with	
	chemical processes conditions very easily.	
5.	Membrane processes often do not scale up very well to accept	
	massive stream sizes. Membrane processes typically consist of	
	a number of membrane modules in parallel, which must be	
	replicated over and over to scale to larger feed rates.	
6.	Membrane processes can be saddled with major problems	
	of fouling of the membranes while processing some type of	
	feed streams. This fouling, especially if it is difficult to remove,	
	can greatly restrict the permeation rate through the membranes	
	and make them essentially unsuitable for such applications.	
7.	Membrane processes are limited to their upper solid limit.	
8.	Membrane processes are expensive compared to other	
	processes.	

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Membrane Technology


Subject code 22513

Page **23** of **28**

6		Attempt any TWO of the following	12
6	a	Factors responsible for membrane fouling:	
		Membrane fouling in almost all membrane processes is normally caused by	
		precipitation and deposition of molecules or particulates on	
		the membrane surface or membrane pores. The consequences of membrane	
		fouling are increased membrane separation resistances, reduced productivity,	
		and/or altered membrane selectivity.	
		These factors can be grouped into three categories, namely: membrane	
		characteristics, operating conditions, and feed and biomass characteristics.	
		A. Membrane Characteristics:	
		1. Membrane Material	
		The material the membrane is made of has an impact on its fouling propensity	2
		in MBRs. Based on the membrane material, membranes can be classified into:	
		ceramic membranes, polymeric membranes, and composite membranes.	
		Ceramic membranes exhibit good filtration performance due to their high	
		chemical resistance, integrity, inert nature and ease of cleaning leading to low	
		operating costs Ceramic membranes are also highly hydrophilic which makes	
		them more fouling resistant	
		2. Water affinity The water affinity (hydrophilicity or hydrophobicity) property of the	
		membrane material affects fouling in MBRs.	
		3. Membrane surface roughness	
		The surface roughness of the membrane material also has some influence on	
		membrane fouling	
		in MBRs. Membranes with homogeneous surfaces are less subject to be fouled	

Subject title: Membrane Technology Subject code 22513	
	Page 24 of 28
than those with uneven surfaces.	
4. Membrane surface charge	
The membrane surface charge is another property of importance in relation to	
membrane fouling especially if there are charged particles in the feed.	
5. Membrane pore size	
Generally, membranes used in wastewater treatment are broadly grouped into	
two: porous membranes and non-porous membranes.	
B. Operating conditions:	
1. Operating mode	1
2. Rate of aeration	
3.Solid retention time	
4. Hydraulic retention time	
5.Food-microorganisms ratio	
6.Organic loading rate	
7. COD/N ratio	
8. Temperature	
C. Feed and biomass characteristics:	
1.Mixed liquor suspended solids	1
2.Sludge apparent viscosity	
3.Extra cellular polymeric substances	
4.Floc size	
5. Alkalinity and pH	
6.Salinity	

Subject title: Membrane Technology

Subject code 22513

Page **26** of **28**

Γ		moving parts (except for pumps or compressors), no complex control schemes,	
		and little ancillary equipment compared to many other processes. As such,	
		they can offer a simple, east-to-operate, low maintenance process option.	
		4.Membranes can be produced with extremely high selectivities for the	
		components to be separated. In general, the values of these selectivities are	
		much higher than typical values for relative volatility for distillation	
		operations.	
		5 Pacausa of the fact that a very large number of polymers and inorganic	
		5.Because of the fact that a very large number of polymers and inorganic	
		media can be used as membranes, there can be a great deal of control over	
		separation selectivities.	
		6.Membrane processes are able to recover minor but valuable components	
		from a main stream without substantial energy costs.	
		7.Membrane processes are potentially better for the environment since the	
		membrane approach require the use of relatively simple and non-harmful	
		materials.	
6	i c	•	1 mark
		filtration membrane: (any 6)	each
		The main difference between reverse osmosis and ultrafiltration is	
		that ultrafiltration membranes have larger pore sizes than reverse	
		osmosis membranes, ranging from 1 to 100 nm. Ultrafiltration membranes	
		are used for the separation and concentration of macromolecules and colloidal	

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Membrane Technology

Subject code 22513

Page **27** of **28**

Points	Reverse osmosis	Ultra filtration
Pore size	Small pore size	have larger pore sizes
		than reverse
		osmosis membranes,
		ranging from 1 to 100
		nm.
cost	Residential reverse	Ultrafiltration systems
	osmosis systems cost	cost about \$150-200 for
	about \$200-400. The	the system itself. The
	initial cost of reverse	ultrafiltration system is
	osmosis is going to be a	cheaper initially, but
	little higher than the	will cost more long
	cost of an ultrafiltration	term
	system.	
Installation	A reverse osmosis	To install an
	system is more	ultrafiltration unit is
	complex to install.	very simple.
	More connections need	You connect the feed
	to be made for the	supply and the other
	system to operate	end of the filter.
	correctly	
Storage and	Reverse Osmosis is a	Ultrafiltration doesn't

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Membrane Technology

Subject code 22513

Page **28** of **28**

conservation	cross flow filtration.	require a storage tank.
	The system creates two	It literally hooks
	water streams through	directly up to a special
	the membrane. One	faucet.
	path ends up in	
	a storage tank	
Vhat it removes	Reverse osmosis	Ultrafiltration is not
	eliminates the majority	going to eliminate
	of the dissolved	dissolved solids or
	minerals in the water.	salts. Ultrafiltration
		only filters out solid
		particulate matter, but it
		does so on a
		microscopic level.
What it uses	a semipermeable	The ultrafiltration
	membrane that	system uses a hollow
	separates 95-98% of	fiber membrane to stop
	inorganic	solid debris and
	dissolved material from	microscopic
	the water molecule.	contaminants.