

WINTER- 2019 Examinations Model Answer

Page 1 of 31

Important suggestions to examiners:

Subject Code: 22525

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A)	Attempt any FIVE of the following : 10 Marks
a)	Define Energy conservation.
Ans:	Energy conservation:(2 Marks)
	Reduction in the amount of energy consumed in a process or system, or by an
	organization or society, through economy, elimination of waste, and rational use is
	referred as energy conservation.
	OR
	It is defined as reducing growth of energy consumption by avoiding unnecessary
	usages of energy by applying the energy conservation techniques.
	OR
	It's the process of reduction in the growth of electrical power utilization and to
	avoid unnecessary use of electrical power and to increase the efficiency of every
	machine and material by minimizing the losses.
b)	List any two functions of MEDA.
Ans:	Functions of MEDA:(Any Two point expected : 1 Mark each, Total 2 Marks)
	1. To decide long term energy conservation policy's for Maharashtra state.
	2. To coordinate with central government organization i.e NPC, MNRE etc for energy
	conservation policy's with state government.
	3. To decide delivery mechanism for energy efficiency services.

WINTER- 2019 Examinations Model Answer

Page 2 of 31

	4. To promote/implement energy conservation techniques at state level.
	5. To prepare public awareness regarding with energy conservation in our society.
	6. To decide penalty, incentive, subsidy for energy conservation at state level.
c)	List the energy conservation technique in induction motor.
Ans:	Following are the list of energy conservation techniques in electrical motors:
	(Any TWO point expected: 1 Mark each)
	1) Reduction in iron losses by using low loss silicon steel core material laminated to thinner
	dimension.
	2) Using bigger length dimension (longer cores) to increase the area of magnetic flux due to
	which the flux density is lowered to reduce the eddy currents & hysteresis losses.
	3) Lowering the air gap that leads to reduction of the reluctance of the magnetic circuit & hence lower magnetizing current to produce the same flux density.
	4) Using low resistance copper bars in rotors instead of high resistance aluminum bars leading
	to reduction in the copper losses in rotor.
	5) Use very smooth surface finishing of stator/rotor (air gap) leading to low windage losses
	6) Use high quality bearings to reduce the frictional losses.
	7) Use smaller diameter fans to reduce fan load (as above measures lead to lower heat production in motors & hence reduced cooling requirements).
	8) By minimizing idle & redundant running.
	9) By matching motor rating as per required load.
	10) By Phase balancing.
	11) By improving power quality.
	12) Operating motor in star mode at light load.
	13) By rewinding in induction motor
	14) By motor survey
d)	Define the following terms : (i) Luminous intensity (ii) Luminous flux
Ans:	1) Luminous intensity: (1 Mark)
	This is defined as the luminous flux emitted per unit solid angle of space in a specific
	direction. Its unit is the candela.
	OR
	The luminous flux per unit solid angle (per steradian), as measured in the given
	direction relative to a light source. Its unit is the candela.
	ii) Luminous flux :- (1 Mark)
	The luminous flux is the total energy radiated by the light source in all direction.

WINTER-2019 Examinations Subject Code: 22525 Model Answer Page 3 of 31 State the losses in secondary distribution system. e) The losses in secondary distribution system: (2 Marks) Ans: a) Technical losses: (Any 2 expected) 1. Due to poor voltage 2. Due to unbalance load 3. Due poor quality of transformer & its components 4. Due to poor quality of conductor. 5. Copper lossess 6. Long distance between transformer &load b) Non Technical losses: (Any 2 expected) 1. Due to improper metering 2. Due to use of induction type of energy meter. 3. Lack of administration. 4. Energy theft 5. Unmetered supply State the advantages of cogeneration. **f**) (Any TWO point expected: 1 Mark each) Advantages of co-generation: Ans 1) Co-generation can meet both power & heat requirements. 2) Less cost than conventional generation. 3) Higher system efficiency due to energy wastage is highly reduced. 4) Reduction in emission of pollutions due to reduced fuel consumption. 5) A much more efficient use of primary energy can be achieved than with a separate production of electricity & heat. 6) In this system, heat generated is by-product in electricity generating process. 7) Due to decentralization of electricity supply it avoids transmission losses & makes system more flexible. 8) Overall cost of product reduces. 9) Transmission and distribution losses reduces due to cogeneration plant is located in same premises. 10) It can maintain grid stability

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

	G 1 • 4		WINTER- 2019 Ex		6.04
	Subject	Code: 2	22525 <u>Model Ansv</u>	ver Page 4 o	of 31
g)			erent types of tariff.		
Ans:	Variou	is type	s of Tariff:-	(Any Two types expected: 1 Mark	each)
		1)	Flat-demand Tariff		
		2)	Simple-demand Tariff or Uniform Tar	iff	
		3)	Flat-rate Tariff		
		4)	Step-rate Tariff		
		5)	Block-rate Tariff		
		6)	Two-part Tariff		
		7)	Maximum demand Tariff		
		8)	Three-part Tariff		
		9)	Power factor Tariff :- a) KVA maximu	m demand Tariff	
			b) Sliding Scale	Tariff or Average P.F. Tariff	
			c) KW and KVA	R Tariff	
		10)	TOD (Time of Day) Tariff		
		11)	TOU (Time of Usage) Tariff		
Q.2	Attem	pt any	THREE of the following :	1	2 Marks
a)			ference between energy conservat		
Ans:				(Any Four Point expected: 1 Mar	k each)
	S	.No	energy conservation	Energy audit.	
		1	It is reducing the growth of energy	It is an inspection, survey & analysi	s
			consumption by avoiding	of energy flows in building or system	m
			unnecessary usage of energy	to reduce the amount of energy input	it
				to the system	
		2	Energy conservation techniques can	Energy audit procedure can be carri	ed
			be carried out by energy manager.	out by energy auditor.	
		3	Energy conservation procedure is	Energy audit procedure for the give	n
			carried out after energy auditing.	plan is carried out initially.	

WINTER-2019 Examinations Model Answer

	Subject Code: 2		Model Answ		Page 5 of 31
	4	Energy conservation costly, time consum	ing and depends	Energy audit is the procedule better energy conservation	
	5	on consumers applie Energy conservation required for energy techniques.	n devices are	Various measuring instrum proper sensing elements ar for the energy audit.	
b) Ans:	The energy	conservation techn	ique Improving j	y improving power qualit power quality of I.M : following to specified values	(4 Mark)
	1) Voi 2) Fre	ltage :		be within the tolerance lim	
	torque s drawn d increase	peed characteristics a lue to which the line l e. Even if voltage is al er iron losses. These lo	vailable to drive th osses increase, ma bove required valu	alue for motors results in the ne load. Lower voltage leads chine copper losses increase, e higher flux density results efficiency. Hence proper volt	to excessive current , line voltage drops in motors that leads
	these los friction leads to rated va	sses increase as speed & windage losses inc lower speed that affe lue.	l is directly propor crease that will dec cts the output pow	and iron losses. If its value is tional to the frequency the sp rease the efficiency. Lower v er. Hence frequency has to b	beed dependent value of frequency e maintained at
	& coppe to produ overcom	er losses due to harmonic to harmonic de la constante de la co	onic voltage & cur armonic torques an ergy which is waste	the harmonics are absent where the harmonics events. Also the harmonics even dower heating in motors white ful. Hence the supply voltage	en if very small lead ich need to be

	Subject Code: 22525WINTER- 2019		
		OR	
	achieved by avoiding voltage unbalance, avoiding harmonic distortion. i) Voltage unbalance: Three phase induction motors are A.C. Supply. In unbalanced condition the may cause a significant problem to motor condition leads to increase in the I ² R loss negative sequence current which causes of ii) Maintaining voltage & frequency value Maintaining the frequency and the harmonics, and iron / mechanical losses As speed of motor is directly proportiona cause friction and windage losses and im iii) Harmonic distortion : Increased use of the power electro harmonics in a supply frequency. Undesi- to the harmonic voltage distortion causes	notor by improving power quality: I by improving the power quality. It can be , maintaining voltage & frequency value and designed to operate on a balanced three phase e voltages in three phases are unequal which r such as excessive heating and vibrations. The in motor. Voltage unbalance produces overheating.it reduces life of motor. E e required form factor minimizes the as the speed is maintained at specified value al to frequency, speed will increase which will proper torque onics devices in the system leads to add the irable effect of these higher frequencies relate s increase in iron and copper losses in motor.	se his 2. 11
	_	notor failure, lower life and improper torque	
c) Ans:	speed characteristics. State the working principle and operation transmission & distribution system. Diagram of Automatic over factor controller:	of automatic power factor controller used (Figure: 2 Mark & Working : 2 Mark)	in
	apacitor bank 3 or equiva	4 5 6 Capacitor bank alent figure	

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

WINTER– 2019 Examinations <u>Model Answer</u>

Page 7 of 31

Automatic Power factor control:

- > The pf controller is used to maintain the pf at unity across the lines it is connected.
- Maintaining the pf at unity leads to reduction in the current through the lines as real power = apparent power x pf. The apparent power decides the MD for which the consumer is billed.
- For a certain motor the current in the lines will depend on its pf which is lagging. For higher pf near unity maintained at the motor terminals the line currents are minimized leading to lower MD and hence saving in MD charges.
- If PF is above reference value then microprocessor will not take any action, but when PF falls below reference value then it will send signal to relay and relay will connect respective capacitive bank across the load.

OR

- 1. Please check if required kVAr of capacitors are installed.
- 2. Check the type of capacitor installed is suitable for application or the capacitors are de rated.
- 3. Check if the capacitors are permanently 'ON'. The Capacitor are not switched off
- 4. when the load is not working, under such condition the average power factor is found to be lower side.
- 5. Check whether all the capacitors are operated in APFC depending upon the load

	Subject	Code: 22525		19 Examinations <u>Answer</u>	Page 8 of 31
		operation.			
	6.	Check whether	the APFC installed i	n the installation is we	orking or not. Check the CT
		connection is ta	ken from the main ir	ncomer side of transfo	rmer, after the fix
		compensation	of transformer.		
	7.	Check if the loa	id demand in the sys	tem is increased.	
	8.	Check if power	transformer comper	sation is provided.	
				OR	
		In automatic p	ower factor controller	the P.f. I.M is checked	d and to improve that
		power factor th	ne required value of c	apacitance is calculate	ed and only these capacitors
		among the cap	acitor banks are swite	ched ON and P.F. of I.	M will be increased.
	\triangleright	In APFC panel	the switching proce	dure of the capacitor b	oank is stepwise but in IPFC
		panel, the swit	ching of capacitor is	very smooth and bette	er P.F. control is possible.
d)	Write	any four merits	of cogeneration.		
Ans:		s of co-generati		(Any FOUR point	t expected: 1 Mark each)
	1)	Co-generation	can meet both power	& heat requirements.	
	2)	Less costly that	n conventional gener	ation.	
	3)	Higher system	efficiency due to ene	rgy wastage is highly	reduced.
	4)	Reduction in en	nission of pollutions	due to reduced fuel co	onsumption.
	5)	A much more e	efficient use of prima	ry energy can be achie	eved than with a separate
		production of	electricity & heat.		
	6)	In this system,	heat generated is by-	product in electricity	generating process.
	7)	Due to decentr	alization of electricity	supply it avoids tran	smission losses & makes
		system more fl	exible.		
	8)	Overall cost of	product reduces.		
	9)	Transmission a	nd distribution losse	s reduces due to coger	neration plant is located in
		same premises			
	1()) It can maintai	n grid stability.		

WINTER-2019 Examinations Subject Code: 22525 **Model Answer** Page 9 of 31 Q. 3 Attempt any THREE of the following : 12 Marks State the needs and benefits of star labelling. a) Needs of star labelling: (Any Point expected : 1 Mark each, 2 Marks) Ans: Star labelling is meanly required to recognize quality of product Star labelling is also required to determine life and efficiency of the product. Star labels identifies percentage of energy conservation products. **Benefits of star labelling :** (Any Point expected : 1 Mark each, 2 Marks) 1. Due to the star labelling quality of the product is maintained. 2. It standard reduces energy cost. 3. The standard protects consumer rights. 4. Due to the standard green hose emission and air pollution will be reduces. 5. Market efficiency and compilation will be improve. State the advantages of amorphous core transformer. b) Ans: Advantages of amorphous core in Transformer: (Any FOUR Advantages expected: 1 Mark each) 1) Lowest hysteresis loss. 2) Low eddy current loss. 3) Low temperature rise 4) Up to 75% energy saving using amorphous metal than conventional metal. 5) Reduced carbon dioxide emission. 6) Reduction in fossil fuel consumption. 7) Reduced magnetizing current. 8) Better overload capacity. 9) High Reliability. 10) Excellent short circuit capacity. 11) Less maintenance cost. 12) It can be easily magnetized and demagnetized

	Subject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 10 of 31
c)	Describe the following end lamp source (ii) using ligh	ergy conservation techniques in ligh t control gear	ting system : (i) replacing
Ans:	Energy conservation techn	iques in lighting system :	
	(i) Replacing lamp source		(2 Mark)
	While replacing	the lamps by higher energy efficient one	s we must ensure that the
	required color rendering	(CRI) is maintained else it has an adverse	e effect on the quality & rate of
	the work output .Also the	e cost involved must also be considered.	
	Replacing Lamps as f	ollows:	
	i) Replacing incand (CFL's) (70 to 90	escent lamps (14 lumens/W) by Compact	t Fluorescent Lamps
		ntional fluorescent lamp (50 lumens/W) b	v energy efficient
		(70 to 90 lumens/W)	y energy enterent
	-	Aercury/Sodium Vapour Lamp (around 5)	0 to 75 lumens/W) by
	Halides Lamps.		
	iv) Replacing HPMV (HPSV) (150 lum	V Lamps (50 lumens/W) by High pressure tens/W).	e sodium Vapour Lamp
	v) Replacing filament	nt lamps (10 to 15 W) on panels by LEDs	s (< 1 W).
	vi) Using LED lights	in place of all other lamps above as feasi	ible (in terms of cost)
	Energy conservation techn	iques in lighting system :	
	(ii) Using light control gea	r	(2 Mark)
	1. Flexibility can be obtain	ned in lighting system by using following	g light control systems. It also
	saves power by switchi	ng off and by reducing luminance.	
	2. Grouping of light point	s: Grouping of lighting system, which can	n be controlled manually or by
	timer control. In this tw	vo or more no, of light points can be contr	rolled by one switch. Such
	types of controllers are	used in corridor lighting, go-downs, stree	et lighting.
	3. Ballast: It is the electric	cal or electronic chock which is common	ly used in fluorescent tube or
	mercury vapour lamp.	The main function of ballast is by applyin	ng the high voltage or high
	frequency across to the	gas tube the light is emitted through the	gas tube.

WINTER- 2019 Examinations Model Answer

Page 11 of 31

At the time of supply voltage variation the current flowing through the discharge tube is
maintained constant, so that light intensity on working plane will be maintained.
4. Ignitor :
The ignitors are often called as starter or starting electrode. Generally ignitors are used in
metal halide lamps or sodium vapour lamp. To increase the temperature surrounding the inner
tube by current flowing initially after the temperature increases then full light will be emitted
through these discharge tube.
5. Illumination level:
As per the IES the lux level for every working plane is decided so these factors also used
for control the lumens level on working plane.
OR
1. Specific amount of current flow is required for lamp operation. Light controlled gears are
devices which control the flow of current through light source and keep it in limit.
2. Light controlled gears can be also known as Ballast
3. Use electronic ballast instead of electrical choke.
4. Electronic ballast operates at high frequency. It has low losses so lamp efficiency increases.
State ABC analysis related to energy audit.
ABC analysis related to energy audit (4 Marks)
 ABC analysis provides a mechanism for identifying different categories of
activities/stocks/items that will require different management and controls.
"A class inventory" contains items that account for 70% of total value.
"B class inventory" contains items that account for 20% of total value.
"C class inventory" contains items that account for 10% of total value.
> ABC analysis is the material management technique which helps energy audit process to
achieve the goal of energy audit.
ABC Analysis Helps in Energy Audit:
An energy audit is an inspection survey and an analysis of energy flows for energy
conservation in a building. It may include a process or system to reduce the amount of

	Subject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 12 of 31
	energy input into the syst	tem without negatively affecting t	he output. In commercial and
	industrial real estate,		
	The ABC analysis	works in a manner as to get prime	attention to the important
	items or the critical few	and not have unnecessary attentic	on to be spent on the not so
	important items. This pr	ioritization of attention and focus	is vital to keep the costs in
	check and under control	in the supply chain system. To ge	et the best results, it is
	important that the items	having a lot of costs are given the	e due management attention.
	OR		
	1. It helps to identi	fy atoms and cost involved	
	2. Reduce Energy l	osses.	
	3. Improves efficien	ncy.	
	4. Maximize the sa	ving	
	5. Optimize the exp	penses on energy required.	
	6. It helps to achiev	ve maxium useful any three outpu	t.
Q.4	Attempt any THREE of the	<u> </u>	12 Marks
a)	Why energy conservation t efficiency is mostly more th	echnique should be adopted in an 90%.	transformer even though its
Ans:		on techniques should be adopted in t	transformers even though its
	efficiency is 90% :		(4 Marks)
	Transformer performance	ce depends on its efficiency. Transfor	mers used in real-time
	applications suffer from	load as well as no load losses. Loss o	of efficiency reduces transformer
	performance. Hence, cu	stomers should try different types of	methods to improve the
	efficiency of the transfo	ormer.	
	Since transformer is alm	nost connected in circuit for 24hrs. Co	ontinuously so it is necessary to
	reduce the losses.		
		it is possible to improve the efficienc	y of the transformer more than
	90% as there are no me	echanical losses.	
		distribution system almost 40% losse	
	-	ers it very huge capacity (8000 MW	to 9000 MW), so we have to
	minimize it by energy	conservation techniques.	

	Subject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 13 of 31
b)		nercial losses in transmission & distrib optimizing distribution system.	ution system. Also, state EC
Ans:	Following are the com	mercial losses in Transmission and Distrib	
		(Any TWO commercial los	sses expected: 1 Mark each)
	1) Make unau	uthorized extension of loads. (Direct Hooking	g)
	2) Errors in n	neter reading & recording (faulty meter).	
	3) By passing	g the meter. (unmetered supply & unmetered	bills)
	4) Improper t	esting & calibration of meters.	
	5) Stopping t	he meters by remote control.	
	6) Changing	the sequence of thermal wiring.	
	7) Changing	the C.T. ratio.	
	8) Intentional	burning of meters.	
	9) Billing iss	ues	
	10) Lower col	lection efficiency.	
		OR	
	1) Power theft (Direct hooking)	
	2) Unmetered s	upply	
	3) Meter in accu	iracies	
	4) Meter discrep	pancies	
	5) Small unmet	ered loads	
	6) Billing issues	5	
	7) Lower collec	tion efficiency	
	EC (Energy conserva	tion) technique adopted for optimizing	distribution system:
			(2 Marks)
	> These can be real	duced by: Installing submeters for a group of	f customers to detect pilferage,
	fixing responsibil	ity (on personnel) of the amount power drawn	n and amount of supplied by
	the agency persor	nnel, installing accurate meters properly tested	d, resorting to regular
	testing/calibration	of meters, conducting surprise raids/checks	on consumers premises to
	detect theft or pilt	ferage.	
	These remedies 1	ead to proper evaluation of the energy produc	ced, distributed and utilized.

WINTER- 2019 Examinations Model Answer

Page 14 of 31

		They will lead to avoidance of improper /unwarranted use of available energy which in turn
		reduces the energy requirements by some scale in turn leading to saving in energy sources.
	\succ	Appoint vigilance squad for to avoid the energy theft.
		Make the necessary energy audit time to time.
		Apply high penalty for meter tampering cases.
		Faulty meter should be replaced immediately.
		Better coordination is essential for to avoid lack administration.
		Billing issues such as bill not received, lower collection efficiency and wrong bill received
		issues should be cleared.
		Defected or dissimilar meters should be replaced.
c)	Discu	ss how power factor tariff results in energy conservation.
Ans:	Power	r Factor Tariff : (4 Marks)
		In addition to basic tariff (Maximum Demand Tariff / KVA Maximum Demand
	Taı	riff / Load factor tariff) the tariff in which P.F. of industrial consumer is taken into
	cor	nsideration is known as Power-factor tariff.
		If the P.F. of consumer is less than P.F. declared by Supply Company (say below
	0.9	lag) then penalty will be charged in energy bill. If the P.F. of consumer is more than
	P.F	. declared by Supply Company (say above 0.95 lag.) then incentive will be given in
	ene	ergy bill. As usual consumer has to pay actual energy consumption charges.
		In the power factor tariff the datum power factor is fixed by supply company. If
	this	s power factor is improved by using APFC or IPFC by the consumers then incentive
	(re	ward) in the consumers energy bill is immediately provided.
		If the consumer Power factor is poor (less than datum power factor) then penalty
	is a	pplied to the consumers. It means by maintain the power factor reactive power is
		ntrolled and it is one of the energy conservation techniques.

WINTER- 2019 Examinations Model Answer

Page 15 of 31

d) Ans:	State difference between "walk through audit" and "detailed audit". (Any Four point expected: 1 Mark each)			
	S.No	Walk Through Audit	Detailed Audit	
	1	It is also called as the preliminary	It is also called as general audit or site	
		audit or screening audit or simple	energy audit.	
		audit		
	2	It is simplest, quickest and least expensive way.	It is nothing but expansion of the simple audit or more time consuming.	
	3	There are two resources:	In this method collect the information of	
		i) Operation and maintenance staff collects the data.	system operation, but in more detailed form as compared to simple audit.	
		ii) Serving utility provides this information.		
	4	Basic information of the energy system in the premises is collect as well.	Auditor collects utility bills of an year to find out tariff structure, usage profile etc	
	5	Only main issues are covered in walk through procedure.	This type of audit focus all the most suitable energy conservation measures for the system.	
		d explain the procedure to calculate ce.	the payback period. Also, state its	
	significan		the payback period. Also, state its	
	significan Definitio	ce. n Payback period:		
	significan Definitio	ce. n Payback period:	(1 Mark	
	significan Definitio	ce. n Payback period: It is the time required for an energy e	(1 Mark	
	significan Definition instal OR	ce. n Payback period: It is the time required for an energy e lation and running cost.	(1 Mark	
Ans:	significan Definitio instal OR Pay	ce. n Payback period: It is the time required for an energy e lation and running cost.	(1 Mark	
Ans:	significan Definition instal OR Pay Procedure	ce. n Payback period: It is the time required for an energy e lation and running cost. back period is the time required to re e of Payback period =	(1 Mark efficient method to cover its purchase, ecover the funds invested in a project. (2 Mark	
Ans:	significan Definition instal OR Pay Procedure	ce. n Payback period: It is the time required for an energy e lation and running cost. back period is the time required to re	(1 Mark efficient method to cover its purchase, ecover the funds invested in a project. (2 Mark conservatin device	
Ans:	significan Definition instal OR Pay Procedure	ce. n Payback period: It is the time required for an energy end lation and running cost. back period is the time required to re- the of Payback period = $period = \frac{first \text{ intial cost of energy}}{Annuakaving of energy}}$	(1 Mark efficient method to cover its purchase, ecover the funds invested in a project. (2 Mark conservatin device	
Ans:	significan Definition instal OR Pay Procedure Payback	ce. n Payback period: It is the time required for an energy end lation and running cost. back period is the time required to re- the of Payback period = $period = \frac{first \text{ intial cost of energy}}{Annuakaving of energy}}$	(1 Mark efficient method to cover its purchase, ecover the funds invested in a project. (2 Mark <u>econservatin device</u> ergy in amount	

WINTER-2019 Examinations Subject Code: 22525 Model Answer Page 16 of 31 energy cost with energy conservation equipment. Significance of Payback period = (1 Mark) 1. The most significant advantage of payback method is its simplicity. 2. It is easy way to compare several projects and then to choose the project which have shortage payback time. OR Student may write this way **Definition Payback period:** (1Mark) It is the time required for an energy efficient method to cover its purchase, installation and running cost. OR Payback period is the time required to recover the funds invested in a project. Procedure to calculate the payback period: (2 Mark) A] Steps to calculate saving for Kw load a) Calculation for old system: i) Calculate load per day =(Consumption per fixture X Total fixture X working Hours) / 1000 ii) Calculate load per month = Load per day X Working days per month iii) Calculate consumption per month= Load per month(kW) X unit rate(Rs/kW) b) Calculations for proposed system: i) Load per day = (Consumption per fixture X Total fixture X working Hours) / 1000 ii) Load per month = Load per day X Working days per month iii) Consumption per month= Load per month(kW) X unit rate(Rs/kW) c) Calculate cost saving per month : (old system consumption per month) – (Proposed system consumption per month) d) Calculate cost saving per year = 12 x Saving per month **B**] Saving for VA load :

	Subject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 17 of 31	
	i) Calculation for old	system:- Calculate VA = W / P.f.		
	Tota	al kVA load for all the fixtures = VA x No of f	ixtures /1000	
	ii) Calculation for pro	oposed system:-		
	Tota	l kVA load for all the fixtures = VA x No of fi	xtures /1000	
	iii) Saving:			
	Total kVA	load saving for all the fixtures = (Total kVA lo	oad of old system for all	
	the fixtures) – (Te	otal kVA load of proposed system for all the f	ixtures)	
	Monthly Der	nand charges saving = (Total kVA load saving	g for all the fixtures) x	
	(Maximum dema	and charges per kVA in Rs.)		
	Yearly dema	nd charges saving = 12 x (Monthly demand cl	narges saving)	
	Calculations for Pay	/back period in years:		
	i) Calculate to	tal investment for new system		
	ii) Payback per	iod in years = Investment / Total Saving		
	Significance of payback	x period:	(1 Mark)	
	The payback peri	od is an evaluation method used to determine the	amount of time required	
	for the cash flows from	m a project to pay back the initial investment in th	e project.	
	The most signific	cant advantage of the payback method is its simpli-	city. It's an easy way to	
	compare several proje	ects and then to take the project that has the shorter	st payback time.	
Q.5	Attempt any TWO of		12 Marks	
a) i)	- · · · · · · · · · · · · · · · · · · ·	t feature of soft starter.		
Ans:	: Significant features of soft starters: (Any THREE point expected: 1 Mark each)			
	1) Motor starts (v	without jerk) smoothly.	,	
	2) Severe spikes	of starting currents are eliminated.		
	3) Loss of energy	y during starting is minimized to about 40 to 50%.		
		nd tear of mechanical parts suchas bearing etc. du		
	leading to long	ger life of bearings and other related components.		
	5) Very low mec	hanical stress.		
	6) As starting cur power factor.	rrents are highly inductively limiting their magnitu	ides results in improved	
	7) As current pea	ks are controlled the MD is reduced which may le	ead to lower MD billing.	

	WINTER- 2019 ExaminationsSubject Code: 22525Model AnswerPage 18 of 31					
	8) Less mechanical maintenance.					
	9) Saving in operating costs.10) Better power factor					
	11) System efficiency increases.					
	12) Starting torque is less.					
	OR					
	Soft starter delivers a controlled power to the motor to provide smooth, step less					
	acceleration and deceleration. It consists of thyristor in main circuit and the motor					
	voltage is regulated with a printed circuit board. So as the voltage is low at the time of					
	starting, current & torque developed will be also low. During starting period the soft					
	starter provides low voltage to motor which enables to adjust the play between the gear					
	wheels or stretching driving belts or chains etc. In other words it eliminates					
	unnecessary jerks during the start. Gradually the voltage and the torque increase so that the machinery starts to accelerate. The line voltage drops & losses at start are thus very low. It provides a reliable and economical solution to overcome problem related with starting.					
a) ii)	(ii) Describe variable frequency drive with suitable diagram.					
Ans:	Variable frequency drive with suitable diagram:(3 Marks)					
	Three-phase as power supply Controlled de link filter Rectifier PWM Inverter					
	1. VFD changes the frequency of supply voltage to vary the speed of motor.					
	2. By adjusting the motor speed in such a way that matching of motor output to load can be					
	achieved, which results in energy saving.					
	3. As shown in figure rectifier converts AC supply into DC supply. DC link filter is used to					
	filter out ripples from rectifier output. Inverter is used to convert rectified DC supply into					
	AC supply. Here V/F ratio is varied to get desired output.					
	4. Energy saving is possible due to optimum use for application.					

WINTER- 2019 Examinations Model Answer

Page 19 of 31

5. Better process control is possible by using Micro controller and IGBT.

6. Less maintenance cost due to optimum working and due to low losses foe bearing and motor improves life span.

OR Variable frequency drive with suitable diagram:

(3 Marks)

R	-					R
Y	3\$	+	1218 118 F	+	20	V T.M
ß	recti-	1	Filter		invia	r (motos
and the second	-Fier	-	60	-	-tor	8
N	IDAT					N

- The variable frequency drives is a power electronic circuit in which 3-ph, 400V. 50 Hz AC supply is provided to the input side.
- This 3-ph ac supply is rectified and converted into pure dc output by using rectifier or converters.
- The output of this rectifier is provided to the input of 3-ph inverter by using the 3-ph inverter that pure dc is converted into 3-ph variable voltage, variable frequency output supply is provided input of induction motor.
- In the soft starting of I.M. the reduction voltage is applied to the input of I.M for smooth starting and after the starting as per requirement is applied.
- Due to this reduced voltage the starting current of I.M is less i.e. why power consumption is less. Hence we can of I.M is one of the energy conservation techniques.
- > The induction motor always operates for constant torque operation below rated speed.
- ➢ For this case the frequency is reduced but voltage-frequency ratio is kept constant that is why the flux in the air gap of the I.M. will be constant i.e. why motor will operate at constant torque.
- As per the application if the speed control is required above rated speed then by increasing the frequency it is possible but at that time V/f ratio is not kept uniform of motor.
- SO as speed increases the torque will decreases. The output power of I.M remains constant.
- > It is called as the constant HP operation of induction motor.

WINTER-2019 Examinations

Total Project of MInduct Project of MInduct Project of MFor the tariff of 125/kVA of maximum demand and 3.00 per unit consumed; load fact 50%, find overall cost/unit at (i) unity power factor (ii) 0.8 p.f consider maximum dem = 10 kVA.Ans: Given:Tariff = Rs. 125/kVA of maximum demand + 3.00 per unit consumed Load factor = 50 %, M. D. = 10 kVAMonthly total charges/bill: MD charges per month = (M.D. KvA x M.D. Charges per KvA) = 10 x 125 = Rs. 1250.00Energy charges per unit = Rs. 3/kWh.Energy consumed in a given time period is = (average active power) x (hours)Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh)Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720.i) At Unity Power Factor:Average demand kW = (load factor) x (maximum demand) x pf. = 0.5 x 10 x 1 = 5 kW.Energy consumption per month: = average demand (kW) x (monthly hrs) = 5 x 720 = 3600 kWh.———————————————————————————————————		Subject Code: 22525	Model Answer	Page 20 of 31		
b) 50%, find overall cost/unit at (i) unity power factor (ii) 0.8 p.f consider maximum dem = 10 kVA. Ans: Given: Tariff = Rs. 125/kVA of maximum demand + 3.00 per unit consumed Load factor = 50 %, M. D. = 10 kVA Monthly total charges/bill: MD charges per month = (M.D. KvA x M.D. Charges per KvA) = 10 x 125 = Rs. 1250.00 Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) x (hours) Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = 0.5 x 10 x 1 = 5 kW. (1/2 Marks) Energy consumption per month: = average demand (kW) x (monthly hrs) = 5 x 720 = 3600 kWh. (1/2 Marks) Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)		Subject Coue. 22323	Mouch Answer			
Tariff = Rs. 125/kVA of maximum demand + 3.00 per unit consumed Load factor = 50 %, M. D. = 10 kVA Monthly total charges/bill: MD charges per month = (M.D. KvA x M.D. Charges per KvA) = 10 x 125 = Rs. 1250.00 Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) x (hours) Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = 0.5 x 10 x 1 = 5 kW. (1/2 Marks) Energy consumption per month: = average demand (kW) x (monthly hrs) = 5 x 720 = 3600 kWh. (1/2 Marks) Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)	b)	50%, find overall cost/u				
Load factor = 50 %, M. D. = 10 kVA Monthly total charges/bil: MD charges per month = (M.D. KvA x M.D. Charges per KvA) = 10 x 125 = Rs. 1250.00 Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) x (hours) Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = 0.5 x 10 x 1 = 5 kW. (1/2 Marks) Energy consumption per month: = average demand (kW) x (monthly hrs) = 5 x 720 = 3600 kWh. (1/2 Marks) Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)	Ans:	Given:				
Monthly total charges/bill: MD charges per month = (M.D. KvA x M.D. Charges per KvA) = 10 x 125 = Rs. 1250.00Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) x (hours) Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = 0.5 x 10 x 1 = 5 kW.Energy consumption per month: = average demand (kW) x (monthly hrs) = 5 x 720 = 3600 kWh.Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)		Tariff = Rs. 125/kVA of 1	aximum demand + 3.00 per unit co	nsumed		
$MD \text{ charges per month} = (M.D. \text{ KvA} \times M.D. \text{ Charges per KvA})$ $= 10 \times 125 = \text{Rs. } 1250.00$ Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) × (hours) Energy consumption charges per month: $= average \text{ demand}(kW) \times (\text{monthly hrs}) \times (\text{charges per kWh})$ Average demand kW = (load factor) × (maximum demand) × pf. The number hours in a month is = 24 × 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) × (maximum demand) × pf. $= 0.5 \times 10 \times 1$ $= 5 \text{ kW}.$ Energy consumption per month: = average demand (kW) × (monthly hrs) $= 5 \times 720$ $= 3600 \text{ kWh.}$ (1/2 Marks) Energy consumption charges per month: $= (\text{monthly energy consumed in kWh}) \times (\text{charges per kWh})$		Load factor = 50 %, M. D	= 10 kVA			
$= 10 \times 125 = \text{Rs. } 1250.00$ Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) × (hours) Energy consumption charges per month: $= \text{average demand}(\text{kW}) \times (\text{monthly hrs}) \times (\text{charges per kWh})$ Average demand kW = (load factor) × (maximum demand) × pf. The number hours in a month is = 24 × 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) × (maximum demand) × pf. $= 0.5 \times 10 \times 1$ $= 5 \text{ kW.} \qquad (1/2 \text{ Marks})$ Energy consumption per month: = average demand (kW) × (monthly hrs) $= 5 \times 720$ $= 3600 \text{ kWh.} \qquad (1/2 \text{ Marks})$ Energy consumption charges per month: $= (\text{monthly energy consumed in kWh}) \times (\text{charges per kWh})$		Monthly total charges/b	1:			
Energy charges per unit = Rs. 3/kWh. Energy consumed in a given time period is = (average active power) x (hours) Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = $24 \times 30 = 720$. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = $0.5 \times 10 \times 1$ = 5 kW		MD charges	er month = (M.D. KvA x M.D. Cha	arges per KvA)		
Energy consumed in a given time period is = (average active power) x (hours) Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = $0.5 \times 10 \times 1$ = 5 kW			= 10 x 125 = Rs. 1250.00			
Energy consumption charges per month: = average demand(kW) x (monthly hrs) x (charges per kWh) Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = $0.5 \times 10 \times 1$ = 5 kW		Energy charges per unit = Rs. 3/kWh.				
$= average demand(kW) \times (monthly hrs) \times (charges per kWh)$ Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = 24 x 30 = 720. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. $= 0.5 \times 10 \times 1$ $= 5 \text{ kW}.$ Energy consumption per month: = average demand (kW) x (monthly hrs) $= 5 \times 720$ $= 3600 \text{ kWh}.$ (1/2 Marks) Energy consumption charges per month: $= (\text{monthly energy consumed in kWh}) \times (charges per kWh)$		Energy consumed in a gi	en time period is = (average active ;	power) x (hours)		
Average demand kW = (load factor) x (maximum demand) x pf. The number hours in a month is = $24 \times 30 = 720$. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = $0.5 \times 10 \times 1$ = 5 kW		Energy consumption charges per month:				
The number hours in a month is = $24 \times 30 = 720$. i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. = $0.5 \times 10 \times 1$ = 5 kW		= average demand(kW) x (monthly hrs) x (charges per kWh)				
i) At Unity Power Factor: Average demand kW = (load factor) x (maximum demand) x pf. $= 0.5 \times 10 \times 1$ = 5 kW. (1/2 Marks) Energy consumption per month: = average demand (kW) x (monthly hrs) $= 5 \times 720$ = 3600 kWh. (monthly hrs) Energy consumption charges per month: $= (\text{monthly energy consumed in kWh}) \times (\text{charges per kWh})$		Average demand kW = (load factor) x (maximum demand) x pf.				
Average demand kW = (load factor) x (maximum demand) x pf. = $0.5 \times 10 \times 1$ = 5 kW		The number hours in a month is = $24 \times 30 = 720$.				
$= 0.5 \times 10 \times 1$ $= 5 \text{ kW.} \qquad (1/2 \text{ Marks})$ Energy consumption per month: = average demand (kW) x (monthly hrs) $= 5 \times 720$ $= 3600 \text{ kWh.} \qquad (1/2 \text{ Marks})$ Energy consumption charges per month: $= (\text{monthly energy consumed in kWh}) \times (\text{charges per kWh})$		i) At Unity Power Factor:				
$= 5 \text{ kW.} \qquad \qquad$		Average demand kW = (load factor) x (maximum demand) x pf.				
Energy consumption per month: = average demand (kW) x (monthly hrs) = 5 x 720 = 3600 kWh (1/2 Marks) Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)		= (5 x 10 x 1			
= 5 x 720 = 3600 kWh (1/2 Marks) Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)		= 5	«W	(1/2 Marks)		
= 3600 kWh (1/2 Marks) Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)		Energy consumption pe	month : = average demand (kW) x (monthly hrs)		
Energy consumption charges per month: = (monthly energy consumed in kWh) x (charges per kWh)			= 5 x 720			
= (monthly energy consumed in kWh) x (charges per kWh)			= 3600 kWh	(1/2 Marks)		
		Energy consumption charges per month:				
$= 3600 \times 3$		= (monthly energy consumed in kWh) x (charges per kWh)				
		= 3600	3			
= Rs. 10800 (1/2 Marks)		= Rs. 1		(1/2 Marks)		
Total billing = MD charges + energy charges		Total billing = MD charg	es + energy charges			
= 1250 + 10800		= 1250 + 10	00			
= Rs. 12050 (1/2 Marks)		= Rs. 12050		(1/2 Marks)		

Subject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 21 of 31
Overall cost per unit = (total bill) / (kWh for the month)	
= 1	2050 / 3600	
= I	Rs. 3.35/kWh	(1 Marks)
ii) At 0.8 pf :		
Average demand kW =	(load factor) x (maximum demand) x	pf.
=	0.5 x 10 x 0.8	
=	4 kW	(1/2 Marks)
Energy consumption p	er month: = average demand(kW) x (n	nonthly hrs)
	$= 4 \times 720$	
	= 2880 kWh	(1/2 Marks
Energy consumption cl	narges per month:	
= (mc	onthly energy consumed in kWh) x (ch	arges per kWh)
= 288	0 x 3	
= Rs.	8640	(1/2 Marks)
Total billing = MD char	rges + energy charges	
= 1250 + 8	640	
= Rs. 9890		(1/2 Marks)
Overall cost per unit =	(total bill) / (kWh for the month)	
= 9	890 / 2880	
= I	Rs. 3.43 / kWh	(1 Marks)
	OR	
Given:		
Tariff = Rs. $125/kVA$ of	maximum demand + 3.00 per unit con	nsumed
Load factor = 50 %, M. I	D. = 10 kVA	
Yearly total charges/bil	1:	
MD charge	s per Bill = (M.D. KvA x M.D. Charge	es per KvA x 12)
	= 10 x 125 x 12 = Rs. 1500	00
Energy charges per unit	z = Rs. 3/kWh.	

bubject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 22 of 31
Energy consumed in a gi	ven time period is = (average active powe	r) x (hours)
Energy consumption cha	rges per year:	
	= average demand(kW) x (yearly hrs) x	(charges per kWh)
Average demand kW	/ = (load factor) x (maximum demand) x p	of.
The number hours ir	a year is = 8760 hr.	
i) At Unity Power Factor	:	
Average demand kW = (load factor) x (maximum demand) x pf.	
= 0	.5 x 10 x 1	
= 5	kW	(1/2 Marks)
Energy consumption per	year: = average demand (kW) x (year hrs	3)
	$= 5 \times 8760$	
	= 43800 kWh.	(1/2 Marks)
Energy consumption cha	irges per year:	
= (Year	ly energy consumed in kWh) x (charges p	per kWh)
= 43800) x 3	
= Rs. 13		(1/2 Marks)
Total billing = MD charg	ges + energy charges	
= 15000 + 13	31400	
= Rs. 14640)	(1/2 Marks)
Overall cost per unit = (to	otal bill) / (kWh for the Bill)	
= 14	6400 / 43800	
= Rs	. 3.35/kWh.	(1 Marks)
ii) At 0.8 pf :		
Yearly total charges/bill:		
MD charges	per Bill = (M.D. KvA x M.D. Charges per	KvA x 12)
	= 10 x 125 x 12 = Rs. 15000	
Average demand kW = (load factor) x (maximum demand) x pf.	
= 0	.5 x 10 x 0.8	

;	Subject Code: 22525	WINTER– 2019 Examinations <u>Model Answer</u>	Page 23 of 31
		= 4 kW	(1/2 Marks)
	Energy consumption	per year: = average demand(kW) x (year h	rs)
		$= 4 \times 8760$	
		= 35040 kWh	(1/2 Marks)
	Energy consumption	charges per year:	
	= (y	ear energy consumed in kWh) x (charges p	er kWh)
	= 35	040 x 3	
	= Rs	s. 105120	(1/2 Marks)
	Total billing = MD ch	arges + energy charges	
	= 15000 -	+ 105120	
	= Rs. 120		(1/2 Marks)
	Overall cost per unit	,	
	_	120120 / 35040	
		Rs. 3.43 /kWh	(1 Marks)
c)		rt the energy audit procedure.	(1111110)
Ans:	=	procedure Depending: (Figure : 3 Ma	rk & Explanation : 3 Mark)
		start up meeting	
		Analysis of energy use	
		collecting basic data	
		pbservation of actual field	
		cost benefit analysis of data	
		Reporting	
	3200	Action plan for imple- -mentation.	
	A MARK	or equi	ivalent figure

WINTER– 2019 Examinations Model Answer

Page 24 of 31

- A) **Start up meeting**: Procedure starts with start up meeting. Then it continue until implementation of energy saving measures.
- B) **Analysis of energy used**: Identify where energy used & it shows on which area should be concentrate.
- C) Collecting basic data: At site load, some of the following important points:

1.Operating hours 2.Duty cycle 3.Actual power consume

- D) **Observation of actual field**: After collecting data, we start actual field work. It means we have find out process where energy saving can be done. Always apply the 80 by 20 rule.
- E) **Cost benefit analysis of the data:** This Analysis is in the terms of cost of carrying out that project v/s the benefit that can be earned.
- F) **Reporting:** We have to submit the detail report. Then we have to take sanction of that report from final Authority.

G) Action plan: In this all the measure steps must be included in the action plan for the proper implementation.

OR

1. Collect information about the plan:

In this information, the measured energy used, raw material required & components required for the plant are considered.

2. Collect production process:

In this process, the design the flowchart of production process, the schedule of operation & its time frame is also considered.

3. Energy and utility system:

In this step, load variation in pumps, fans & compressors are considered, the analysis of energy loss and measurement of insulation level is also considered.

4. Bridge description of each utility:

In this step, the electricity the steam, water, cooling water an compressed air is to be considered.

5. Detailed process flow diagram:

In this step the flow chart, the flow rate & boiler efficiency is to be considered.

6. Energy efficiency in utility & process system:

In this step, consider the following things i) specific energy consumption ii) furnace iii) DG set performance analysis iv) lighting system.

7. Energy conservation option & recommendation:

The energy conservation & recommendation of better energy source is to be considered.

	Subject Code: 22525	WINTER- 20 <u>Model</u>	19 Examinations <u>Answer</u>	Page 25 of 31		
		OR	(Any Six point	expected: 1 Mark each)		
	1) Depending on the natu	re and complexity	of the organization,	a comprehensive audit can take		
	from several weeks to	several months to	complete.			
	2) Detail studies to establ	establish and investigate energy & materials balances for specific organization				
	departments of proces	ocess equipment are carried out.				
	3) Whenever possible che	checks of organization operations are carried out over extended periods of				
	time at nights and at w	veekends.				
	4) The audit report will in	clude a description	of energy inputs an	d product outputs by major		
	departments & will ev	aluate the efficienc	y of each step of the	e manufacturing process.		
	5) The improve this efficient	iency will be listed	and at least a prelim	ninary assessments of the cost of		
	· ·	-	-	-		
	needed.	t will be made to indicate the expected payback on any capital investment				
	6) The audit report should conclude with specific recommendations for detailed engine					
		bility analysis which must be performed to justify the implementation of those				
		ation measures that require investments.				
Q.6	Attempt any TWO of the	-		12 Marks		
a)	Describe detailed energy		to be carried out f			
Ans:	Detailed energy audit proce	gy audit procedure Depending: (Figure : 3 Mark & Explanation : 3 Mark)				
		Anoly is is collection observati fi cost ber of Rep Action	P meeting of energy use g basic data g basic data on of actual eld pefit analysis data porting plan for imple			

WINTER– 2019 Examinations Model Answer

Page 26 of 31

- A) **Start up meeting**: Procedure starts with start up meeting. Then it continue until implementation of energy saving measures.
- B) **Analysis of energy used**: Identify where energy used & it shows on which area should be concentrate.
- C) Collecting basic data: At site load, some of the following important points:

1.Operating hours 2.Duty cycle 3.Actual power consume

- D) **Observation of actual field**: After collecting data, we start actual field work. It means we have find out process where energy saving can be done. Always apply the 80 by 20 rule.
- E) **Cost benefit analysis of the data:** This Analysis is in the terms of cost of carrying out that project v/s the benefit that can be earned.
- F) **Reporting:** We have to submit the detail report. Then we have to take sanction of that report from final Authority.
- G) Action plan: In this all the measure steps must be included in the action plan for the proper implementation.

.OR

1. Collect information about the plan:

In this information, the measured energy used, raw material required & components required for the plant are considered.

2. Collect production process:

In this process, the design the flowchart of production process, the schedule of operation & its time frame is also considered.

3. Energy and utility system:

In this step, load variation in pumps, fans & compressors are considered, the analysis of energy loss and measurement of insulation level is also considered.

4. Bridge description of each utility:

In this step, the electricity the steam, water, cooling water an compressed air is to be considered.

5. Detailed process flow diagram:

In this step the flow chart, the flow rate & boiler efficiency is to be considered.

6. Energy efficiency in utility & process system:

WINTER-2019 Examinations Subject Code: 22525 **Model Answer** Page 27 of 31 In this step, consider the following things i) specific energy consumption ii) furnace iii) DG set performance analysis iv) lighting system. 7. Energy conservation option & recommendation: The energy conservation & recommendation of better energy source is to be considered. OR (1 Mark each Point) 1) Depending on the nature and complexity of the organization, a comprehensive audit can take from several weeks to several months to complete. 2) Detail studies to establish and investigate energy & materials balances for specific organization departments of process equipment are carried out. 3) Whenever possible checks of organization operations are carried out over extended periods of time at nights and at weekends. 4) The audit report will include a description of energy inputs and product outputs by major departments & will evaluate the efficiency of each step of the manufacturing process. 5) The improve this efficiency will be listed and at least a preliminary assessments of the cost of the improvement will be made to indicate the expected payback on any capital investment needed. 6) The audit report should conclude with specific recommendations for detailed engineering studies & feasibility analysis which must be performed to justify the implementation of those conservation measures that require investments. Explain with diagram : (i) Topping cycle type of cogeneration (ii) Bottoming type of b) cogeneration i) Topping cycle cogeneration system: (Figure :1 Mark & Explanation : 2 Mark) Ans: Thermo Waste heat Heating Heat facilities energy : energy processes Exhaust steam System - Exhaust Fuel Electrical Steam P Boiler Generator Coal turbine Output Fue M tor Topping cycle co-generation system Turbin OR

or equivalent figure

WINTER- 2019 Examinations Model Answer

Page 28 of 31

- The energy from fuel burnt is used to first produce power and then the thermal energy which is a by-product is used to supply process heat or fulfill other thermal requirements. Suitable where the processes of the industry need low heat (low temperatures).
- > In Topping cycle co-generation system the fuel is burnt for electricity generation.
- At the time of fuel burning process the excess thermal energy present in the system is recovered by heat recovery system and it is utilized.
- > The topping cycle co-generation system is popular method and it is widely used.

OR

or equivalent figure

- The block diagram is as shown in figure. In the topping cycle co-generation system. The fuel is burnt to get the electrical energy first and wastages are converted to get the thermal energy.
- As per the black diagram the fuel is burnt in the boiler to get the high pressure high temperature steam which is carried through steam turbine, so steam turbine is prime mover.
- Which is coupled to the generator, to get the electrical energy. The exhaust gases after the steam turbine are provided to the heat recovery system in which high temperature thermal energy is obtained to provide the various facilities in which the thermal energy is required.
- So, as per this block diameter electrical energy is obtained in stage no.1 and thermal energy is obtained in stage no.2.

OR equivalent figure

- 1) Bottoming cycle of co-generation system is that in which high temperature heat energy is produced using primary fuels.
- 2) This heat produced is mainly used for other processes except generation of electricity.
- 3) Rejected heat from process is utilized to generate electricity.
- 4) The rejected heat is taken from recovery boiler and it is then applied to the turbine connected to the generator to produce electricity.
- 5) From manufacturing process of some products heat at high temperature is required in furnaces and kilns.

WINTER- 2019 Examinations Model Answer

Page 30 of 31

6) After the manufacturing process, the heat rejected or not utilized is also at significantly high temperature which cannot be neglected. And if neglected it will reduce the overall efficiency of the system greatly.

7) Bottoming cycles are suitable for cement industries, ceramic factories etc.

OR

- The main purpose of bottoming cycle co-generation system is to get the thermal energy after burning of fuel.
- > The exhaust of remaining energy is converted into electrical energy or any other form.
- The block diagram for bottoming cycle co-generation system is as shown in figure. The main fuel is burnt to get the thermal energy which is required for existing plant process (for rg. Food industry)
- It is stage No.1 the exhaust gases after the plant process are passed to the heat recovery system in which high pressure, high temperature steam is generated and which is passed on the steam turbine.
- The steam turbine is coupled to the generator to get the electrical energy in the stage no.2. The excesses exhaust gases or thermal energy after the plant process is directly provided to the various process applications. It is stage no.3.
- Sometimes electrical energy is also used to get the thermal energy for process applications.

	Subject Code: 22525	WINTER– 2019 Examinatio <u>Model Answer</u>	Page 31 of 31				
c)	Explain the following Balancing phase curren		ue : (i) Controlling I ² R losses (ii)				
Ans:	i) By reducing I ² R loss	es in Trans: (Any 3 points)	(3 Marks)				
	1. Opting for low resist	ance All Aluminum Alloy conducto	ors (AAAC) in place of conventional				
	aluminum cored stee	el reinforced (ACSR) lines.					
	2. Increasing the system	ine current transmitted that leads to					
	lower I ² R losses.						
	3. Using relevantly suit	able means to reduce the line currer	nts to lowest possible values by				
	maintaining the pow	er factor near unity (reactive power	r control, power factor improvement)				
	4. Use of voltage contro	ollers to maintain the voltage level a	at rated levels (not allowing the				
	voltage to fall that le	ads to higher line currents)					
	5. Marinating proper distance (as low as economically possible) between consumer and						
	distribution transformer.						
	6. Skin effect will increase resistance of conductor so I ² R losses will be more due to skin e						
	(ii) Balancing Phase curr	(3 Mark)					
	single phase loa lines lead to une neutral conduct	ds in the 3 phase 4 wire system or 1 equal currents in the lines. This lead	a draw equal currents in all lines but loads connected between two phase ls to circulating currents in transformers/ ence balancing of such feeder currents is				
	overheating of t	nequal loads on individual lines, seq ransformers, cables, conductors, mo or malfunctioning under unbalance	otors. These increase losses and				
	the voltage drop voltages at the 1 the single phase	loading on the single phase lines of os in lines are different that create up oad leading to unhealthy effects on and two phase types are such loads the three phase/line currents at the s	nequal (non-rated) phase and line the loads. Large ovens/furnaces of s. Hence it becomes necessary to				
		e Scott connection transformers are three phases which transforms the					
		g is also created due to unequal leng ssary to obtain current balance to th					