

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 certified)

Subject code: 22504

WINTER -2019 EXAMINATION Model Answer

Total Pages: 13

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In the some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Question and Model Answers	Marks
No.		
1.	Attempt any <u>FIVE</u> of the following:	10M
1.(a)	Define : (i) Forecasting of population	2M
	(ii) Intake structure	
	Ans:	
	(i) Forecasting of population -	1M
	The process of calculating or estimating future population or demand is called	
	population forecasting.	
	(ii) Intake structure-	
	An intake is a well type structure, which is constructed across the surface of water,	1M
	so as to permit the withdrawal of water from source.	
1.(b)	State any four factors affecting rate of demand of water	2M
	Ans:	
	Factors affecting rate of demand of water-	
	i) Climatic Conditions	¹∕₂M
	ii) Cost of Water	each
	iii) Distribution Pressure	(for
	iv) Habits of Population	any
		four)

	v) Industries & it's types	
	vi) Policy of Metering	
	vii) Quality of Water	
	viii) Sewerage System	
	ix) Size of City	
	x) System of Supply (Continuous or Intermittent)	
	x) System of Suppry (Continuous of Interimitent)	
1.(c)	Enlist any four types of valves provided in water supply scheme.	2M
	Ans:	
	Types of valves provided in water supply scheme-	1/1/1
	i. Sluice valve	¹∕₂M each
	ii. Air valve	(for
	iii. Scour valve	any
	iv. Reflux valvev. Pressure Relief valve	four)
		1001)
	vi. Butterfly valve	
1.(d)	State any two advantages and disadvantages of dead end system.	2M
	Ans:	
	Advantages of dead end system:	
	1) Relatively economical.	¹∕₂ M
	2) Determination of discharges and pressure easier due to less number of	each
	valves.	(any
	3) Laying the water pipe is simple.	two)
	4) It is suitable for old towns and cities having no definite pattern of roads.	
	Disadvantages of dead end system:	1/ N/
	1) Due to many dead ends, stagnation of water occurs in pipes.	¹ /2 M
	2) During repairs, a large portion of the distribution area is affected.	each
	3) Due to limited discharge in the mains, the water available for firefighting	(any two)
	will be limited in quantity.	two)
1.(e)	Define trap. Sketch P-trap and S-trap.	2M
	Ans	
	Trap-	
	It is a bent tube, which provides a water seal between atmosphere and the	
	sewer gas. <u>OR</u>	1M
	The devices, which are used to stop the escape of foul gases inside or outside	
	the houses, are known as traps.	
		½ M
	Water	each
	Water E	
	P-trap S-trap	
	i-uap S-uap	
·		

1.(f)	Define: (i) sewage (ii) garbage	2M
	Ans:	1M
	i) Sewage - It is liquid waste from the community and it includes sullage, discharge from latrines, urinals, stables, industrial waste and storm water.	IIVI
	ii) Garbage - It consists of solid or semisolid waste food and product such as	1M
	vegetables, waste meat, peelings of fruits etc.	
1 (g)	State any four objects of sewage treatment.	2M
1. (g)	Ans:	2 1 VI
	Objects of sewage treatment-	
	1. To remove organic solids.	¹∕₂M
	2. To remove inorganic matter (sand, etc.)	each
	3. To prevent nuisance & offensive odour.	(for
	4. To prevent water borne diseases.	any
	5. To safeguard the natural resources from pollution.	four)
	6. To remove toxic & hazardous matter.	
	7. To convert solids into stable products by biological decomposing.	
	8. To make environment pollution free.	
Q.2.	Attempt any THREE of the following:	12M
2.(a)	Draw flow diagram of water treatment plant.	4M
()	Ans:	
	Flow diagram of water treatment plant	
	Sources of water Surface source Sub-surface source Rivers Lakes Reservoirs Springs Wells Infiltration wells Intake works Treatment works Sedimentation + Filtration + Disinfection + Misc. treatment Distribution system	2M (for units) 2M (for correct sequen ce)
	<u>OR</u>	<u>OR</u>

	Raw water Disinf Pure w	,	ening → Rapid sa →ESR/C	Aeration →	→ Flash - Clarifloc Distributio		2M (for units) 2M (for correct sequen ce)
2.(b)	State the pre	cautions to b	oe taken for	collection of	sample of w	vater.	4M
	Ans: Precautions t	1 4 1 6	11 (1	e 1 e			
	 should elimin. 2. If water least 4 oils, transferred and the second second	l be allowed ate the stagna er is to be co 0-50cm belo ee leaves, etc e of sub-surfa ting the samp acteriological com any dise potassium dic vation is done collecting the	to pass throu int water. ollected from w the surfac ice source su le. tests- The pe ase. Contain chromate and sample, stop ing samples	igh the tap be in streams, wa e, to avoid co ifficient water erson who co her bottles mu l then rinsed oper of the bot is of water sl	efore collect ter sample s ollection of s should be p lects the wa ust be clean with distille	quantity of wate ing the sample, t should be taken a surface impurities pumped out befor ter must be firstl ed with sulphuri ad water & finall e well secured an belled stating th	o 1M each (for any four) e y c y d
2.(c)		this town wi	th a design]	period of 30	years. Find	y scheme is to b the population a 2010	
	Year Population	35000	37500	43500	<u> </u>	57500	
	Ans: Population fo	precasting-				·	
		Population 25000	Increase in	n population	Increme	ental increase	
	1970 1980	35000		<u></u> 500			
	1980	<u>37500</u> 43500		<u>500</u> 000		3500	
	2000	52000		500		2500	
	2010	57500		<u>500</u>		-3000	
		Total		2500		3000	1M
	X = Mean incY = Mean of IP = Last know	Incremental in	ncrease in po		00/3 = 1000		1M

*	n = (Future year - last known year) = (2040 - 2010) = 3	
1.		
	10 10	
т	Py Ingromental Ingrassa Method	
	By Incremental Increase Method – $n(n+1) = 1$	
F	Probable population $Pi = P + nX + \frac{n(n+1)}{2}Y$	1M
F	$P_{2040} = 57500 + (3x5625) + \frac{3(3+1)}{2}1000$	
	= 57500 + 16875 + 6000	114
1	$P_{2040} = 80375$ souls	1M
	<u>1 2040 – 000 / 0 50015</u>	
2.(d)	Define Aeration. State objectives of aeration.	4M
	Ans:	7171
	Aeration – The process of bringing the water in intimate contact with air, to	1M
	ncrease the dissolved oxygen content in water is called Aeration.	
	norease the dissorred onggen content in which is called relation.	
(Objectives of aeration –	
	i) To remove the dissolved gases (H_2S , CO_2 , NO_2) from raw water.	3M (for
	ii) To increase the dissolved oxygen content in water.	any
	iii) To remove colour & odour considerably.	three)
	iv) To remove Iron & Manganese precipitate.	
3. <i>A</i>	Attempt any <u>THREE</u> of the following:	12M
3. (a) I	Describe the principle behind sedimentation with coagulation.	4 M
	Ans: Principle of coagulation can be explained by following two considerations.	
((a) Floc formation:	
	When a coagulant is added to water and mixed thoroughly and thick gelatinous	
	precipitate 'Floc' is formed. Floc attracts and arrests the colloidal particles and	2M
-	nakes them settle down.	
	b) Electrical charges:	
I	0	
	Ions from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them	2M
r	tons from floc possess positive electric charge. Colloidal particles possess	2M
r	lons from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them	2M
r s	lons from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them	2M 4M
3.(b) I	Ions from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them settle down.	
r S.(b) I	The floc possess positive electric charge. Colloidal particles possess megatively charged ions. The floc thus attracts colloidal particles and makes them settle down.	
r 3.(b) I // //	Ions from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them settle down. Describe the theory of filteration. Ans: Theory of Filteration-	4M
r 3.(b) I // //	Ions from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them settle down. Describe the theory of filteration. Ans: Theory of Filteration- The filtration process is carried out in following four actions-	4M 1M
r 3.(b) I // //	Ions from floc possess positive electric charge. Colloidal particles possess negatively charged ions. The floc thus attracts colloidal particles and makes them settle down. Describe the theory of filteration. Ans: Theory of Filteration- The filtration process is carried out in following four actions- 1) Mechanical Straining:	4M 1M each
r 3.(b) I // //	 In the filtration process is carried out in following four actions- 1) Mechanical Straining: Sand consists of small pores, therefore suspended particles which are larger 	4M 1M each (for
r 3.(b) I // //	 In the filtration process is carried out in following four actions- 1) Mechanical Straining: Sand consists of small pores, therefore suspended particles which are larger in size, can not pass through sand bed. Small particles of suspended 	4M 1M each
r 3.(b) I // //	 In the filtration process is carried out in following four actions- 1) Mechanical Straining: Sand consists of small pores, therefore suspended particles which are larger 	4M 1M each (for
r 3.(b) I // //	 In the filtration process is carried out in following four actions- 1) Mechanical Straining: Sand consists of small pores, therefore suspended particles which are larger in size, can not pass through sand bed. Small particles of suspended 	4M 1M each (for four

3.(c)	4)	gelatinous film formation and attracti Biological Action: Suspended impurities contain some p etc. and form a layer. This food chemical and biological action. Electrolytic action: Sand particles of filter media carry They therefore attract each other and water are thus changed. Washing charges.	ins. The particles are arrested due to ion between particles. portion of organic impurities like algae, consumed by micro organisms with electrical charges of opposite nature. I are neutralized. The characteristics of of filter media renews the electrical	4M
	systen Ans:	e •		
	Sr. No.	Gravity distribution system	Pumping distribution system	
	1)	Suitable when source of supply is at sufficient height than the city.	Suitable for any type of topography.	4M (for
	2)	Water flows under gravity, therefore pumping is not required.	Water flows under pressure and pumping is required.	any four
	3)	This system cannot provide high pressure for fire demand.	Sufficient water is available with pressure for fire fighting.	points of differe
	4)	Less leakages and wastages.	There are more losses and wastages.	nces)
	5)	This method is simple, reliable and economical.	This system is not economical due to pumping cost.	
	6)	Less maintenance cost.	More maintenance cost.	
	7)	Sufficient pressure is not available for farther sections.	Sufficient pressure is available in distribution system due to pumps.	
	8)	Power supply is not necessary, hence more reliable.	This system is not reliable in case of power failure as pumps will stop working.	
3.(d)	Descr	ibe the backwashing of rapid sand fi	ilter with neat labeled sketch.	4M
	Ans: Back	washing of rapid sand filter-		
	require A pun	ed for back washing of filter.	ear the filter house to store the water antity of filtered water to be stored in	

	 The chlorine, when added to the water, forms the function of killing bacteria first and then starts accumulating up to point A, as shown in graph. Further addition of chlorine shows sudden decrease in residual chorine up to point B. This is because of oxidation of organic matter in water. The point B on graph Q is called Breakpoint. As any chlorine that is added beyond this point breaks through the water and appears as residual chlorine. This type is called as break point chlorination. 	3M
	Applied chlorine in p.p.m. or mg /l Break point chlorination	
4.(b)	List any eight types of pipes used for conveyance of water.	4 M
	Ans: Types of pipes used for conveyance of water - 1. Cast Iron (C.I.) Pipe 2. Ductile Iron (D.I.) Pipe 3. Wrought Iron or Galvanised Iron (or G.I.) Pipe 4. Steel / Mild Steel (M.S.) Pipe 5. Concrete Pipe (R.C.C.) Pipe 6. Asbestos Cement (A.C.) Pipe 7. P.V.C. / Polyethylene Pipe 8. Prestressed Concrete Pipe 9. Glass Reinforced (G.R.P.) Pipe 10. Bar Wrapped Steel Cylinder (B.W.S.C.) Pipe 11. Copper Pipe 12. Lead pipe	¹ /2M each (for any eight)
4.(c)	Describe expansion joint with sketch.	4 M
	Ans: Expansion joint- It is used when pipes are subjected to severe changes in temperature leading to the expansion and contraction of pipes. A rubber gasket is inserted between the spigot and bell ends and it adjusts in every position to keep the joint watertight. The	2M

5.	Attempt any <u>TWO</u> of the following:	12M
5.(a)	Describe the process of coagulation. Explain the procedure of Jar test with	6M
	neat labeled sketch.Ans:Coagulation-The process of adding certain chemicals in water, in order to form insoluble, and gelatinous precipitation (or floc) which becomes heavier and finally settles down is known as Coagulation.Jar Test- This test is performed to determine optimum chemical dose in the laboratory.	1M
	 Procedure- Fill the 6 jars with 1000 ml water sample. Add the coagulant dose in increasing order and stir the sample with 60-80 RPM for one minute. After one minute reduce the speed of stirrer to 30 RPM for 15 minutes. Then turn off the mixer and allow water to settle for 30 minutes. Observe and measure the turbidity of each jar sample. The coagulant quantity, with good floc formation, will be the optimum dose of coagulant. 	3M
	Tachometer Tachometer Stirring Apparatus COAGULANT-WASTEWATER MIXTURE	2M
	Fig Jar test apparatus	
5.(b)	Describe in detail, the procedure of laying sewers.	6M
	 Ans: Procedure of laying sewers- For laying sewers as per the alignment, first trial holes are dug to know the strata and positions of manholes is finalized. Rest of the procedure is as follows- 1) Marking centre lines of sewers: The centre lines of sewers are marked on the streets and roads by driving the pegs at 7.5 to 15 m c/c & locating sewer appurtenances by offset line method. 2) Excavation of trenches: After marking the layout of sewers lines on the ground the first step is the removal of pavement and then excavation of trenches is done manually or by means of machinery 3) Sheeting, bracing and dewatering of trenches: In case of soft soils the trench side required shoring and strutting to prevent their collapse till the sewers are laid and tested. When sewers lines are to be lead below the ground water table, the 	1M Each (for six steps)

	 4) La directl Small are loo hook. 5) Teshelp o 6) Ba tranch 	ly on the soil in the tranches. Before er size pipes can be laid by the pipe wered in the trenches by passing rop Then jointing of sewers is done by u sting of sewers lines: The hydrauli of water test or air test by usual methol ck filling of trenches: After testin	Dinting: The sewers pipes are not later actual laying, the concreting is don layers by hand only but larger size pipe around them and supporting through sual method. It testing of the sewers is done with the d. It g and removing defects of pipe line the ally the excavated soil of trench is use	ne. es a he
5.(c)		rentiate between one pipe plumbin abeled sketch.	g and two pipe plumbing system wit	th 6M
	Ans:	abeled Sketch.		
	Sr. No.	One Pipe System	Two Pipe System	
	1)	Only one main waste pipe is used to collect both foul & un foul waste.	Two separate main waste pipes, one for foul & other for un foul waste, are used.	3M (for
	2)	Cheap & economical.	Costly, than one pipe system.	any
	3)	Less accessories required.	More accessories required.	three
	4)	Popular in multi storied building.	Popular in single storey building.	points
	5)	Volume of waste water is more.	Volume of waste water in a pipe is less due to bifurcation of waste.	of differe nces)
	6)	Waste water from wash basin, bath and kitchen gets unnecessarily polluted.	Waste water from wash basin, bath and kitchen can be used directly for gardening.	
	7)	Ventilation Pipe W.B. Tub Tub N.B. W.B. W.B. N.B. W.B. W.B. Tub U U U U U U U U U U U U U	Ventilating pipe Roof W.B. Tub Tub Tub W.B. W.B. W.B. W.B. W.B. W.B. W.B. W.B. W.B. Soil pipes W.B. Soil pipes Soil pipes W.B. Soil pipes Soil pipe	3M (for both sketche s)

	mpt any <u>TWO</u> of the following:	· · · · · · · · · · · · · · · · · · ·	12N
	e the systems of sewerage. Describe erits.	e separate system with merits and	6M
Ans:			
	ems of Sewerage are-		$1/_{2}N$
bybt	1) Combined System		eac
	2) Separate System		(fo
	3) Partially Separate System		thre
Sepa	arate system-		
	it is called separate system. The s discharged into the water body since and no treatment is generally provide	o carry sanitary sewage & storm water, storm water collected can be directly e, the run-off is not as foul as sewage ed. Whereas, the sewage collected from it is discharged into the water body or indards.	11/21
•	treatment works, 2) Cheaper than co	s small, hence economical design of ombined system, 3) No fear of stream discharged in to natural streams, 5)	1½ (an) thre
•	· · · · · · · · · · · · · · · · · · ·	y is not available, 2) Risk of entry of enience to traffic in busy lanes, while	(an
	storm water during rains, 3) Inconvergence (1) Initial cost is more.		(an thre
Diffe	storm water during rains, 3) Inconvergences (3) Inconvergences (3) Initial cost is more.		(an thre
Diffe	storm water during rains, 3) Inconvergences (ii) repairs 4) Initial cost is more.	enience to traffic in busy lanes, while BOD and COD	(an thre
Diffe (i) A	storm water during rains, 3) Inconvergences (ii) repairs 4) Initial cost is more.	enience to traffic in busy lanes, while	(an thre
Diffe (i) A Ans:	storm water during rains, 3) Inconvergences (ii) erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic	(an thre
Diffe (i) A Ans: (i)	storm water during rains, 3) Inconvergairs 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic	(an thre
Diffe (i) A Ans: (i)	storm water during rains, 3) Inconvergences (ii) erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic	(an thre 6M
Diffe (i) A Ans: (i)	storm water during rains, 3) Inconvergains 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of	(any three 6M 3M (for
Diffe (i) A Ans: (i) 1) 2)	storm water during rains, 3) Inconvergains 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process. Aerobic bacteria involved.	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process. Anaerobic bacteria involved.	(an thre 6M 3M (for an
Diffe (i) A Ans: (i) 1)	storm water during rains, 3) Inconvergains 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process.	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process.	(an thre 6N 3N (fo any thre poin
Diffe (i) A Ans: (i) 1) 2)	storm water during rains, 3) Inconverentiate between erobic and anaerobic process (ii) Aerobic Process (ii) When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process. Aerobic bacteria involved. Process in presence of oxygen and	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process. Anaerobic bacteria involved. Process in absence of oxygen and	(an thre 6M 3M (fo an thre poin of
Diffe (i) A Ans: (i) 1) 2) 3)	storm water during rains, 3) Inconvere repairs 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process. Aerobic bacteria involved. Process in presence of oxygen and light.	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process. Anaerobic bacteria involved. Process in absence of oxygen and light.	(an three 6M 3M (fo any three poir of diffe
Diffe (i) A Ans: (i) 1) 2) 3) 4)	storm water during rains, 3) Inconvere repairs 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process. Aerobic bacteria involved. Process in presence of oxygen and light. Not offensive.	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process. Anaerobic bacteria involved. Process in absence of oxygen and light. Offensive.	(an thre 6M 3M (fo any thre poin of diffe
Diffe (i) A Ans: (i) 1) 2) 3) 4) 5)	storm water during rains, 3) Inconverepairs 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process. Aerobic bacteria involved. Process in presence of oxygen and light. Not offensive. End products- CO ₂ , H ₂ O, NO ₃ , SO ₄	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process. Anaerobic bacteria involved. Process in absence of oxygen and light. Offensive. End products- CH4, H2S, CO2	(an thre 6M 3M (fo any thre poin of diffe
Diffe (i) A Ans: (i) 1) 2) 3) 4) 5) 6)	storm water during rains, 3) Inconverepairs 4) Initial cost is more. erentiate between erobic and anaerobic process (ii) Aerobic Process When the decomposition of organic matter takes place in the presence of oxygen, it is called aerobic process. Aerobic bacteria involved. Process in presence of oxygen and light. Not offensive. End products- CO ₂ , H ₂ O, NO ₃ , SO ₄ Applied for moderate waste. End product requires another	enience to traffic in busy lanes, while BOD and COD Anaerobic process When the decomposition of organic matter takes place in the absence of oxygen, it is called aerobic process. Anaerobic bacteria involved. Process in absence of oxygen and light. Offensive. End products- CH4, H2S, CO2 Applied for strong waste.	1 ¹ / ₂ N (any thre 6M 3M (for any thre poin of diffe nce

(ii)	BOD	COD	
1)	The amount of oxygen required for	The amount of oxygen required for	
	decomposition of biological	decomposition of biological	214
	degradable matter under aerobic	degradable and inorganic matter	3M (for
	condition is called Biochemical	under acidic condition is called	any
	Oxygen Demand or B.O.D.	Chemical Oxygen Demand or	three
		C.O.D.	points
2)	This test is conducted at standard temperature of 20°C.	No standard temperature is required.	of differ
3)	This test requires 5 days.	This test requires 3 to 5 hours.	nce)
4)	No oxidizing agent is required.	Strong oxidizing agent is required.	
5)	B.O.D. is generally less than C.O.D.	C.O.D. is always higher than B.O.D.	
6)	Higher B.O.D. means higher organic	Higher C.O.D. means higher	
- /	matter.	pollution.	
7)	It is affected by temperature.	It is not affected by temperature.	
8)	Apparatus required for test –	8) Apparatus required for test –	
0)	Incubator, B.O.D. Bottle, titration	Reflux apparatus, B.O.D. Bottle,	
	unit	hot plate, titration unit	
		not prato, attation unit	
Ans: Wor		consists of RCC rectangular or circular	6M
Ans: Wor tank drain trick slime	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays b les to the under drains. As sewage trickle layer consisting of aerobic bacteria bui	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two	1M 2M
Ans: Wor tank drain trick slime week	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickle layer consisting of aerobic bacteria built s makes the filter ready for use. Organ	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological	1M 2M
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickle layer consisting of aerobic bacteria built s makes the filter ready for use. Organ	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%.	1M 2M
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the layer. It removes 80% colloc res highly nitrified and stabilized effluer	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. and flexibility in operation Rotary pipe	1M 2M
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickling e layer consisting of aerobic bacteria built as makes the filter ready for use. Organ peria in slime layer. It removes 80% colloc ves highly nitrified and stabilized effluer Mosquito-proof dome	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. ht and flexibility in operation	1M 2M 2M
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the layer. It removes 80% colloc res highly nitrified and stabilized effluer Mosquito-proof	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe –(Circular or	1M 2M 2M (for
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickling e layer consisting of aerobic bacteria built as makes the filter ready for use. Organ peria in slime layer. It removes 80% colloc ves highly nitrified and stabilized effluer Mosquito-proof dome	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe –(Circular or rectangular)	1M 2M 2M (for sketch
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the layer. It removes 80% colloc res highly nitrified and stabilized effluer Mosquito-proof Vent shaft	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe (Circular or rectangular) Orifices	1M 2M (for sketch 1M
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays by les to the under drains. As sewage trickling e layer consisting of aerobic bacteria built as makes the filter ready for use. Organ peria in slime layer. It removes 80% colloc ves highly nitrified and stabilized effluer Mosquito-proof dome	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe – (Circular or rectangular) Orifices	1M 2M (for sketch 1M (for
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays b les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the pria in slime layer. It removes 80% colloures highly nitrified and stabilized effluer Mosquito-proof Vent shaft	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe (Circular or rectangular) Orifices	1M 2M (for sketcl 1M (for labeli
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays b les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the pria in slime layer. It removes 80% colloures highly nitrified and stabilized effluer Mosquito-proof Vent shaft	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe (Circular or rectangular) Orifices	1M 2M 2M (for sketcl 1M (for
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays b les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the pria in slime layer. It removes 80% colloures highly nitrified and stabilized effluer Mosquito-proof Vent shaft	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe – (Circular or rectangular) Orifices	1M 2M (for sketch 1M (for labeli
Ans: Wor tank drain trick slime week bacte	king of trickling filter- Trickling filter provided with filter media (stones of age system to collect the effluent. Revo Sewage is distributed or sprays b les to the under drains. As sewage trickle layer consisting of aerobic bacteria built as makes the filter ready for use. Organization of the pria in slime layer. It removes 80% colloures highly nitrified and stabilized effluer Mosquito-proof Vent shaft	consists of RCC rectangular or circular or broken bricks material) and under lving distributor having four arms. y distribution arms through which it es through the filter media, a biological ild up around the media surfaces in two anic matter in sewage is absorbed by bidal matter, reduces B.O.D. up to 75%. nt and flexibility in operation Rotary pipe (Circular or rectangular) Orifices	1M 2M (for sketch 1M (for labeli