

Subject: Heat Transfer Operation

Subject code: 22510

Page **1** of **17**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject: Heat Transfer Operation

Subject code: 22510

Page **2** of **17**

Q	Sub	Answer	marks
No	Q.N		
1		Answer any five	10
1	a	Steady state heat transfer: Heat transfer where temperature remains same	2
		with respect to time and the rate of heat transfer doesnot vary with time.	
1	b	Film heat transfer coefficient: Film heat transfer coefficient h is defined	2
		as the quantity of heat transferred in unit time through unit area at a	
		temperature difference of 1^0 between the surface and surrounding.	
1	c	Unit of overall heat transfer coefficient	
		1. In SI : W/m^2K	1
		2. In MKS : kcal/hr m ² K	1
1	d	Radiation: Radiation is transfer of energy through space by	1
		electromagnetic waves. If radiation is passing through empty space, it is not	
		transformed into other forms of energy, nor is it diverted from its path. If	
		matter appears in its path, the radiation will be transmitted, absorbed or	
		reflected. It is only the absorbed energy that appears as heat.	
		Example: Loss of heat from unlagged pipe.	1
1	e	Four types of shell and tube heat exchanger:	¹∕₂ mark
		1. Fixed tube heat exchanger	each
		2. Floating head heat exchanger	
		3. U- tube type heat exchanger	
		4. Kettle/ Reboiler type heat exchanger	
1	f	The capacity of an evaporator is defined as the number of kilogram of	1
		water evaporated per hour.	
			1
		The economy of an evaporator is defined as the number of kilogram of	

		nsfer Operation Subject code: 22510 Page	3 of 1
		water evaporated per kilogram of steam fed to the evaporator.	
1	g	1. Nusselt Number $N_{NU} = hd/k$	
		h – fim heat transfer coefficient	
		d - diameter of pipe	
		k – thermal conductivity of fluid	
		2. Prandtl Number N_{PR} - $C_p \mu/k$	
		C _p - specific heat of fluid	-
		μ - viscosity of fluid	
		k – thermal conductivity	
2		Answer any three	12
2	а	Optimum thickness of insulation:	
		The optimum thickness of an insulation is obtained by purely economic	,
		approach. The greater the thickness, the lower the heat loss & the greater	
		the initial cost of insulation & the greater the annual fixed charges.	
		It is obtained by purely economic approach. Increasing the thickness of an	
		insulation reduces the loss of heat & thus gives saving in operating costs but	
		at the same time cost of insulation will increase with thickness. The	
		optimum thickness of an insulation is the one at which the total annual cost	
		(the sum values of heat lost and annual fixed charges) of the insulation is	
		minimum.	

Subject: Heat Transfer Operation

Heat	t Tran	sfer Operation	Subject code: 22510	Page 5 of 1 7	7
		$\Delta T_1 = T_{hi} - T_{ci}$	$\Delta T_{l} = T_{hi} - T_{co}$	2	2
		$\Delta T_2 = T_{ho} - T_{co}$	$\Delta T_2 = T_{ho} - T_{ci}$		
		$\Delta T_{LM} = (\Delta T_1 - \Delta T_2) / \ln (\Delta T_1 / \Delta T_2) \qquad \Delta T_{LM}$	$G_{\rm LM} = (\Delta T_1 - \Delta T_2) / \ln (\Delta T_1 / \Delta T_2)$	ΔT_2)	
2	c	Properties of evaporating liquid		1 mark	k
		1. Concentration: As the concent	ntration increases, the solution	ution each for	r
		becomes more and more ind	ividualistic. The viscosity	and any 4	4
		density increase with solid co	ontent. The boiling point o	of the	
		solution also increases with so	olid content.		
		2. Foaming: Some of the materi	als have tendency to foam	n that	
		causes heavy entrainment.			
		3. Scale: Some solutions depo	sit scale on the heat tra	nsfer	
		surface that results in reductio	n of heat transfer rate.		
		4. Temperature sensitivity:	Some materials espec	cially	
		pharmaceuticals and food pro-	ducts are damaged when he	eated	
		to moderate temperatures	even for short time.	For	
		concentrating such materials,	, special techniques are t	to be	
		used that reduce temperature a	and time of heating.		
		5. Material of construction: Gene	erally evaporators are made	e of	
		mild steel. Whenever contami	nation and corrosion is a		
		problem, special materials suc	h as copper, nickel, stainle	ess	
		steel may be used.			
2	d	Absorptivity: It is the fraction of total incide	nt radiation which is absor	bed 1	1
		by a body.			
		Reflectivity: It is the fraction of total incide	nt radiation which is reflec	ted 1	1
		by a body.			

Subject: He	at Tran	sfer Operation Subject code: 22510	Page 6 of 17
		Transmissivity : It is the fraction of total incident radiation which is	1
		transmitted by a body.	
		Emissivity: It is the ratio of total emissive power of a body to emissive	1
		power of a black body at the same temperature.	
3		Answer any three	12
3	a	Rate of heat transfer by radiation	
		Assume length of pipe $= 1 \text{ m}$	
		$e = 0.9\sigma = 5.67 * 10^{-8} \text{ W/(m^2.K^4)}$	1
		$T_1 = 393 \text{ K}$ $T_2 = 293 \text{ K}$ $Do = 50 \text{mm} = 0.05 \text{m}$	
		Outside surface area per 1 meter length of pipe is	1
		$A = \pi$ Do $L = \pi \times 0.05 \times 1 = 0.1570 \text{ m}^2$	
		The net radiation rate per 1 m length of pipe is	1
		$Qr = e\sigma A (T_1^4 - T_2^4)$	
		$= 0.9 \times 5.67 \times 10^{-8} \times 0.1570 \ (393^4 - 293^4)$	
		= 132.0685 W/m	1
		OR	
		$Q_r / A = 841.2 W/m^2$	
3	b	1-2 shell and tube heat exchanger:	4
		Tube sheet welded to shell Shell outlet nozzle Shell cover Shell cover Shell Shell Baffle Shell inlet nozzle Shell inlet nozzle	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ect: Hea	at Trans	sfer Operation Subject code: 22510	Page 8 of 17
		bottom of the tubes. Solution to be evaporated is inside the tubes and steam	2
		flows outside the tubes in the steam chest. Baffles are incorporated in steam	
		chest to promote uniform distribution of steam. The condensate is	
		withdrawn at a point near lower tube sheet, while non condensable gas is	
		vented to atmosphere from point near top tube sheet.	
4		Answer any three	12
4	a	Kirchoff's law of radiation:	
		Kirchoff's law: It states that at equilibrium temperature, the ratio of total	1
		emissive power of any body to absorptivity depends only upon the	
		temperature of the body.	
		Thus when any body is at equilibrium temperature with its surrounding, its	
		emissivity and absorptivity are equal.	
		Consider that the two bodies are kept into a furnace held at constant	
		temperature of T K. Assume that, of the two bodies one is a black body&	1
		the other is a non-black body i.e. the body having 'a' value less than one.	
		Both the bodies will eventually attain the temperature of T K & the bodies	
		neither become hotter nor cooler than the furnace. At this condition of	
		thermal equilibrium, each body absorbs and emits thermal radiation at the	
		same rate. The rate of absorption & emission for the black body will be	
		different from that of he non-black body.	
		Let the area of non-black body be A_1 and A_2 respectively. Let 'I' be the	
		rate at which radiation falling on bodies per unit area and E_1 and E_2 be the	
		emissive powers (emissive power is the total quantity of radiant energy	
		emitted by a body per unit area per unit time)of non-black & black body	
		respectively.	
		At thermal equilibrium, absorption and emission rates are equal, thus,	
		$Ia_1 A_1 = A_1 E_1$ (1.1)	

ubject: Heat Trai	nsfer Operation	Subject code: 22510	Page 9 of 17
	$\therefore Ia_1 = E_1$ And $Ia_b A_2 = A_2 E_b$	(1.2) (1.3) $Ia_b = E_b$ (1.4)	
	$\frac{E1}{a1} = \frac{Eb}{ab}$ Where $a_{1,}a_{b}$ = absorptivity of non-blac If we introduce a second body (non body, we have :		ck 1
	$I A_3 a_2 = E_2 A_3$	-	1
	$\frac{E1}{a1} = \frac{E2}{a2} = \frac{E3}{a3} = E_{t}$,(1.8)	
4 b	Wilson Plot:The Wilson plot method was developconvection coefficients in shell and tucondensing outside by means of a coeseparation of the overall thermal resisresistance and the remaining thermal reprocess.	tance into the inside convective therm	our 1 he nal

Subject	: Hea	ıt Tran	sfer Operation Subject code: 22510	Page 11 of 17
			Temperature difference $\Delta T = 400-310 = 90 \text{ K}$	1
			$Q = kA \Delta T/B$	1
			= 0.7*1*90 / 0.5	
			= 126 W/m ²	1
	4	d	LMTD for co current flow,	
			$\Delta T_1 = T_{hi} - T_{ci} = 423 - 311 = 112 \text{ K}$	
			$\Delta T_2 {=} T_{\rm ho} {-} T_{\rm co} {=} 367 {-} 339 {=} 28 \; {\rm K}$	
			$LMTD = \frac{\Delta T1 - \Delta T2}{\ln(\frac{\Delta T1}{100})} = \frac{112 - 28}{\ln(\frac{112}{100})} = 60.6K$	1.5
			LMTD for counter current flow,	
			$\Delta T_1 = T_{hi} - T_{co} = 423 - 339 = 84 \text{ K}$	
			$\Delta T_2 = T_{ho} - T_{ci} = 367 - 311 = 56 \text{ K}$	
				1.5
			LMTD = $\frac{\Delta T1 - \Delta T2}{\ln(\frac{\Delta T1}{\Delta T2})} = \frac{84 - 56}{\ln(\frac{84}{56})} = 69.06 \text{K}$	1.5
			LMTD for cocurrent flow = 60.6 K	
			LMTD for counter current flow = 69.06 K	1
			Since LMTD for counter current is more, the fluid must be directed in	
			counter current fashion.	
	4	e	Backward feed arrangement	
			If the liquid is very viscous, then we have to adopt backward feed	
			arrangement.	2
			In this arrangement, the feed solution and vapour flow is in opposite	
			direction. Fresh feed is admitted to the last effect and steam to the first	
			effect.	

Subject: Hea	at Tran	sfer Operation Su	ubject code:	22510	Ра	ge 14 of 17
		$\int_{\Delta Ti} d(\Delta T) / \Delta T = - (1/(mhCph) + 1/(mcCpc)) U$	$\int \mathbf{B} \int_0^L \mathrm{d} \mathbf{x}$			
		$\ln (\Delta Te/\Delta Ti) = - (1/(mhCph) + 1/(mcCpc)) U.$	A		(6)	1
		where $\Delta Te = T_{he} - T_{ce}$				
		$\Delta Ti = T_{hi} - T_{ci}$				
		Now if q is the total rate of heat transfer in the h	eat exchang	ger, then		
		$q = m_h C p_h (T_{hi} - T_{he})$ (7)				1
		= mc Cpc $(T_{ce} - T_{ci})$ (8)				
		Substituting equations (7) and (8) into equation	(6),			
		$\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{ce}-T_{ci})]U A$				
		$q = U A (\Delta Ti - \Delta Te) / \ln (\Delta Ti / \Delta Te)$	((9)		1
		Equation (9) is the performance equation for a p	arallel-flow	heat exchar	nger.	
		$Q = U A \Delta T lm$				
		Where $\Delta Tlm = (\Delta Ti - \Delta Te) / ln (\Delta Ti / \Delta Te)$				
5	b	Graphite block heat exchanger:				
		Graphite heat exchangers are well suited for h	nandling cor	rosive fluids	s.	1
		Graphite is inert towards most corrosive fluids a	nd has very	high therma	al	
		conductivity. Graphite being soft, these exchange	ers are made	e in cubic or		
		cylindrical blocks.In cubic exchangers, parallel h	oles are dri	lled in a soli	d	3
		cube such that parallel holes of a particular row	are at right	angles to the	e	

ect: Heat Trans		sfer Operation	Subject code:	22510	Page 15 of 1
		holes of the row above & below.Headers bol	ted to the oppo	site sides of the	
		vertical faces of the cube provide the flow of	process fluid t	hrough the	
		block.The headers located on the remaining	vertical faces d	irect the service	
		fluid through the exchanger in a cross flow.			
5	с	Basis: 5000 kg/hrfeed is fed to the evaporato	r.		1
		Material balance of solids:			
		Solids in feed= solids in the thick liquor			1
		0.05x5000=0.2 x m'			
		m'=1250kg/h.			1
		overall Material balance:			
		kg/h feed= kg/h water evaporated + kg/h thic	ek liquor		
		water evaporated(m_v)=5000-1250=3750kg/h	n		1
		Energy balance is			
		$m_s\lambda_s = m^*c_{pf}^*(T-T_f) + m_v\lambda_v$			
		$m_s 2185 = 5000*4.187*(378-298) + 3750*22$	257		1
		steam fed(m_s)= 4640.06 kg/h			
		steam economy= kg/h water evaporated/kg/h	n steam consum	ned	1
		= 3750/4640.06 = 0.808			
6	1	Answer any two			12
6	a	Basis: 1 m length			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject: Heat	t Tran	sfer Operation	Subject code: 22510	Page 16 of 17
		$r_1 = 0.0325m \ r_2 = 0.0825m$		
		$r_{L1} = (r_2 - r_1) / \ln(r_2/r_1) = 0.0537m$		1
		$A_{L1} = 2\pi r_L L = 0.3371 \text{ m}^2$		
		$K_1 = 0.14 \text{ W/mK}$		
		$\mathbf{R}_{1}=\mathbf{B}_{1}/\mathbf{K}_{1}\mathbf{A}_{L1}$		
		= 0.05/0.14* 0.3371		1
		= 1.059 K/W		
		$r_2 = 0.0825m$ $r_3 = 0.1225m$		
		$r_{L}=(r_{3}-r_{2}) / \ln(r_{3}/r_{2}) = 0.101m$		1
		$A_{L2} = 2\pi r_L L = 0.6355 \text{ m}^2$		
		$K_2 = 0.035 \text{ W/mK}$		
		$\mathbf{R}_{2}=\mathbf{B}_{2}/\mathbf{K}_{2}\mathbf{A}_{L2}$		
		= 0.04/0.035* 0.6355		1
		= 1.798 K/W		
		$R= R_1 + R_2$		
		= 2.857 K/W		1
		Temp.drop ΔT = 115 K		
		Heat loss $Q = \Delta T / R$		
		= 115 / 2.857		1
		= 40.3 W		
6	b	Outside diameter (do) = 130 mm =0.13 m		
		Inside diameter (di) = $20 \text{ mm} = 0.02 \text{m}$		2
		Thickness (x) = $(0.13-0.02)/2 = 0.055$ m		
		Thermal conductivity (k) = 46.52 W/mK		
		1/U = 1/hi + x/k + 1/ho		2
		Find out value of U assuming the values of h	ni and ho	2

		"If students assumed appropriate values of hi, ho and attempted to solve give appropriate marks."	
6	c	Viscous liquid : Viscous liquid is passed through shell side	1
		Reason : because of the presence of baffles in the shell induce turbulence and hence increases heat transfer rate.	1
		High pressure liquid: High pressure liquid is passed through tube side	1
		Reason : To avoid expensive high pressure shells (in order to save the cost of expensive material for shell).	1
		Corrosive liquid: High pressure liquid is passed through tube side	1
		Reason: To avoid expensive alloy shells (in order to save the cost of	1
		expensive material for shell).	