

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code:

22529

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.1
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
· 1.	(a) Ans.	Attempt any FIVE of the following: Draw equivalent circuit of alternator. $R_a \qquad \times_{\mathcal{S}} = \times_{\mathcal{L}} + \times_{\mathcal{Q}}$ $E \qquad \qquad$	10 2M Correct diagram 2M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code:

22529

	$X_s =$ Synchronous reactance	
	$R_a + jx_s = Z_s$	
	$R_a + j (X_L + X_a) = Z_s$	
(b)	Define impedance diagram and reactance diagram.	2M
Ans.	Impedance diagram:	
	Impedance diagram is the simplified equivalent circuits of single line or one line diagrams of power system in which all components are	
	represented by their equivalent circuit.	Each
		definitio
	Reactance diagram: The reactance diagram is the simplified	n 1M
	equivalent circuit of power system in which the various components	
	of power system are represented by their reactance.	
	Reactance diagram is the simplification of impedance diagram in	
	which resistive components, capacitive parameters of tr. Line,	
	magnetizing circuit of transformer, rotating machines and impedance	
	of protective element of the machines are neglected and is used only for fault current calculation is called reactance diagram.	
(c)	List out factors affecting proximity effect.	2M
(c) Ans.	List out factors affecting proximity effect. Factors affecting proximity effect:	
	Factors affecting proximity effect:1. Conductor size (diameter of conductor)	Any two
	Factors affecting proximity effect:1. Conductor size (diameter of conductor)2. Frequency of supply current.	
	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 	Any two factors
	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material 	Any two factors 1M
Ans.	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 	Any two factors 1M each
Ans.	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: 	Any two factors 1M each 2M Impact
Ans. (d)	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: 1) It causes IX_L drop in transmission line which affects regulation. 	Any two factors 1M each 2M Impact of
Ans. (d)	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: 1) It causes IX_L drop in transmission line which affects regulation. 2) It is the only parameter which decides power transmission capacity 	Any two factors 1M each 2M Impact of inductan
Ans. (d)	 Factors affecting proximity effect: 1. Conductor size (diameter of conductor) 2. Frequency of supply current. 3. Distance between conductors. 4. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: 1) It causes IX_L drop in transmission line which affects regulation. 	Any two factors 1M each 2M Impact of
Ans. (d)	 Factors affecting proximity effect: Conductor size (diameter of conductor) Frequency of supply current. Distance between conductors. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: It causes IX_L drop in transmission line which affects regulation. It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases. 	Any two factors 1M each 2M Impact of inductan ce any
Ans. (d)	 Factors affecting proximity effect: Conductor size (diameter of conductor) Frequency of supply current. Distance between conductors. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: It causes IX_L drop in transmission line which affects regulation. It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity. 	Any two factors 1M each 2M Impact of inductan ce any
Ans. (d)	 Factors affecting proximity effect: Conductor size (diameter of conductor) Frequency of supply current. Distance between conductors. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: It causes IX_L drop in transmission line which affects regulation. It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases. Impact of resistance on transmission line: It causes voltage drop, so it affects regulation. It causes I²R loss which affects efficiency and temperature rise. 	Any two factors 1M each 2M Impact of inductan ce any one 1M Impact of
Ans. (d)	 Factors affecting proximity effect: Conductor size (diameter of conductor) Frequency of supply current. Distance between conductors. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: It causes IX_L drop in transmission line which affects regulation. It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases. Impact of resistance on transmission line: It causes voltage drop, so it affects regulation. It causes I²R loss which affects efficiency and temperature rise. Whatever power loss occurs in transmission line is only due 	Any two factors 1M each 2M Impact of inductan ce any one 1M Impact of resistanc
Ans. (d)	 Factors affecting proximity effect: Conductor size (diameter of conductor) Frequency of supply current. Distance between conductors. Permeability of conductor material State the impact of inductance and resistance on transmission line performance. Impact of inductance on transmission line: It causes IX_L drop in transmission line which affects regulation. It is the only parameter which decides power transmission capacity of line i.e. if inductance decreases power transmission capacity increases. Impact of resistance on transmission line: It causes voltage drop, so it affects regulation. It causes I²R loss which affects efficiency and temperature rise. 	Any two factors 1M each 2M Impact of inductan ce any one 1M Impact of

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

		temperature rise& poor voltage regulation so it cannot be neglected	
	(e)	Give the expression for ABCD constant of T model.	2M
	Ans.	Expression for ABCD constants of T model:	
		YZ YZ	¹ /2M for
		$A = D = 1 + \frac{YZ}{2}$	each
		D Z (1 VZ)	constant
		$B = Z \left(1 + \frac{YZ}{4}\right)$	constant
		C = Y	
	(f)	Determine ABCD constant of short transmission line having	2M
		impedance $(20 + j50)\Omega$.	
	Ans.	ABCD constants of short transmission line having impedance 20 +j	
		50 ohm are as follows:	¹ /2 <i>M</i> for
		A = 1	each
		$\mathbf{B} = \mathbf{Z} = 20 + \mathbf{j} 50 \ \mathbf{\Omega}$	constant
		$\mathbf{C} = 0$	
		D = 1	
	(g)	Recall X & Y coordinates for centre of sending and circle	2M
	-	diagram.	
	Ans.	X and Y co-ordinates for centre of sending end circle diagram are as	
		follows:	1M for
		$X - co - ordinate = \frac{DV_{S}^{2}}{B} \cos(\beta - \alpha) \dots MW$	each
		$Y-co-ordinate=\frac{DV_{S}^{2}}{B}sin(\beta - \alpha)MVAR$	
2		Attempt any THREE of the following:	12
4	(a)	Develop a reactance diagram for structure of power system	4M
	(a)	(Refer Fig.1) considering generator as base.	7171
		G j40 Ω 10 MVA 11 KV 8% SMVA 11 KV/220 KV 6% SMVA 11 KV/5% S%	
		Fig. 2 (a)	

Subject: Pow	ver System Analysis (Elective-I) Subject Code: 2	2529
Ans.	Assuming generator RATING as base Base MVA = 10 MVA Base voltage – 11 kV for generator side 220 kV for transmission line side	¹ /2M
	Calculation of X _{pu}	
	1) Generator: $X_{pu new} = X_{pu old} = 0.8 pu$	½ M
	2) Transformer T_1 and T_2 :	
	$X_{pu new} = X_{pu old} X \left(\frac{MVA_{new}}{MVA_{old}}\right) X \left(\frac{kV_{old}}{kV_{new}}\right)^2$	½M
	$= 0.06 \text{ X} \left(\frac{10}{8}\right) \text{ X} \left(\frac{11}{11}\right)^2 = 0.075 \text{ pu}$	½M
	3) Motor X _{pu new}	
	$= 0.05 \text{ X} \left(\frac{10}{5}\right) \text{ X} \left(\frac{11}{11}\right)^2 = 0.1 \text{ pu}$	½M
	4) Transmission line X _{pu}	
	$= \frac{X_{actual}}{X_{Base}} = X_{actual} X \frac{MVA_{Base}}{(kV_{Base})^2}$	
	$= 40 \text{ X} \left(\frac{10}{(110)^2}\right) = 0.033 \text{ pu}$	½ M
	Reactance Diagram:	
	X gen & 0:075 0:033 0:075 X motor	1M
	(y)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

٦

(ISO/IEC - 27001 - 2005 Certified)

Subject: Powe	er System Analysis (Elective-I)	Subject Code:	22529	
(b) Ans.	Define self GMD & Mutual GMD with the hSelf GMD: It is $n^2 th$ root of n^2 product termfilaments in a conductor.ORIt is the $n^2 th$ root of product of distances ofand from other filaments of same conductor.OREach set of n product term pertains to a fila(D_{ii}) for that filament and $(n - 1)$ distancesevery other filament in conductor A. It isgeometric mean distance (self GMD) ofabbreviated as D_{sA} . Sometimes, self GMD ismean radius (GMR).Mutual GMID: If conductor A has 'n' noconductor A to m' filaments of conductor, thenterms, which are the products of all mutual dfilaments of conductor A to m' filaments of conductorA to m' filaments of conductor A to m.	the swhere n is the nor f a filament from it ment and consist of from that filamen s defined as the s conductor A, and a also called <i>geome</i> of sub conductor n <i>mn</i> th root of the istances from the e onductor B. It is ca	tself Eac Defin n 1 of r' t to self- l is etric r & each illed	ch vitio
	Similarly, Example let radius of conductor X & Y is = r Self GMD of conductor X = $\sqrt[4]{D_{11}D_{1'1'}D_{11'}D_{1'}}$ Self GMD of conductor Y = r' Mutual GMD between conductor X & Y = $\sqrt{D_{11}}$	$=\sqrt{r'x}d$	Exan 2M	-
	$=\sqrt{(}$	$\left(\frac{d}{2} + D\right) x \left(D - \frac{d}{2}\right)$		

Subje	ect: Powe	er System Analysis (Elective-I) Subject Code: 22	529
	(c)	3\$\phi\$ transmission line with impedance 32.9 \angle 72.35 Ω /ph and admittance j2.827 x 10 ⁻⁴ \angle 90 Ω /ph delivers load of 35 MW, 132 KV, 0.8 P.F. lag. Use π method and determine ABCD constants.	4M
	Ans.	$Z = 32.9 \angle 72.35 \frac{\Omega}{ph}$	
		$Y = 2.827 \text{ x } 10^{-4} \angle 90 \text{ mho/ph}$	
		By using π method	
		$A = 1 + \frac{YZ}{2}$	1M for each constant
		$= 1 + \frac{(2.827 \text{ X } 10^{-4} \angle 90) (32.9 \angle 72.35)}{2}$	S
		$= 1 + \frac{9.300 \text{ X } 10^{-3} \angle 162.35}{2}$	
		$= 1 + (4.65 \times 10^{-4} \angle 162.35)$	
		$= 1 - 4.431 \times 10^{-4} + j1.409 \times 10^{-4}$	
		$= 0.999 + j \ 1.409 \ x \ 10^{-4}$	
		$= 0.999 + \angle 8.08 \ge 10^{-3}$	
		A = D = 1 + $\frac{\text{YZ}}{2}$ = 0.999 + \angle 8.08 x 10 ⁻³	
		$B = Z = 32.9 \angle 72.35^0 \Omega/$	
		$C = Y \left(1 + \frac{YZ}{4} \right)$	
		$= 2.827 \text{ x } 10^{-4} \angle 90 \left(1 + \frac{(2.827 \text{ x } 10^{-4} \angle 90)(32.9 \angle 72.35)}{4} \right)$	

WINTER – 2019 EXAMINATION

MODEL ANSWER			
Subject: Pow	er System Analysis (Elective-I) Subject Code:	22529	
	$= 2.827 \text{ x } 10^{-4} \angle 90 \left(1 + \frac{9.300 \text{ x } 10^{-3} \angle 162.35}{4}\right)$		
	$= 2.827 \text{ x } 10^{-4} \angle 90 \text{ (} 1 + 2.325 \text{ x } 10^{-3} \angle 162.35$		
	= 2.827 x $10^{-4} \angle 90$ (1 + (-2.215 x $10^{-3} + j7.049 x 10^{-4})$)		
	= 2.827 x $10^{-4} \angle 90$ (0.997+ j7.049 x 10^{-4})		
	$= (2.827 \text{ x } 10^{-4} \angle 90) (0.997 \angle 0.040)$		
	$= 2.818 \text{ x } 10^{-4} \angle 90.04 \text{ mho}$		
(d)	Derive the expression for complex power, active and reactive power at sending end.	e 4M	
Ans.	Generation Generation Station	1M	
	 Figure shows the single line diagram of a 3Ø transmission line. In the figure two bus system having the sending end bus which is fed by the generator and the receiving end bus which feeds the load. S_R is the complex power of the receiving end and S_S is the complex power at the sending end. Using the current I_S can be expressed in terms of V_R and V_S as: 	e	
	$I_{S} = \frac{D}{B}V_{S} - \frac{1}{B}V_{R} = \frac{A}{B}V_{S} - \frac{1}{B}V_{R} \dots \dots (i)$	1M	

WINTER – 2019 EXAMINATION MODEL ANSWER

22529 Subject Code: Subject: Power System Analysis (Elective-I) Then $I_{S} = \frac{|A||V_{S}|}{R} (\angle \propto + \delta - \beta) - \frac{|V_{R}|}{R} - \angle \beta$ The conjugates of I_S are *1M* $Is^* = \frac{|A||V_S|}{B} (\angle \beta - \alpha - \delta) - \frac{|V_R|}{B} \angle \beta$ The complex power/phase at the sending end are $S_s = P_s + ias = V_s I_s^*$ $S_{\rm S} = |V_{\rm S}| \angle \delta \left[\frac{|A||V_{\rm S}|}{|B|} (\beta \angle \propto -\delta) - \frac{|V_{\rm R}|}{|B|} \angle \beta \right]$ *1M* $S_{S} = \frac{|A||V_{S}|^{2}}{|B|} (\angle \beta - \alpha) - \frac{|V_{R}||v_{S}|}{|B|} (\angle \beta + \delta)$ $P_{\rm S} = \frac{|A||V_{\rm S}|^2}{|B|} \cos(\beta - \alpha) - \frac{|V_{\rm R}||v_{\rm S}|}{|B|} \cos(\beta + \delta)$ $Q_{\rm S} = \frac{|A||V_{\rm S}|^2}{|B|} \sin(\beta - \alpha) - \frac{|V_{\rm R}||V_{\rm S}|}{|B|} \sin(\beta + \delta)$ The above equation is the sending end side complex power. Attempt any THREE of the following: 3. 12 Summerise the role of power system engineer. **(a)** 4MRole of power system engineer: Ans. i. On the planning side he or she has to make decisions on how much electricity to generate ii. For operation of the power system he has to plan for generation of electricity where, when and by using what fuel. Any iii. He has to plan for expansion of the existing grid system and also four roles 1M for new grid system. iv. He coordinated operation of a vast and complex power network, each so as to achieve a high degree of economy and reliability. v. He has to be involved in constructional task of great magnitude both in generation and transmission. vi. He has to solve problem of power shortages./ outage of line vii. He has to evolve strategies for energy conservation and load management. viii. For solving the power system problems he has to update with

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

	new technology method. (Note: Any other relative points shall be considered)	
(b)	Derive the expression for inductance of 3¢ line with symmetrical	4M
Ans.	arrangement. Inductance of a 3ϕ with symmetrical spacing:	
	\bigcirc	1M for diagram
	Figure shows a 3ϕ line with conductors a, b and c spaced at corners of an equilateral triangle each side is 'D'. The conductors each of radius 'r'.	1M
	The three-conductors occupy the corners of an equilateral triangle. If the 3ϕ system, then, $\overline{I_a}$, $\overline{I_b}$ and $\overline{I_1}$ and $\overline{I_c}$ are displayed by 120^0 Flux linkage with a conductor considering fluxes set by all conductors is,	
	$\Psi a = 2 \ge 10^{-7} \cdot \left[I_a \cdot l_n \left(\frac{1}{ra^1} \right) + I_b \cdot l_n \left(\frac{1}{D} \right) + I_c \cdot l_n \left(\frac{1}{D} \right) \right] \frac{\text{wb. T}}{\text{m}}$	
	$= 2 \times 10^{-7} \cdot \left[I_a \cdot l_n \left(\frac{1}{ra^1} \right) - I_a \cdot l_n \left(\frac{1}{D} \right) \right] \frac{\text{wbT}}{\text{m}}$	
	$\therefore I_{\rm b} + I_{\rm c} = -I_{\rm a}$	1M
	$= 2 \ x \ 10^{-7}. \ I_a. \ l_n \ \frac{\left\{\frac{1}{ra \ 1}\right\}}{\left\{\frac{1}{D}\right\}} \ \frac{wbT}{m}$	
	For a balanced system $I_a + I_b + I_c = 0$ $\therefore I_b + I_c = -I_a$	

WINTER – 2019 EXAMINATION MODEL ANSWER

22529 Subject Code: Subject: Power System Analysis (Elective-I) $\Psi a = 2 \ge 10^{-7} \cdot I_a \cdot I_n \left\{ \frac{\frac{1}{ra^{T}}}{\frac{1}{rb}} \right\} \frac{wbT}{m}$ = $2 \ge 10^{-7} \cdot I_a \cdot I_n \left(\frac{D}{ra^1}\right) \frac{H}{m}$ $\therefore L_a = \frac{\Psi_{\phi}}{I_{\phi}} = 2 \times 10^{-7} l_n \left(\frac{D}{ra^1}\right) \frac{H}{m}$ *1M* Inductance per conductor or inductance/ phase $\mathbf{L}_a = 2 \ge 10^{-7} \mathbf{l}_n \left(\frac{\mathbf{D}}{\mathbf{r}^1}\right) \frac{\mathbf{H}}{\mathbf{m}}$ $L_a = 0.2 l_n \left(\frac{D}{r^1}\right) \frac{mH}{Km}$ Define Generalised circuit constants. **4M** (c) For Generalized circuit, Generalized Equations can be written as: Ans. $V_S = AV_R + BI_R$ $I_S = CV_R + DI_R$ **Generalized Circuit Constant:** 1) A = $\frac{V_s}{V_R}$ when I_R=0 It is the ratio of the voltage impressed at the sending end to the voltage at the receiving end when the receiving end is open circuited. It is a dimension less quantity. Each 2) B = $\frac{V_s}{I_R}$; V_R= 0 definitio n 1M It is the volt impressed at the sending end to current of receiving end when receiving end is short circuited. It is known as Transfer impedance. Its unit is in ohms. 3) C = $\frac{I_s}{V_R}$; I_R= 0 It is defined as the ratio sending end current to the receiving end voltage when receiving end is open circuited. It is known as Transfer admittance and its unit mho. 4) D = $\frac{I_s}{I_R}$; V_R= 0 It is the ratio of amperes impressed at the sending end to the ampere at the receiving end when the receiving end is short circuited. It is a pare quantity.

ject: Pow	er System Analysis (Elective-I) Subject Code: 225	529
(d)	A 200 kV line with GCC A = $0.86 \angle 7^0$, B = $300 \angle 75^0 \Omega$. Determine real power at unity P.F. that can be received if voltage at both end is maintained at 200kV.	4M
Ans.	Given data	
	$V_{S} = V_{R} = 200 \text{ KV}, A = 0.86 \angle 7^{\circ}, B = 300 \angle 75^{\circ}$	
	Then for unity power factor $Q_R = 0$	114
	$\therefore Q_{R} = V_{S} V_{R} / B \operatorname{Sin} (\beta - \delta) - (A / B) V_{R} ^{2} \operatorname{Sin} (\beta - \alpha)$	1M
	Substituting all values we get	
	$ \begin{array}{l} 0 = (200)X(200)/\ 300\ {\rm Sin}\ (\ \beta - \delta) - ((0.86)(200)^2/\ 300)\ {\rm Sin}\ (75-7) \\ 0 = 133.33\ {\rm Sin}\ (\beta - \delta) - 106.32 \\ {\rm Sin}\ (\beta - \delta) = 0.797 \\ \beta - \delta = 52.88^0 \\ {\rm Substituting\ this\ is\ in\ equation\ of\ } P_R\ we\ get \\ P_R = (\ V_S V_R \ /\ B \)Cos\ (\beta - \delta) - (A \ /\ B \) V_R ^2\ Cos\ (\beta - \alpha) \\ \end{array} $	1M
	$= \{(200)(200) / 300 \} \text{Cos} (52.88) - \{0.86 \text{ x} (200)^2 / 300 \} \text{Cos} (75-7)$	1M
	= 80.46 - (114.67)(0.37)	
	$P_R = 38.03 \text{ MW.}$ Unity power at receiving end is 38.03 MW	1M
(a) Ans.	Attempt any THREE of the following: Give the stepwise procedure for drawing circle diagram at receiving end.	12 4M
	(d) Ans.	(d) A 200 kV line with GCC A = 0.86 $\angle 7^{0}$, B = 300 $\angle 75^{0}\Omega$. Determine real power at unity P.F. that can be received if voltage at both end is maintained at 200kV. Ans. Given data $V_{S} = V_{R} = 200 \text{ KV}, A = 0.86 \angle 7^{\circ}, B = 300 \angle 75^{\circ}$ Then for unity power factor $Q_{R} = 0$ $\therefore Q_{R} = V_{S} V_{R} / B \sin (\beta - \delta) - (A / B) V_{R} ^{2} \sin (\beta - \alpha)$ Substituting all values we get $0 = (200)X(200)/300 \sin (\beta - \delta) - ((0.86)(200)^{2} / 300) \sin (75 - 7)$ $0 = 133.33 \sin (\beta - \delta) - 106.32$ $\sin (\beta - \delta) = 0.797$ $\beta - \delta = 52.88^{\circ}$ Substituting this is in equation of P _R we get $P_{R} = (V_{S} V_{R} / B) \cos (\beta - \delta) - (A / B) V_{R} ^{2} \cos (\beta - \alpha)$ $= \{(200)(200) / 300 \} \cos (52.88) - \{0.86 \times (200)^{2} / 300 \} \cos (75-7)$ = 80.46 - (114.67)(0.37) $P_{R} = 38.03 \text{ MW}.$ Unity power at receiving end is 38.03 MW (a) Attempt any THREE of the following: Give the stepwise procedure for drawing circle diagram at receiving end.

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

	$D_{\rm S} = \sqrt[9]{(0.7788 \rm r)^3 (2r^6)}$	
	= 1.46r	
(c)	A 3 ϕ 50 Hz line has resistance of 20 Ω , inductance 0.2 H and capacitance 1 μ F. Determine ABCD constants of line considering π model.	4 M
Ans.	A $3\phi 50 \text{ Hz}$ $R = 20 \Omega \text{ ph}$ L = 0.2 H $c = 1 pf = 1 \times 10^{-12} \text{ f}$ $X = 2\pi fL = 2\pi \times 50 \times 0.2 = 62.83 \Omega.$ $Z = R + jX = 20 + j \ 62.83 = 65.94 \angle 72.34^{\circ}\Omega$ $Y = jwc = 314 \times 1 \times 10^{-12} \angle 90^{\circ} = 314 \times 10^{-12} \angle 90^{\circ}$ $Z = 65.94 \angle 72.34^{\circ}\Omega$ $Y = 314 \times 10^{-12} \angle 90^{\circ}$ $for Nominal \pi - circuit$ $A = D = 1 + \frac{YZ}{2}, B = Z, C = Y\left(1 + \frac{yZ}{4}\right)$	
	$A = \frac{1+YZ}{2} = 1 + \left[\frac{314 \times 10^{-12} \angle 90^{0} \times 65.94 \angle 72.34^{0}}{2}\right]$ $A = 1 + \frac{2.07 \times 10^{-8} \angle 162.34}{2}$ $A = 1 + 1.03 \times 10^{-8} \angle 162.34$ $A = 0.999 + j \ 3.124 \times 10^{-9} = 0.999 \angle 1.79 \times 10^{-7}$	1M 1M
	$A = D = \frac{1 + YZ}{2} = 1 + \left[\frac{314 \times 10^{-12} \angle 90^{0} x 65.94 \angle 72.34^{o}}{2}\right]$	1M

WINTER – 2019 EXAMINATION MODEL ANSWER

22529 Subject Code: Subject: Power System Analysis (Elective-I) $B = Z = 20 + i 62.83 = 65.94 \angle 72.34^{\circ} \Omega$ *1M* $C = Y\left(1 + \frac{YZ}{4}\right) = 314 \times 10^{-12} \angle 90^{0} \left[1 + \frac{\left(\left(314 \times 10^{-12} \angle 90^{0}\right)(20 + j \ 62.83\right)\right)}{4}\right]$ $= 3.14 \times 10^{-10} \times 90^{0}$ S Derive the condition for maximum power at sending end. **4M** (**d**) Condition for maximum power at SENDING end. Ans. For a simple two bus power system represented as V3 LS VRLOO *1M* GCC of Transmission line A / B/P. As the sending end side active power is given by, *1M* $P_{S} = \frac{|A||V_{S}|^{2}}{|B|}\cos(\beta - \alpha) - \frac{|V_{S}||V_{R}|}{|B|}\cos(\beta + \delta)$ *1M* For given system ABCD remains constant and maintaining voltages at sending end as well as receiving end constant, P_S varies with load angle δ . For max value of P_S differentiate above eq. w.r.t. ' δ ' and equate it to zero. $\therefore \frac{dP_s}{d\delta} = \frac{d}{d\delta} \left[\frac{|A||V_s|^2}{|B|} \cos(\beta - \alpha) - \frac{|V_s||V_R|}{|B|} \cos(\beta + \delta) \right] = 0$ $\therefore \frac{dP_s}{d\delta} = \frac{|V_S||V_R|}{|B|} \frac{d}{d\delta} \cos(\beta + \delta) = 0$ *1M* $\sin(\beta + \delta) = 0$ $\beta + \delta = \sin^{-1}(0) = 0$ $\beta + \delta = 0$

Subj	ject: Powe	er System Analysis (Elective-I) Subject Code: 22	529
	(e) Ans.	3¢ line with GCC A = 0.99∠0.08°, B = 10 + j31.42, C = 2.79 x 10 ⁻⁴ ∠90.04° supplies load of 35 MW, 132kV, 0.8lag. Determine regulation of line. $given: V_R = 132KV,$ $A = 0.99∠0.08, B = (10 + j31.42) \Omega$ $load - P_R = 35Mw, 0.8lag$ $P_R = \sqrt{3}V_R I_R \cos \phi_R = 35 \times 10^6 = \sqrt{3} X132 \times 10^3 \times I_R \times 0.8$ $\therefore I_R = 191.36Amp$ $\phi_R = \cos^{-1} 0.8 = 36.86$ $V_S = AV_R + BI_R$ $= 0.99∠0.08 \times 132 \times \frac{10^3}{\sqrt{3}} ∠0 + (10 + j31.42) \times 191.36∠ - 36.86$ $V_S phase = 80.674 ∠2.68 KV$	4M 1M 1M
		$V_{s} \ line = 139.73 \ KV$ Voltage regulation = $\frac{\frac{V_{s}}{A}V_{RFL}}{V_{RFL}} \times 100$ $= \frac{\frac{139.73}{0.99} - 132}{132} \times 100$	1M 1M
5.	(a) Ans.	 = 6.93 % Attempt any TWO of the following: Determine Inductance & Capacitance of 3φ line operating at 50 Hz and conductors are arranged at corners of symmetrical triangle with side 3.4 m & diameter of each conductor is 0.8 cm. Given D = 3.4m d = 0.8cm r = 0.4cm = 0.4 x 10⁻²m 	12 6M
		:. Inductance $L = 2 \times 10^{-7} \log \frac{D}{r^1}$ $r^1 = 0.7788 \times 10^{-2} \times 0.4 \text{ m}$ $r^1 = 0.7788 \times 4 \times 10^{-3} \text{ m}$	1M 1M

Subj	ect: Powe	er System Analysis (Elective-I) Subject Code: 22	529
		$\therefore L = \frac{2 \times 10^{-7} \log^{3.4}}{0.7788 \times 4 \times 10^{-3}} \qquad \therefore L = 6.075 \times 10^{-7} H/m$	1M
		2) $C = \frac{2\pi\epsilon}{\log\frac{D}{r^{1}}}$ = $\frac{2\pi 8.85 \times 10^{-12}}{\log\frac{3.4}{0.7788 \times 4 \times 10^{-3}}}$	1M 1M
		$C = 830 \text{ x } 10^{-11} \text{ F/m}$	1M
	(b)	A 3ph 132kV transmission line delivers 40 MVA at 0.8 pf lag. Draw receiving end circle diagram and determine sending end voltage for A = $0.98 \angle 3^{\circ}$, B = $140 \angle 78^{\circ}$.	6M
	Ans.	$V_{R} = 132 \text{ Kv}$ Load – 40MVA, 0.8 pf	
		$A = 0.98 \angle 3^0$	
		B = 140 $\angle 78^{0.}$ X coordinates = $\frac{-AVR^2}{B} \cos(\beta - \alpha)$	
		$=\frac{-0.98 \times 132^2}{140} \cos (78 - 3)$	1M
		= 31.57 MW Y coordinates = $\frac{-AVR^2}{B} \sin (\beta - \alpha)$	
		$=\frac{-0.98 \times 132^2}{140} \sin (78 - 3)$	1M
		= 117.81 MVAR	

Subj	ect: Pow	er System Analysis (Elective-I) Subject Code: 22	.529
	(c) Ans.	A 3 ϕ line has following parameters A = D = 0.9 $\angle 0.4^{\circ}$, B = 99 $\angle 76.86^{\circ}$ load angle is 9°. If sending end and receiving end voltages are maintained at 22kV, calculate sending end complex power, active power and reactive power. Given, A = 0.9, D = 0.9 B = 99, Vs = V _R = 220V α = 0.4, β = 76.86 & δ = 9°	6 M
		1) Complex power at sending end:	
		$Ss = \left \frac{D}{B}\right V_s ^2 \angle \beta - \alpha - \frac{ V_s V_R }{ B } \angle \beta + \delta$	
		$= \left \frac{0.9}{99} \right 220 ^2 \angle [76.86 - 0.4] - \frac{ 220 ^2}{ 99 } \angle 76.86 + 9^0$	1M
		= 440 ∠ 76.46 – 488.89 ∠85.86	
		103.01 + i427.77- (95.29 + j487.61)	
		Ss = 67.72 - i60MVA	1M
		2) Active Power:	
		$P_{S} = \left \frac{D}{B} \right V_{S} ^{2} \cos \left(\beta - \alpha\right) - \frac{ V_{S} V_{R} }{ B } \cos \left(\beta + \delta\right)$	
		$= \left \frac{0.9}{99}\right 220 ^2 \cos (76.86 - 0.4) - \left \frac{220^2}{99}\right \cos (76.86 + 9^0)$	<i>1M</i>
		= 103.01 - 35.29 = 67.71MW	1M
		Ps = 67.71 MW	£ 47£
		3) Reactive power at sending end:	

Subject: Power System Analysis (Elective-I) Subject Code: 22			.529
		$Qs = \left \frac{D}{B} \right V_s ^2 \sin(\beta - \alpha) - \frac{ V_s V_R }{ B } \sin(\beta + \delta)$ $= \left \frac{0.9}{99} \right 220 ^2 \sin(76.86 - 0.4) - \frac{ 220 ^2}{99} \sin(76.86 + 9)$	1M
		= 427.77 - 487.61 = 59.84 \therefore Qs = 59.84 MVAR	1M
6.	(a) Ans.	Attempt any TWO of the following: 3ϕ line has parameter A = D = 0.9 $\angle 0.4^{\circ}$, B = 99 $\angle 76.86^{\circ}$, sending end & receiving end voltages are maintained at 200kV. Calculate maximum power supplied at sending end. A = D = 0.9 $\angle 0.4$	12 6M
		$B = 99 \angle 76.86^{\circ}$ $\therefore \alpha = 0.4 \qquad \beta = 76.86$ $V_{\rm S} = V_{\rm R} = 220 \rm{kV}$	1M
		For maximum power supplied at sending end condition P_{max} is , $\beta + \delta = 180^0$	1M
		Now maximum power P_{max} supplied is given by, $P_{max} = \frac{AVs^2}{B} \cos(\beta - \alpha) + \frac{V_s V_R}{B}$	1M
		$=\frac{0.9 \times 220^2}{99}\cos(76.86 - 0.4) + \frac{220^2}{99}$	2M
		$Ps_{max} = 591.90MW$	1M
		OR Note : It can be solved by Circle diagram	Marks at the discretion of examiner

WINTER – 2019 EXAMINATION **MODEL ANSWER**

22529 Subject Code: Subject: Power System Analysis (Elective-I) State the necessity of reactive power compensation equipment. **(b)** List out the devices used for reactive power compensation and give application of each device. Ans. Necessity of reactive power compensation equipment : i. Due to reduction in reactive power flow there is reduction in tr. Line current & reduction in line losses. So to improve the Necessit performance efficiency of system improves power transmission becomes more economical. ii. Due to reduction in line losses heating of line reduces thereby ageing of insulation reduces & life of equipments, cable or line increases. ii. Wear – tear of the switchgear equipment reduces due to reduction in operation. v. By local provision of reactive power KVA load on the line reduces and hence additional load can be connected or additional power can be transmitted without any additional generating equipment or resource. That means loading capacity of line/generator increases. So to main balance in Qs & Qr reactive power compensation is required Or Most of the power system components are to be operated with voltage profile of 15%. But during power transfer a voltage drop of less than 10% occurs which is due to flow of reactive power. Moreover reactive currents contribute for I²R losses in the system. ii. Most of the loads absorb lagging Vars to supply the magnetizing current of equipment such as transformers, induction motors etc. At any moment the maximum Vars which can be transferred over the line are fixed by voltage profile. iii. At peak loads the Vars demanded by the loads greatly exceeds Vars which can be transmitted over the lines. Flow of reactive power through the line causes voltage drop in the line and varies the voltage profile at important buses. Therefore additional equipment is necessary to generate lagging Vars at load centers to meet the reactive

> iv. At light loads the lagging Vars produced by the lines are much larger than required by load. This surplus lagging Vars must be absorbed by additional equipment to keep voltage profile within limits. If it is not done the system voltage at some of the buses is

power requirements.

6M

v 3M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Analysis (Elective-I)

Subject Code: 22529

(c) Ans.		
	one end and at the other end is short ckted. $E \bigcirc I \land I$	1M
	$V_s = AV_R + BI_R$	
	$I_{R} = \frac{V_{S}}{B} \qquad [:: V_{R} = 0]$	1M
	$I_{sc} = \frac{E}{B}$ (1)	1M
	Now connect above ideal source at the receiving end and short circuited the sending end. $I_{sc} = -I_s$	
	$V_{\rm S} = 0$ A B E Now $V_{\rm S} = AV_{\rm p} + BI_{\rm R}$	1M

Subject: Power System Analysis (Elective-I) Subject Code		Subject Code:	22529	
		$0 = A.E + B (-I_R)$		
		$I_{R} = \frac{AE}{B}$		
		Since transmission line is a linear, passive bilater	al network	
		$I_s = -I_{Sc} = (V_R + DIR - I_{Sc} = CE + D\left(\frac{AE}{B}\right)$		<i>1M</i>
		Substituting value of I_{Sc} in above equation		
		$\frac{-E}{B} = CE - D\frac{AE}{B}$		1M
		$\frac{-E}{B} = \left(C - \frac{AD}{B}\right) E$		
		$\frac{-1}{B} = \frac{BC - AD}{B}$		
		AD - BC = 1		