

WINTER – 19 EXAMINATION

Model Answer

Subject Code:

```
22440
```

Subject Name: Advance Auto. Engg. Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept

8)

Q. N	SUB Q. N.	Q. ANSWER						
1		Atten	npt any FIVE o	of the following.		10		
	a	State	the general con	nditions necessary for combustion.		02		
	Ans.	Three	things are req	uired in proper combination before i	gnition and combustion can take	Correct		
		place	Heat, Oxygen	and Fuel. There must be Fuel to bu	rn. There must be Air to supply	Answer		
				be Heat (ignition temperature) to st		01		
		proces	SS.			Mark		
	b	State	the effect of de	tonation.		02		
	Ans.	Effec	ts of Detonatio	on:		Any		
		1. No	ise and roughn	ess: Mild knock is seldom audible ar	d is not harmful. When intensity	Two		
		of kno	ock increases a	a loud pulsating noise is produced d	ue to development of a pressure	01		
		wave.	The presence	of vibratory motion causes crankshaf	t vibrations and engines rough.	Mark		
		2. Me	chanical dama	ge: Due to rapid pressure waves, rate	e of wear is increased and piston	each		
		head,	cylinder head a	and valves may be pitted.	-			
		3. Cai	bon deposits: I	Detonation results in increased carbon	n deposits.			
				ransfer: Temperature in detonating				
				gine and hence scoring away the pro				
				creases the rate of heat transfer to co				
		U		r output and efficiency: Due to increa				
			r output is decr					
		-	-	onation results in over heating of th	e sparking plug and combustion			
			•	6	1 01 0			
	c	 chamber wall and this overheating leads to ignite the charge before the passage of spark. c State the function and location of oxygen sensor and mass air flow sensor. 						
	Ans.	S.	Name	Function	Location	Correct		
		N.				Ans.		
		1	Oxygen	Measuring quantity of oxygen in	Located at inlet and outlet	01		
			Sensor	exhaust	side of catalytic convertor	Mark		
		2	Mass Air	It is used to tell ECU the mass of	Mounted between air filter	Each		

	Flow Sensor	ir entering the engine. and turbocharge	<u>۲</u>
d		carbureted SI Engine.	02
d Ans. e Ans.	Drawback of Carbure 1) Air-Fuel Ratio: As air/kg of fuel to 18.5 kg to misfire, or simply re 2) Fuel consumption: SI engine Air-fuel ratio 3) Power output: Pow 4) Emission: As in SI of fuel to 18.5 kg of air * (any suitable answer	ted SI Engine: in SI engine Air-fuel ratio varies from 8:1 to 18.5:1 of air/kg of fuel. Richer or leaner air-fuel ratio limit Tuse to run at all. As atomization rate deepened upon velocity of air in varies from 8:1 to 18.5:1 so Fuel consumption is more er output varies due to variation of Air-fuel ratio. engine Air-fuel ratio varies from 8:1 to 18.5:1 i.e. fr /kg of fuel. So emission is more in SI engine.	i.e. from 8 kg of causes the engine1/2 Mark Eachventure also As in re in SI engine.
	 Low engine perform Low engine volume Need of large presso Refuelling is a slow Inconsistent fuel pro Advantages: CNG reduces the hat Operating cost of th Reduced vehicle mat Fuel theft is not post CNG contains less of CNG vehicle is as s CNG has a much hig knock additives are not Being a gaseous fue Almost any petrol / 	tric efficiency. urized fuel storage tank. process operties. rmful emission e vehicle running on CNG is lower. intenance. sible. Since NG cannot be siphoned off from a vehi varbon than any other fossil fuel. afe as petrol vehicle ther Octane Number.—So, it is superior to petrol. A	and the anti-
f	Enlists various polluta	nts from the gasoline engine. State their effect on	environment. 02
Ans.	Pollutants from Gaso	ine Engine & their effect on Environment:	Lists of
	Pollutant 1. Hydrocarbons 2. Carbon Monoxide	Environmental Effect of Pollutants They play an important role in forming NO2 and O3 whi environmental hazards. CO is a highly poisonous gas that can cause dizzi impaired thinking, and death by O2 starvation. It can affect the central nervous system, impairing phys vision and judgment, creating nausea and headaches, productivity and increasing personal discomfort.	ich are health and iness, headaches, ical coordination, reducing worker iness dealer ical coordination, reducing worker ical coordination, reducing worker ical coordination, reducing worker
	Carbon dioxide	CO2 is a greenhouse gas and may be the major cause of	global warming.

g	State four method to control diesel smoke.	02
Ans.	 Methods to Control Diesel Smoke: 1. De-rating:- At lower loads, the air: fuel ratio obtained will be leaner & hence the smoke developed will be less. However this means a loss of output. 2. Maintenance: - Maintaining the injection system of engine properly results in a significantly reduced smoke, best engine performance, and clean exhaust system. Other methods are changes in Combustion chamber geometry. 3. Smoke suppressant additives:- Some barium compound, if used in fuel, reduce the temp of combustion, thus avoiding the soot formation, & if formed- they break it into the fine particles, thus appreciably reducing smoke. 4. Fumigation: - Fumigation consists of introducing a small amount of fuel into the intake manifold. This shortens the delay period- curbs thermal cracking which is responsible for soot format 	Four Method 1/2 Mark Each.
2	Attempt any THREE of the following:	12
a	Describe the Air Fuel Ratio in CI Engine.	04
	Thermodynamic analysis of the engine cycles has clearly established that operating an engine with a leaner air-fuel ratio always gives a better thermal efficiency but the mean effective pressure and the power output reduce. The CI engine is always designed to operate with an excess air, of 15 to 40% depending upon the application. The power output curve for a typical CI engine operating at constant speed is shown in Fig. given below. The approximate region of A/F ratios in which visible black smoke occurs is indicated by the shaded area.	Correct Answer 04 Mark Each

b Ans.	Select a combustion chamber for petrol engine with justification.Selection of a Combustion Chamber for Petrol Engine with Justification:				
A115,	Combustion Chamber	Justification	List Of Combustic		
	1) T Head Type	1. Easy to manufacture flat cylinder head,	Compusite Chamber		
	Combustion Chambers	2. Lower height of engine and front hood for better frontal	02		
	2) L Head Type & Side	visibility of vehicle	Marks		
	Head Combustion	1. Neat and compact layout	æ		
	Chambers	2. Easy to lubricate valves, easy to decarbonize engine.	Justificatio		
	3) F- Head	1. High volumetric efficiency	of		
	Combustion Chamber	2. Maximum compression ratio for fuel of given octane	Any Two		
		rating	01		
		3. High thermal efficiency	Mark Ea		
		4. It can operate on leaner air-fuel ratios without misfiring.			
	4) Over Head Valve or	1. Lower pumping losses and higher volumetric efficiency.			
	I Head,	2. Lesser distance of flame travel. Therefore low octane			
	(Bathtub and	requirement.			
	Wedge Shaped)	3. More uniform cooling of cylinder and piston.			
	Combustion Chamber	4. Lower surface to volume ratio and therefore less heat loss.			
		5. Easier to cast and hence lower casting cost.			
	5) Ricardo Turbulent	1. Faster flame speed,			
	head side valve	2. Reduced detonation			
	Combustion chamber	3. Homogeneous air: fuel mixture formation.			
c	Illustrate with example of fuel injection as an output control function of ECM.				
	CMP, MAP, CTS and O ₂ ar meets the engine requirem (ROM/RAM/KAM). Illustration:	s ECM receives inputs from various sensors such as TPS, CKP, and other sensors, it calculates the injector pulse width that precisely ment. ECM refers Look-up tables and maps stored in memories	Descriptio 02 mark		
	Lambda	Input Microprocessor Output Fuel Injection ROM RAM Memory	æ		
	Throttle position 호	Fuel cut-off programme			
	Engine speed	programme Idle speed programme Start and warm-up programme Enrichment acceleration programme	Illustratio 02 mark		
	Engine speed Temperature Figure: ECM	programme Idle speed programme Start and warm-up programme Enrichment acceleration programme Block Diagram and Fuel Injection Control Function			
	Engine speed Temperature Figure: ECM I When the engine is being c	programme Idle speed programme Start and warm-up programme Enrichment acceleration programme Block Diagram and Fuel Injection Control Function ranked by the starter, and when the engine is colder than operating			
	Figure: ECM I When the engine is being c temperature, the ECM see	programme Idle speed programme Start and warm-up programme Enrichment acceleration programme Block Diagram and Fuel Injection Control Function ranked by the starter, and when the engine is colder than operating as the low RPM, and quickly goes to the Cranking fuel Table,			
	Figure: ECM I When the engine is being c temperature, the ECM see increasing the Injector puls	programme Idle speed programme Start and warm-up programme Enrichment acceleration programme Block Diagram and Fuel Injection Control Function ranked by the starter, and when the engine is colder than operating			

	Attempt any THREE of the following:	12
a	Sketch and describe LPG fuel supply system layout.	04
Ans	External Filler Valve	
	LPG Tank Intake manifold Pressure Sensor	Sketch 03 Marks,
	Gas Shut-off valve → pressure regulator → Intake port → chamber	æ
	Petrol / Gas LPG – Electronic CAN interface Diagnostic Diagnostic Switch Control Unit CAN interface Lamp Diagnostic	
	Figure: LPG Fuel Supply System Layout for SI Engine.	
	The system works by pumping LPG at high pressure from the LPG vehicle tank to the engine inlet manifold via a set of liquid LPG injectors. The injectors spray the liquid LPG into the	-
	intake manifold. The fuel vaporizing in the intake manifold cools and increases the density o the intake air.	
b	the intake air.	
b Ans	the intake air. LPG is used as a fuel for petrol engine. Justify your answer. LPG is used as a fuel for petrol engine, because of its following advantages 1. It is cheaper than petrol 2. It is highly detonation resistant and does not pre-ignite easily.	f 04
	the intake air. LPG is used as a fuel for petrol engine. Justify your answer. LPG is used as a fuel for petrol engine, because of its following advantages 1. It is cheaper than petrol 2. It is highly detonation resistant and does	f 04 04 Any 08 Justificatio
	the intake air. LPG is used as a fuel for petrol engine. Justify your answer. LPG is used as a fuel for petrol engine, because of its following advantages 1. It is cheaper than petrol 2. It is highly detonation resistant and does not pre-ignite easily. 3. It gives better manifold distribution and mixes easily with air. 4. Residue and oil contamination is small as it burns cleanly: implies longer lubricating oil change period. 5. LPG is lead free – implies- less exhaust emission. 6. Life of spark plug is increased.	f 04 04 08
	the intake air. LPG is used as a fuel for petrol engine. Justify your answer. LPG is used as a fuel for petrol engine, because of its following advantages 1. It is cheaper than petrol 2. It is highly detonation resistant and does not pre-ignite easily. 3. It gives better manifold distribution and mixes easily with air. 4. Residue and oil contamination is small as it burns cleanly: implies longer lubricating oil change period. 5. LPG is lead free – implies- less exhaust emission. 6. Life of spark plug is increased. 7. LPG has a higher octane rating than petrol. 8. It meets emission norms 9. It can be transported easily to remote 10. It results in increased engine life and	f 04 Any 08 Justificatio 1/2 Mark
	the intake air.LPG is used as a fuel for petrol engine. Justify your answer.LPG is used as a fuel for petrol engine, because of its following advantages1. It is cheaper than petrol2. It is highly detonation resistant and does not pre-ignite easily.3. It gives better manifold distribution and mixes easily with air.4. Residue and oil contamination is small as it burns cleanly: implies longer lubricating oil change period.5. LPG is lead free – implies- less exhaust emission.6. Life of spark plug is increased.7. LPG has a higher octane rating than petrol.8. It meets emission norms9. It can be transported easily to remote places by road and also by rail.10. It results in increased engine life and smoother engine performance.11. Crankcase oil dilution is small. So, oil replacement frequency is reduced.12. Low engine deposits reduce the cost of maintenance.	f 04 Any 08 Justificatio 1/2 Mark
	the intake air. LPG is used as a fuel for petrol engine. Justify your answer. LPG is used as a fuel for petrol engine, because of its following advantages 1. It is cheaper than petrol 2. It is highly detonation resistant and does not pre-ignite easily. 3. It gives better manifold distribution and mixes easily with air. 2. It is highly detonation resistant and does not pre-ignite easily. 4. Residue and oil contamination is small as it burns cleanly: implies longer lubricating oil change period. 4. Residue and oil contamination is small as it burns cleanly: implies longer lubricating oil change period. 5. LPG is lead free – implies- less exhaust emission. 6. Life of spark plug is increased. 7. LPG has a higher octane rating than petrol. 8. It meets emission norms 9. It can be transported easily to remote places by road and also by rail. 10. It results in increased engine life and smoother engine performance. 11. Crankcase oil dilution is small. So, oil replacement frequency is reduced. 12. Low engine deposits reduce the cost of maintenance. 13. Engine need not be modified. LPG kits are readily available (even for MPFI engines) and the kit cost is mostly affordable.	f 04 Any 08 Justificatio 1/2 Mark
	 the intake air. LPG is used as a fuel for petrol engine. Justify your answer. LPG is used as a fuel for petrol engine, because of its following advantages It is cheaper than petrol It gives better manifold distribution and mixes easily with air. It gives better manifold distribution and mixes easily with air. LPG is lead free – implies- less exhaust emission. LPG has a higher octane rating than petrol. It can be transported easily to remote places by road and also by rail. Crankcase oil dilution is small. So, oil replacement frequency is reduced. Engine need not be modified. LPG kits are readily available (even for MPFI engines) and the kit cost is mostly affordable. (NOTE: Credit Should be given to any other Appropriate Answer) 	f 04 Any 08 Justificatio 1/2 Mark
Ans	the intake air.LPG is used as a fuel for petrol engine. Justify your answer.LPG is used as a fuel for petrol engine, because of its following advantages1. It is cheaper than petrol2. It is highly detonation resistant and does not pre-ignite easily.3. It gives better manifold distribution and mixes easily with air.4. Residue and oil contamination is small as it burns cleanly: implies longer lubricating oil change period.5. LPG is lead free – implies- less exhaust emission.6. Life of spark plug is increased.7. LPG has a higher octane rating than petrol.8. It meets emission norms9. It can be transported easily to remote places by road and also by rail.10. It results in increased engine life and smoother engine performance.11. Crankcase oil dilution is small. So, oil replacement frequency is reduced.12. Low engine deposits reduce the cost of maintenance.13. Engine need not be modified. LPG kits are readily available (even for MPFI engines) and the kit cost is mostly affordable.10. It results in increased engine life and smoother engine performance.10. TC redit Should be given to any other Appropriate Answer)10. Describe features of Variable Valve Timing Mechanism (VVT)	f O4 Any 08 Justification 1/2 Mark Each Any 08 Justification 1/2 Mark Each

			· · · · · · · · · · · · · · · · · · ·
		Cam Changing VVT: Stage 1 (Low Speed): The 3 pieces of rocker arms moves independently. Therefore the left rocker arm, which actuates the left inlet valve, is driven by the low-lift left cam. The right rocker arm, which actuates the right inlet valve, is driven by the medium-lift right cam. Both cams' timing is relatively slow compare with the middle cam, which actuates no valve now. Stage 2 (Medium Speed): Hydraulic pressure (painted orange in the picture) connects the left and right rocker arms together, leaving the middle rocker arm and cam to run on their own. Since the right cam is larger than the left cam, those connected rocker arms are actually driven by the right cam. As a result, both inlet valves obtain slow timing but medium lift. Stage 3 (High Speed): Hydraulic pressure connects all 3 rocker arms together. Since the middle cam is the largest, both inlet valves are actually driven by that fast cam. Therefore, fast timing and high lift are obtained in both valves	& Three Features 01 Mark Each
	d	Describe any four methods to improve fuel economy.	04
	Ans.	Methods to Improve Fuel Economy:	
		 Use of multi-functional fuel additives will provide 3 to 4% fuel economy. Good driving habits. Properly maintained fuel supply system. Use of computer controlled fuel injection system. Use of computer controlled ignition system. Use of higher voltage automotive electrical system (42 volts system). 	Any Four 01 Mark Each
4		Attempt any THREE of the following:	12
-	a	Describe the working of pressure regulation in PFI system with the help of schematic	04
		diagram.	-
	Ans.	Working of Pressure Regulator in PFI System: The fuel pump provides more fuel than the maximum required by the engine. Fuel not used by the engine is returned to the fuel tank. The fuel rail supplies all injectors. The pressure regulator keeps the pressure drop across the injector fuel line and the intake manifold as constant. It contains a diaphragm that has intake manifold pressure on one side and fuel rail pressure on the other. Normally, it is mounted at the outlet end of the fuel rail. The diaphragm operated a valve which opens at a differential pressure between 2.0 and 3.5 bar and allows excess fuel to return to the fuel tank.	Description 02 marks
		pressure spring	æ
		Fuel inlet to pressure regulator Return line to fuel tank Figure: Fuel Pressure Regulator Operation	Diagram 02 marks
	b	Describe the procedure to locate leakage in Compressed Natural Gas Fuel supply system of a car. State relevant precaution.	04
	Ans.	 Procedure to locate Leakage in Compressed Natural Gas Fuel Supply System of a Car: 1. The first indicator is the foul smelling agent present in CNG 2. The second level of test you can do is to take a soap solution and apply the same in all 	Procedure 02 Marks

	3. There is the CNG re Precaution 1. When a g 2. Close the	eaches 20% o ns to be take gas leak is su e CNG regul	yay you can i of the explosi en During Le uspected, exti- lator and the cylinder.	ve limi akage nguish	it. Identi i	fication:	:	-	gas leaks	as soon as	and Precautions 02 Marks
с			he layout of s		whrid	vobielos					04
Ans.		<u>u describe li</u>	Battery			venicies	••		Wh ea		Sketch 02 Marks
	Internal Combustion Generator Differential									And	
	Series-Hy	Fiş brid vehicle	gure: Block	Diagra	am of S	Series ty	уре Ну	brid Ca	r		Description 02
	charges the motor pro	e battery and pels the car	cles, the Inter d supplies cu r. In this sys efficiency, It	urrent t stem, I	to the e Interna	electroni I Comb	ically coustion	ontrolled Engine	motor. T	he electric at constant	Marks
	electronica Both Intern	ally. The elenation of the construction of the	ectric control ion engine an	ol simp nd elec	olifies	the mec	chanica	l gears a	and the d	ifferential.	
d	electronica Both Intern It has low Prepare a	ally. The elematic orbits of the second state	ectric contro ion engine an em efficiency to norms for	ol simp nd elec y. a petr e	olifies etric dr ol engi	the mec ive have	chanica to be r	l gears a	and the d	ifferential.	04
	electronica Both Intern It has low Prepare a Chart of E	ally. The el- nal combust overall syste chart of eur Curo Norms	ectric contro ion engine an em efficiency	ol simp nd elec y. a petr e	olifies etric dr ol engi	the mec ive have	chanica to be r	l gears a	and the d	ifferential.	Any
	electronica Both Intern It has low Prepare a	ally. The el- nal combust overall syste chart of eur Curo Norms	ectric contro ion engine an em efficiency to norms for	ol simp nd elec y. a petr e	olifies etric dr ol engi e of Ca	the mec ive have	chanica e to be r r.	l gears a	and the d	ifferential.	Any Four Norms 01
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga	ally. The elematic overall system overall system over all syst	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First	ol simp nd elec y. a petro Engine CO 2.72	olifies etric dr ol engi e of Ca	the mec ive have ine of can	chanica e to be r r.	HC + NO _x	and the d he maxim	ifferential. um power.	Any Four Norms 01 Mark
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier	ally. The el- nal combust overall syste chart of eur Curo Norms soline) Date (Type Approval)	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration)	ol simp nd elec y. a petro Engine CO	olifies etric dr ol engi e of Ca THC	the mec ive have ine of car ir: NMHC	r.	l gears a rated to th HC + NO _x	PM	ifferential. um power. PN[#/km]	Any Four Norms 01
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 +	ally. The elematic or the elematic of the elematic of the element	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993	a petro a petro Engine CO 2.72 (3.16)	olifies etric dr. ol engi e of Ca THC 	the mec ive have ine of can r: NMHC	nox NOx	1 gears a rated to th HC + NO _x 0.97 (113)	PM	PN[#/km]	Any Four Norms 01 Mark
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2	ally. The elematic overall system overall system chart of euro curo Norms soline) Date (Type Approval) July 1992 Jan. 1996	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1997	ol simp nd elec y. a petro Engine CO 2.72 (3.16) 2.2	olifies etric dr. ol engi e of Ca THC 	the mec ive have ine of can ir: NMHC 	NOx	l gears a rated to th HC + NO _x 0.97 (113) 0.5	PM	PN[#/km]	Any Four Norms 01 Mark
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2 Euro 3	ally. The elematic overall system chart of euro chart of e	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1997 January 2001	ol simp nd elec y. a petro Engine CO 2.72 (3.16) 2.2 2.3	olifies etric dr. ol engi e of Ca THC 0.20	the mec ive have ine of car ur: NMHC 	NOx 0.15	HC + NO _x 0.97 (113) 0.5 	PM	PN[#/km]	Any Four Norms 01 Mark
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2 Euro 3 Euro 4	ally. The elematic overall system overall system chart of euric overall system chart of euric overall system chart of euric overall system soline) Date (Type Approval) July 1992 Jan. 1996 Jan. 2000 Jan. 2005	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1997 January 2001 January 2006	a petro a petro Engine 2.72 (3.16) 2.2 2.3 1.0	olifies etric dr. ol engi e of Ca THC 0.20 0.10	the mec ive have ine of car ur: NMHC 0.068 0.068	NOx 0.15 0.08	HC + NO _x 0.97 (113) 0.5 	PM	PN[#/km]	Any Four Norms 01 Mark
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2 Euro 3 Euro 4 Euro 5a Euro 5b Euro 6b	Ally. The elemated overall system overall system chart of euro chart of	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1997 January 2001 January 2001 January 2011 January 2013 Sept. 15	a petro a petro Engine CO 2.72 (3.16) 2.2 2.3 1.0 1.0 1.0 1.0	olifies ol engi ol of Ca THC 0.20 0.10 0.10 0.10 0.10	the mec ive have ine of can r: NMHC 0.068 0.068 0.068	NOx 0.15 0.060 0.060	HC + NO _x 0.97 (113) 0.5 	PM 0.005** 0.0045**	ifferential. um power. PN[#/km]	Any Four Norms 01 Mark
	electronica Both Intern It has low • Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2 Euro 3 Euro 4 Euro 5a Euro 5b Euro 6b Euro 6c	Ally. The elemated overall system overall system chart of eure chart of	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1997 January 2001 January 2006 January 2011 January 2013	a petro a petro Engine CO 2.72 (3.16) 2.2 2.3 1.0 1.0 1.0	olifies ol engi ol of Ca THC 0.20 0.10 0.10	the mec ive have ine of car ur: NMHC 0.068 0.068	nica to be r r. NOx 0.15 0.08 0.060 0.060	HC + NO _x 0.97 (113) 0.5 	PM 0.005** 0.0045**	ifferential. um power. PN[#/km] 6 X	Any Four Norms 01 Mark
	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2 Euro 3 Euro 4 Euro 5a Euro 5b Euro 6b Euro 6c Euro 6d - Temp	Ally. The elemated overall system overall system chart of euric chart of euric chart of euric chart of euric chart of euric chart of euric chart of euric soline) Date (Type Approval) July 1992 Jan. 1996 Jan. 2000 Jan. 2005 Sept. 2009 Sept. 2011 Sept. 2014 Sept. 2017	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1993 January 2001 January 2001 January 2001 January 2013 Sept. 15 Sept. 18 Sept. 19	a petro a petro Engine 2.72 (3.16) 2.2 2.3 1.0 1.0 1.0 1.0 1.0	olifies ctric dr. ol engi e of Ca THC 0.20 0.10 0.10 0.10 0.10 0.10 0.10	the mec ive have ine of car ir: NMHC 0.068 0.068 0.068 0.068	 chanical cto be r r. NO_x 0.15 0.08 0.060 0.060 0.060 0.060 0.060 0.060 	HC + NO _x 0.97 (113) 0.5 	PM PM 0.005** 0.0045** 0.0045** 0.0045**	ifferential. um power. PN[#/km] 6 X 10 ¹¹ 6 X 10 ¹¹	Any Four Norms 01 Mark
d Ans.	electronica Both Intern It has low Prepare a Chart of E Petrol (Ga Tier Euro 1 + Euro 2 Euro 3 Euro 4 Euro 5a Euro 5a Euro 5b Euro 6b Euro 6c Euro 6d - Temp Euro 6d	Ally. The elemated overall system overall system chart of eure chart of eure chart of eure chart of eure chart of eure chart of eure chart of eure soline) Date (Type Approval) July 1992 Jan. 1996 Jan. 2000 Jan. 2000 Sept. 2001 Sept. 2014 Sept. 2017 Jan. 2020	ectric contro ion engine an em efficiency to norms for for a Petrol Date (First Registration) January 1993 January 1997 January 2001 January 2001 January 2011 January 2013 Sept. 15 Sept. 18	a petro a petro Engine CO 2.72 (3.16) 2.2 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ol engi ol engi of Ca THC 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10	the mec ive have ine of can r: NMHC 0.068 0.068 0.068 0.068 0.068	NOx r. NOx 0.15 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060	l gears a rated to th HC + NO _x 0.97 (113) 0.5 	PM PM 0.005** 0.0045** 0.0045** 0.0045** 0.0045**	ifferential. um power. PN[#/km] 6 X 10 ¹¹ 6 X 10 ¹¹	Any Four Norms 01 Mark

	e	Describe the working of PCV System.		04			
	Ans.	Working of PCV system: During normal compression stroke, a small amount of gases in past the piston. Approximately 70 % of these 'blow-by' gases dilute and contaminate the engine oil, cause corrosion to critic build up. At higher engine speeds, blow-by gases increase cran leakage from sealed engine surfaces. The purpose of PCV sy gases from the crankcase before damage occurs and combined incoming air: fuel mixture. PCV system uses a variable flow ventilation flow with blow-by production characteristics. By factors, crankcase ventilation performance is optimized, drivability remains unaffected.	s are unburned fuel (HC) that can cal parts, and contribute to sludge nkcase pressure that can cause oil ystem is to remove these harmful e them with the engine's normal w PCV valve accurately matches y accurately matching these two	Explanation 02 Marks &			
		Closed oil filler cap Intake manifold vacuum Gases Gases Figure: PCV System	PCV Valve	Sketch 02 Marks			
5		Attempt any TWO of the following:		12			
-	a	Compare the SI and CI engine on the basis of: (i) Compress	sion Ratio (ii) Operating Speed	06			
		(iii) Power O/P per weight.					
	Ans.			Each			
		ParameterSI Engine(i) CompressionCompression ratio is low, about 10:1Ratiolimited by detonation(ii) OperatingTo avoid Detonation in SI EngineSpeedoperating speed is High(iii) Power O/PPower output is Less than CI engineper weight.due to lower compression ratio.	CI Engine Compression ratio is higher, about 18:1 to 22:1 To avoid Diesel knock operating speed is Low Power output is more than SI engine due to higher compression ratio.	Correct Point 02 Marks Each			
	b	Describe the working of electronic fuel injector with the hel	1	06			
	Ans.	Working of Electronic Fuel Injector:	ip of Suturite Sketchi.	Description			
		In MPFI system, Top feed fuel Injector is used. These inject that are opened and closed by means of electric pulses fromounted in the intake manifold and spray onto the back of the	om the ECU. The injectors are	03			
		injector is used for each cylinder. The injected fuel mass is determined by the injector opening across the injector). In MPFI systems, each engine cylinder is injector, which is activated individually for each cylinder.	g time (for a given pressure drop assigned an electromagnetic fuel	Marks			

_		t any TWO of the following:	-] T	12			
a		re Throttle Body Injection and Port Fue		06			
Ans.	Sr. No.	TBI system	PFI System				
	1	Fuel is injected into the center of the throttle body.	Fuel is injected into the port				
	2	TBI uses bottom feed injector	PFI uses top feed injector				
	3	Fuel injector needs to be flushed continuously- to prevent formation of air bubble.	Fuel injector need not be flushed				
	4	1 or 2 Fuel injectors are used	Fuel injectors are equal to the number of cylinders				
	5	TBI is comparatively low pressure injection (differential pressure = 0.7 to 1 bar)	PFI is comparatively high pressure injection (differential pressure = 2 to 3.5bar)	Any			
	6	Cheaper fuel pump is sufficient to generate the required low pressure	Costly fuel pump is required to generate the required pressure	Six Points,			
	7	Mixture mal-distribution may occur	All cylinders receive equal quantity and quality of air: fuel mixture.	Each Correct Point			
	8	Less accurate fuel injection control gives moderate fuel economy	More accurate fuel injection control is obtained. Therefore increased fuel economy is obtained	01 Mark			
	9	This is a cheap system.	This is costly system.				
	10	Exhaust emission is above the	Very low exhaust emission is achieved				
		permissible emission norms.	to meet the strict emission norms.				
	11	Moderate throttle response as the fuel	Better throttle response as fuel is				
		is injected at the throttle body and	injected on hot back side of intake				
		longer length of travel for fuel to	valve and shorter length of travel for fuel – to enter the engine cylinder				
		enter the engine cylinder					
	12	Lower power output due to lower	Hither power output due to low				
		volumetric efficiency caused by	resistance at intake manifold and higher				
		bulky injector body at the throttle	volumetric efficiency.				
		body.					
b	Describ	Describe the idle speed control function of an electronic control module with neat sketch.					
Ans.			ction of ECM: While the engine is being	06			
			onic Control Module (ECM) will signal the				
	Stepper motor of Idle Speed Control (ISC) valve to provide the easy starting without the						
		r having to touch the accelerator pedal.					
			lule will position the AIS motor to provide				
			C valve motor allows more air to flow past	Description			
		bypasses the throttle.	old to increase the idle speed. This air flow	04			
		• •	orrect idle speed when the air conditioner is	Marks			
		on and required air: fuel mixture when the	-				

c	Describe three engine modifications to be done to reduce SI engine Emission.	06				
Ans.	s. Engine Modifications to be Done to reduce SI Engine Emission are:					
	1. Use of leaner air-fuel ratios: The carburettor may be modified to provide relatively lean air fuel mixtures during idling and cruise operation. With this modification, idle speed needs to be increased to prevent stalling and rough idle. Fuel distribution is improved by better manifold design, Inlet air heating, raising of coolant temperature and use of electronic fuel injection system.					
	2. Retarding Ignition timing: The controls are designed to retard the spark timing at idle and providing normal spark advance during acceleration and cruising. Retarding spark reduces NOX. Emission. It also reduces HC emission.					
	3. Modification of combustion chamber: Modification in combustion chamber is attempted to avoid flame quenching zones, resulting in HC emission. This includes reducing surface to volume ratio, reduced squish area, reduced deal space around piston ring and reduced distance of the top piston ring from the top of the piston.	An Thr Corr Meth 02				
	4. Lower compression ratio: The lower compression ratio reduces the quenching effect by reducing quenching area reducing HC. It also reduces NOX. Emission. Reducing compression ratio results in some loss of power and fuel economy.	Ma Ead				
	5. Reduced valve overlap: Increased valve overlap allows some mixture to escape directly to increase emission level. This can be controlled by reducing valve overlap.					
	6. Alterations in induction system: The supply of designed air fuel ratio to all cylinders under all operating conditions can be affected by alterations in induction. This includes inlet air heating, use of carburettor with closer tolerances and using special type of carburettors. This also includes fuel injection in manifold.					