

Subject Title: Industrial Safety & Maintenance

Subject code

Page **1** of **29**

22408

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **2** of **29**

Q	Sub	Answer	marks
No	q.no		
	1	Answer any 5	10
1	a	Safety planning: It is the first step of safety management where in a safety	2
		manager decides in advance safety objectives, policy, procedure, strategies,	
		rules, programmes, method, budget, schedules and necessary means for	
		achieving these objectives, considering facts and anticipating foreseeable events	
		that may affect safety of plant, people and environment.	
1	b	Objectives of safety audit:	1 mark
		1. To provide the safe working place to every working staff and management.	each for
		2. To identify different level of hazards in each working place or department of	any 2
		an organization.	
		3. Confirm that safety, health, fire and environmental program activities and	
		controls are in place and functioning.	
		4. Verify that the facility is in compliance with internal benchmarks and	
		government regulations.	
		5. Assess past and current practices to identify and correct safety impediments	
		which may result in personal injuries, property damage or business interruption.	
1	c	Importance of Plant Maintenance :	2
		In modern industry, equipment and machinery are a very important part of the	
		total productive effort. With the development of special purpose and	
		sophisticated machines, equipment and machinery cause a lot more money and	
		therefore their idle or downtime becomes much more expensive. For this	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **3** of **29**

		reason, it is vitally important that the plant machinery should be properly	
		maintained.	
		The term plant maintenance includes all work relating to the economical	
		preservation of facilities and equipment of plant, at a level satisfactory to	
		perform their designed function. Maintenance division of the factory ensures	
		the availability of the machines, buildings and services required by other	
		section of the factory for the performance of their function.	
1	d	Toxic Hazards.	
		A Substance is said to be toxic to the human body, if it has the ability to	
		produce any ill effects on the human body when it reaches a susceptible site.	
		The effect of toxic substances on the body depend on a number of factors like	
		quantity, the form, solubility, sensitivity, individual susceptibility, personal	
		habit etc.	
		Causes of toxic hazards are:	1
		1. Inhalation	
		2. Contact with skin	
		3. Contact with eyes	
		4. Ingestion	
		Remedies of toxic hazards:	
		In the body toxic chemicals are destroyed and disposed off by the body	
		through excretion. However when the quantities are too large for the body	1
		to cope with or in case of chronic exposure continuously for the long time	
		the body face to disposed off the toxic chemicals. The continued presents	
		of toxic chemicals cause pathological changes in the body, structural or	
L	1		

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **4** of **29**

		functional damage, inflammations, disorders of growth or repair and	
		diseases.	
		Give awareness about toxic hazards in the industry	
		Educate workers about the first aid to be given in case of any emergency.	
1	e	Tools for safety planning are:	2
		1. Identify problems	
		2. Establish objectives or goals	
		3. Develop planning premises(eg. Land, labour, capital, market, money,	
		time, production, public relation, employee relation, reputation, morals,	
		policy, programmes, rules, emergencies, new inventions, etc.)	
		4. Determine alternative course of action	
		5. Evaluate the alternatives	
		6. Select a course of action	
		Formulate derivative (final) plan and sub pland as per need.	
1	f	Types of investigations:	¹∕₂ mark
		1. Failure mode & effect analysis	each for
		2. HAZOP	any 4
		3. Fault tree	
		4. Event tree	
		5. Cost effectiveness	
		6. Statistical method	
		7. Critical incident method	
		8. System safety	
1	g	Control of hazard in fertilizer plant: (any 2)	1 mark

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **5** of **29**

		• Always wear chemical goggles and adequate skin cover.	each for
		 Inspect equipment before each day's work and correct any abnormal 	any 2
		conditions.	
		• Water is the first aid treatment of choice when ammonia gets into the	
		eyes or on the skin. In case of mishap, flush affected areas for 15 minutes and get medical help as soon as possible.	
		• Make sure all valves, lines, and connections are secure in order to	
		reduce the chance of either leaks or being doused during transfer.	
2		Answer any 3	12
2	a	Importance & Objectives of plant safety:	1 mark
		1. To increase the rate of production.	each
		2. To reduce the cost of production.	
		3. To reduce the damage to equipment and machinery.	
		4. To protect the life & limbs of the workers.	
2	b	Procedure of safety Auditing :	4
		Safety audit is carried out by a team whose members are not involved in the	
		plant or activity being audited. The expertise of the team should be compatible	
		with the type of audit. It is beneficial to include the managers of other plants or	
		units in an audit team as well as one previous auditor of the same unit. Audits	
		are carried out in a formal way using a carefully drawn up checklist of items	
		and descriptive standards for each item. A line manager or supervisor of the	
		plant under audit should be asked to accompany the auditor inspecting it. He	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **6** of **29**

		 4. Welfare: For the welfare of the workers, the Act provides that in every factory, adequate and suitable facilities should be provided and 	
		3. Safety: In order to provide safety to the workers, the Act provides that the machinery should be fenced, no young person shall work at any	
		taken in this regard.	
		every factory shall be kept clean and all necessary precautions shall be	
		2. Health: For protecting the health of workers, the Act lays down that	
		more than 48 hours in a week. There should be a weekly holiday.	
		no adult worker shall be required or allowed to work in a factory for	
		1. Working hours: According to the provision of working hours of adults,	
		work in factories.	
		enact special provision in respect of young persons, women and children who	
		conditions in factories, to regulate health, safety, welfare and annual leave and	
		The main objectives of Indian Factories Act 1948 are to regulate the working	4
2	c	Main features of Factories Act 1948:	4
		completion of audit followed by a clear and concise written report within two weeks.	
		an emergency. The auditing should give a verbal report to the management on	
		features are upto standard and to ensure that the protective features will work in	
		determine whether the layout design and condition of equipment and protective	
		submitted to management. The main object of inspection should be to	
		auditors so that he can start taking the necessary steps before the audit report is	
		should be informed of all corrections and improvements required by the	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **7** of **29**

		maintained for the use of workers.	
		5. The provisions of the factory act,1948 or any rules made under the Act	
		or any order given in writing under the Act is violated, it is treated as an	
		offence, penalties can be imposed.	
2	d	Basic steps necessary for controlling plant hazards:	4
		1. Elimination: Physically remove the hazard is the most effective hazard	
		control. For example, if employees must work high above the ground,	
		the hazard can be eliminated by moving the piece they are working on	
		to ground level to eliminate the need to work at heights.	
		2. Substitution: It involves replacing something that produces a hazard	
		with something that does not produce a hazard.	
		3. Engineering controls: It includes designs or modifications to plant,	
		equipment, ventilation systems and processes that reduce the source of	
		exposure.	
		4. Administrative controls: They are changes to the way people work.	
		Example includes procedure changes, employee training and installation	
		of signs and warning labels.	
		5. Personal Protective Equipment: This includes gloves, apron,	
		respirators, helmets, safety shoes, goggles atc.	
3		Answer any 3	12
3	a	On line maintenance of Rotameter:	2 marks
		In a chemical plant, it is a normal practice to do on line maintenance work. This	for
		avoids total shutdown of the equipment or plant. This is possible, if proper pipe	descript
		fittings are installed at the time of erection. e.g. Suppose there is a Rota meter	ion, 2
1		1	L

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page 8 of 29

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **9** of **29**

		thermocouple etc	
		Specific instruments: Gas/Fume/Vapour detector & alarm leakage warning	
		instrument. This is an electrical instrument Having a sensor and audible alarm	
		to give warning, when preset, air gas mixture exceeds the set TLV or LEL limit.	
		It detects flue gases, LPG, smoke, petrol vapours, Paraffin fumes,	
		hydrocarbons, ammonia, Freon, hexane, acetone, benzene, chloroform fumes,	
		CO2, H2S, methane, solvent vapours and many poisonous /explosive gases,	
		various type of glass detector hand models are also available.	
3	c	Accident and Incident analysis is carried out in order to determine the cause	4
		or causes of an accident (that can result in single or multiple outcomes) so as to	
		prevent further accidents of a similar kind. It is part of accident investigation or	
		incident investigation. These analyses may be performed by a range of experts,	
		including health and safety advisers. Health and safety and patient	
		safety professionals prefer using the term "incident" in place of the term	
		"accident". Its retrospective nature means that accident analysis is primarily an	
		exercise of directed explanation; conducted using the theories or methods the	
		analyst has to hand, which directs the way in which the events, aspects, or	
		features of accident phenomena are highlighted and explained.	
		Identify and locate the main source of accidents from actual experience,	
		materials, machines, tools, jobs, men and methods most likely to produce	
		injuries.	
		Disclose the nature and size of the accident problem in departments and among	
		occupations	
		L	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **10** of **29**

		-	
		Indicate the need for engineering revision by identifying the unsafe conditions,	
		materials, equipment and environment.	
		Disclose inefficient operating procedures, processes, poor layout and outdated	
		methods to reduce accidents.	
		Disclose the unsafe practices for training of employees	
		Disclose improper placement of personnel instances of handicaps contributing	
		to accidents	
		Guide supervisors to use their maximum time for safety work by providing	
		them information about the hazards in their departments.	
3	d	Fault Tree Analysis (FTA) :	4
		It is a method to represent the logical combinations of various systems which	
		lead to a particular outcome (top event).	
		It is a graphic model that determines various combinations of equipment	
		faults and failures that can result in an accident.	
		This is a sophisticated form of reliability assessment and it requires	
		considerable time and skill. The procedure is to start from a selected	
		undesirable top event such as 'gas coming out of a scrubber' and then trace it	
		back to the combination of faults and conditions which could cause the events	
		to occur. Apart from identification of hazards, it is widely used for quantitative	
		risk analysis. It will be necessary to obtain meaningful failure data of each	
		component to arrive at the frequency of occurrence of the 'top event'. Fault tree	
		is developed from top to bottom through a series of symbols which define the	
		flow of logic from the base causes of an event itself. Detailed' probability data	
		are most desirable.	
L	1	1	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **11** of **29**

		This method of Fault Tree Analysis was developed by Bell Laboratories	
		(USA) in 1961 to predict potential catastrophic events which could occur with	
		the Air Force. It is more useful to assess chemical hazards.	
4	I	Answer any 3	12
4	a	Procedure and plans for safe plant operation:	4
		1. Starting sequence should be well defined, written and known to the	
		workers involved in this work.	
		2. Starting in sequence of utilities like water, air, power; purging,	
		charging, slow and gradual heating, monitoring of pressure,	
		temperature, flow and reaction rate, cooling if necessary, starting of	
		exhaust system, scrubber or condenser etc., observing noise, vibration,	
		speed, alignment, synchronizing etc. are all important.	
		3. During start-up if drains remain open, vent valves remain closed, wrong	
		valves are operated, unwanted material enters e.g. oxygen instead of	
		nitrogen as blanketing over flammable reaction, water where it is	
		incompatible, air instead of steam or steam instead of air, excess or less	
		charging of material or catalyst, delayed cooling or heating, not starting	
		of any pump or instrument, no indication or alarm due to failure or	
		malfunctioning of instrument in the beginning, no starting of local	
		exhaust or scrubber when it is essential and failure of interlock or trip	
		resulting in unwanted mixing or reaction, mixing of air with	
		hydrocarbons, contacting hot oil and water, thermal or mechanical	
		shocks etc. are some of the examples of possible disorders.	
		4. Correct identification of pipelines, valves and gauges, correct sequence	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page 12 of 29

of control operation, correct charging or addition-rate and instead of relying on instruments only Counter-check of other parameters and strict manual observation and satisfaction are requisite precautions for safe start-up procedure. 5. Attention should be paid on preparatory activity, verifying content, removal of air or venting, purging and disposal of purged material, removal or addition of water, slow and sequential starting of heating or cooling, gradual reaching of working parameters and normal operation. 6. Other points needing attention in start-up are removal of shutdown blinds, providing running blinds, opening of scrubber or discharge line valve, opening of isolation valve before safety valve, starting of local exhaust ventilation, pump cooling and priming, readiness of firefighting equipment, leak detection, opening vents and drains before allowing steam in the system, partial opening of steam valves, introducing steam from the bottom part, observance of level and overflow if any, safe increase in loading, avoidance of incompatible material, avoidance of moisture and impurities in breathing air, purging of blow down tanks and flare, removing air from vacuum equipment, inspecting joints and valves for leakage, verifying steam traps working for condensate discharge, safe displacement of steam, water or purge gas after their use, removing residual water before, introducing hot oil (initially cold oil should be introduced), using heat-exchanger for indirect and gradual heating or cooling etc. 4 b **Event Tree Analysis (ETA) :**

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **13** of **29**

-			
		Event tree analysis is a method to illustrate the intermediate and final outcomes	
		which may arise after the occurrence of a selected initial event.	
		This technique is complementary to Fault Tree, but in reversed direction.	
		Whereas a fault tree starts from a final event and works from the top down, an	
		Event Tree begins with an initial event such as a power failure and explores all	
		possible outcomes by working from the bottom up. An illustration is shown	
		below, for an initial event of release of flammable gas. ETA identifies the	
		sequences of events following an initiating event that results in accident. Event	
		tree considers operator response or safety system response to the initiating	
		event in determining the potential sequence.	
4	с	Hazop (Hazard & operability) study is carried out by application of	4
		guidewords to identify all possible deviations from design intent having	
		undesirable effects on safety or operability, with the aim of identifying	
		potential hazards. Hazop study is normally undertaken at an advanced stage of	
		project implementation when the design criteria are well established. The study	
		can be used for both new and working plants. They have to be carried out by	
		multidisciplinary teams of experienced technical personnel having detailed	
		knowledge of both the design, and operation of a plant. A preliminary Hazop	
		study is intended to review the general parameters of materials processed, unit	
		operations and layout of individual units and plant sub-units. A detailed Hazop	
		study is required after the finalization of the designs to identify the potentially	
		hazardous situations and to arrive at agreeable options to rectify design	
		deviations and anomalies	
4	d	Effects of radiation hazard:	4
			1

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **14** of **29**

		1 .Ultraviolet radiation: Short term sunburn conjunctivitis Long term-	
		premature skin ageing, skin cancer and cataract	
		2. Infra-red radiation: Burns to skin and eye tissues.	
		3. X rays: X rays are ionizing radiation. Ionizing radiation can affect human	
		cells by stripping one or more electrons from an individual atom and forming	
		an electrically charged particle called an ion. These ions can disrupt the	
		machinery of cells, kill them or harm the genes that pass human traits from one	
		generation to the next. Sometimes a damaged DNA molecule instructs a cell to	
		mobilize all its resources and the resources of all its neighbors to produce as	
		many copies of itself as possible. The offspring preserve the mandate, and a	
		chain reaction takes place that crashes the system. This runaway reproductive	
		zeal of a misguided cell is known as cancer and it is the worst hazard of	
		radiation exposure.	
4	e	Procedure for shut down of a plant:	4
		A glast shutdown on two ground is a town or own slower of a building to	
		A plant shutdown, or turnaround, is a temporary closure of a building to	
		perform maintenance. The main activities should be preventative in nature with	
		the focus on equipment inspections. This is the opportune time to replace worn-	
		out or broken process materials and equipment at their useful end-of-life. An	
		out of oforein process materials and equipment at their aserul end of me. This	
		effective plant shutdown should result in reduced unplanned downtime, reduced	
		effective plant shutdown should result in reduced unplanned downtime, reduced	
		effective plant shutdown should result in reduced unplanned downtime, reduced overtime, and greater operational efficiencies. Five distinct phases of a plant	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **15** of **29**

		chemicals, water, oil, pyrophoric catalyst, disposal of effluents and sludge,	
		drainage and blinding and isolation activities.	
		Heat source should be cut off, cooling may be continued till required, where	
		vacuum is possible due to cooling, inert gas or air (if compatible) should be	
		introduced to maintain atmospheric pressure, pumping out material after	
		cooling and de- pressuring and pumped out hot oil should be cooled below its	
		flash point. Residual hydrocarbons can be removed by purging with steam,	
		water or water followed by steam. After purging, air should be allowed into the	
		system. Residual water should be removed. Lastly running blinds should be	
		removed and shutdown blinds should be installed.	
		If the shutdown is required due to any fault, the cause of the fault should be	
		found, studied and removed before restarting the plant.	
5	I	Answer any 2	12
5	а	Safety Organization:	
		One of the biggest issues facing employers today is the safety of their	
		employees. Workplace accidents are increasingly common. Organizations have	
		a moral responsibility to ensure the safety and well-being of their members.	
		Organizational practices that promote safety can also help a company establish	
		competitive advantage by reducing costs and complying with safety laws.	
		Workplace safety can be quite expensive. Unintentional injuries alone cost	
		more than \$146.6 billion per year for medical and insurance costs, workers'	2
		r r r	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page 16 of 29

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **17** of **29**

		Four Principles of a Safety Management System	
		1. Education. Education of all staff and management so that everyone	
		understands safety policies and standards is essential to effective integrated	
		safety management	
		2. Job-Site Maintenance. Regular and effective maintenance and repair of tools	
		and equipment is an important element of safety	
		3. Safety Equipment	
		4. Communication.	
~	1		
5	b	Accident investigation:	
		Philosophy of industrial accident investigation should be clear and well	1
		explained to workers. It should not be oriented towards fault-finding and	
		blaming any individual. Its main objective is to find out the real cause of the	
		accident and then based on it, to suggest appropriate remedial measures to	
		prevent its recurrence.	
		Steps involved in accident investigation:	
		1. Provide first aid and/or medical care to the injured persons and take	
		action to prevent further injury or damage. This is the first priority.	2
		2. Report the accident as required by your company's policies.	
		3. Investigate the accident as soon as possible after it occurs. This allows	
		you to observe the conditions as they were at the time of the accident,	
		prevents the disturbance of evidence, and allows you to identify	
		witnesses. You will need to gather physical evidence, take photographs,	
		witnesses. You will need to gather physical evidence, take photographs,	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **18** of **29**

		and interview witnesses to understand the chain of events that led to the	
		accident.	
	4	. Identify the causes of the accident. Note that there are usually multiple	
		causes.	
	5	. Report your findings in a written report. in preparing the report, it is	
		helpful to prepare step-by-step account or timeline working back from	
		the moment of the accident, listing all possible causes at each step. This	
		account can be helpful in preparing the final report, which should	
		clearly explain the evidence for your conclusions.	
	6	Develop a plan for corrective action to prevent the accident from	
		happening again. These actions should be specific, constructive,	
		address root causes of the accident, and address the causes described in	
		the report.	
	7	. Implement your corrective action plan. It is helpful to set a deadline for	
		implementation of corrective actions and there should be monitoring in	
		place to ensure that they are completed.	
	8	. Follow up to evaluate the effectiveness of the corrective actions taken.	
	9	. Make adjustments as needed to continue to improve.	
	Purp	oose of investigation and Report:	2
	1	. To learn accident causes so that similar accidents can be prevented by	
		improvement of working conditions, actions and supervision. This helps	
		in designing accident prevention strategies.	
	2	. To make hazard known to the management, workers and supervisors to	
		direct their attention to accident prevention.	
L	1. I.		

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **19** of **29**

	3.	To find facts to determine legal liability and information for preventive	
		purposes. If the purpose is to fix blame or responsibility, vital	
		information will often withheld or distorted. Therefore an investigation	
		should be for the preventive purposes to disclose facts and not faults.	
	4.	To establish procedure to combat damage claims under compensation	
		laws.	
	5.	To determine the change or deviation that produced an error that in turn	
		resulted in an accident.	
	6.	In case of accident affecting the society as a whole the Government may	
		intervene for the purpose of banning of the hazardous material or	
		process.	
	7.	To find out injury rates to compare safety performance.	
	8.	To use the record for the purpose of job safety analysis.	
	Types	of investigations:	
	1.	Failure mode & effect analysis	
	2.	HAZOP	
	3.	Fault tree	
	4.	Event tree	
	5.	Cost effectiveness	
	6.	Statistical method	
	7.	Critical incident method	
	8.	System safety	
	Co	ontent of Accident Investigation report:	
	1.	Name and address of the factory.	1

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **20** of **29**

-		1	1	
		2. Name and address of the investigator and with whom.		
		3. Facts finding including date, time, place and manner of the accident,		
		persons involved, result, etc.		
		4. Drawings, photographs, sketches, records, registers, documents		
		pertaining to accident.		
		5. The process at the time of the accident.		
		6. The causes of the accident in details and with break up.		
		7. The remedial measures.		
		8. The breach of law, if any.		
		9. Compensation to be paid and information for insurance purpose.		
		10. The delivery of the report to whom and how.		
5	с	The Bhopal disaster , also referred to as the Bhopal gas tragedy, was a gas leak	6	
		incident on the night of 2–3 December 1984 at the Union Carbide India Limited		
		(UCIL) pesticide plant in Bhopal, Madhya Pradesh, India. It is considered to be		
		the world's worst industrial disaster.		
		The disaster happened because water entered a tank containing Methyl		
		isocyanate. This caused a chemical reaction which resulted in the buildup of		
		much Carbon dioxide, among other things. The resulting reaction increased the		
		temperature inside the tank to reach over 200 °C (392 °F). As the cool morning		
		breeze picked up pace, it carried the poisonous gas leaking from the Union		
		Carbide factory to rest of the city and killing people - both awake and asleep.		
		As per government's affidavit, about 3,000 people died of poisonous gas within		
		a few hours of the incident.		
		It is estimated that about 40 tonnes of methyl isocyanate (MIC) gas and other		
L	L	1		

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **21** of **29**

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **22** of **29**

		1.During the leakage of methyl Isocynate from the storage tanks of union	
		carbide the water sprayers of the industry was not in working conditions.	
		2. There was unavaibaility of safety officer who has the knowledge of handling	
		such tragedy.	
		3. Lack of safety management in workers	
		4. Gas scrubbers were not in working condition.	
		5. Absence of occupiers in industry at that situation.	
6		Answer any 2	12
6	а	Hazard: A hazard in anything in the work place that has the potential to harm	2 marks
		people. It includes objects in the workplace such as machinery or dangerous	each for
		chemicals.	any
		Types of hazards : 1) Mechanical hazards 2) Electrical hazards 3) Noise	three
		hazards 4) Radiation hazards 5) Explosion hazards 6) Toxic hazards 7)	hazard
		Chemical hazards	and its
		1.Radiation hazard: The radiation is produced when atoms of natural radio	descript
		active material decay or split, generating streams of photons vibrating at	ion
		enormous speeds in wavelike form. Radiation has two basic forms: ionizing and	
		nonionizing. In chemical plants workers may be exposed to various forms of	
		nonionizing radiation. Radiation hazards occurred during testing of nuclear	
		weapons, establishment of nuclear power plants, mining and refining of	
		plutonium and thorium and preparation of radioactive isotope.	
		Sources of radiation hazard:	
		1.Natural sources:	
		They are mainly of cosmic radiation received from from the space, and the	
i			

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **23** of **29**

naturally occurring radioisotopes present in the environment and those contained within the body of the organisms. Another source is the presence of radionuclides in the lithosphere, hydrosphere and atmosphere. 2. Man made sources: 1. Nuclear weapons 2. Atomic reactors and nuclear fuel 3. Radioactive isotopes 4. Hospital (X-ray division) 2.Noise hazard: Un wanted sound is called noise. Sound levels that cause hearing loss begin at 85 db. Hearing loss occurs more quickly with louder noise. High sound levels cause serious health risks. Hearing damage results from an exposure to loud noises over an extended period of time. Effect of noise on human being : High sound levels pose serious health risk to the people who work long hours around the equipment which generate high noise levels. Hearing damage results from an exposure to loud noises over an extended period of time. Deafness and loss hearing usually occur with the high frequency sound and not be lower frequency sound. Hearing is lost as auditory nerve endings are exposed to the same frequency of sound for extended time periods. The nerves lose their ability to recover from that hostile frequency. The ability to hear that sound frequency is then decreasing forever. Hearing loss accumulates over time and cannot be revers. Hearing aid assistance may be necessary.

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page 24 of 29

Protection of noise hazard:	
i) Reduction at source: wherever possible it would be advisable to reduce the	
noise at the source itself.eg change the bearings if it makes noise due to wear.	
ii) Vibration isolation: In case of machine like reciprocating compressors and	
power presses, the mechanical vibrations are transmitted through the structures,	
walls and the floor which increases the noise level at the workplace. Reduction	
of noise levels can be achieved by,	
a) Using vibration resilient mounts to fix the machine to foundations.	
b) Special heavy foundations with a large weight compared to the weight of	
machine.	
iii) Vibration Damping: Machine parts, ventilation duct cause noise in this	
manner. Thenoise in these cases can be reduced by damping- by stiffening the	
member.	
iv) Silencers: Where noise due to movement of gases or air is the problem,	
silencers are the right solution. Silencers can be used at the inlet/outlet of	
compressors, exhausts, release of steam and gases and pressure relief valves of	
pneumatic machines.	
v) Noise insulation: It may be necessary to insulate the source from all the sides	
although insulating two or three sides also give reduction of a lower degree.	
vi) Noise absorption: Noise absorption material, normally soft and porous,	
prevent reflection of noise and also convert some of the noise energy into heat	
energy.	
3.Electrical hazard:	
The danger of injury through electrical shock is present when ever	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page 25 of 29

electrical power is used. All electrical should be adequately insulated, grounded or isolated to prevent bodily contact with any source of dangerous potentials. To prevent electrical shock, ensure that all equipment is properly grounded. To reduce the risk of shock , do not contact any electrical components and keep your work area dry. Check all equipment regularly and wear the proper protective equipment when working with high voltages or currents.

Electrical burns occur when the body completes a circuit connecting the power source with the ground. Although the resistance of dry, unbroken skin to electric current is relatively high, the amount of current necessary to kill person is small. Therefore it is easy to exceed lethal levels of current flow, especially if the skin is broken, wet or damp with sweat.

Common sources of electrical hazards :

The danger of injury through electrical shock is present whenever electrical power is used. The primary effect of electric shock are due to current actually flowing through the body. Electrical burns occur when the body completes a circuit connecting the power source with the ground.

Potential sources :

- 5. Voltages between phases and between phases and neutral.
- 6. Voltages between phases, neutral and earth where there is any conductive surfaces.
- 7. Voltages across open switch contacts.
- 8. Voltages across undischarged capacitors.

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **26** of **29**

		9. Voltages on disconnected conductors.	
		10. Voltages caused by static electricity.	
		11. Incorrect wiring connection.	
		12. Faulty equipment.	
		4.Mechanical Hazard:	
		In a chemical plant, welding and cutting are seldom done were mechanical	
		hazards are occurred. The use of or the closeness to, mechanical equipment can	
		present hazards to the welder. Knowledge of the proper use of power tools,	
		such as grindess, chippers, drills and various hand tools, is important to welder	
		safety. Moving parts of machine if not properly guarded can cause mechanical	
		hazards. During handling of sharp heavy, rough and hot materials, suitable hand	
		gloves and pads must be used to avoid mechanical hazards. In chemical plant to	
		avoid mechanical hazards machines must be stopped and locked in stationary	
		position before being oiled, lubricated or adjusted.	
		5.Explosion Hazard :	
		Explosive substances include any material for making any explosive	
		substance, also any apparatus, machine or material used with any	
		explosive substance.	
6	b	Predictive maintenance:	
		Predictive maintenance makes use of human sense or other sensitive	3
		instruments such as audio gauges, vibration analyser, amplitude meter,	
		pressure, temperature and resistance strain gauges etc. to predict trouble before	

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page **27** of **29**

		the equipment fails. Unusual sounds coming out of a rotating equipment predict			
		a trouble , an electric cable excessively hot at one point predict a trouble.			
		Simple hand touch can point out many unusual conditions and thus predict a			
		trouble. In predictive maintenance , equipment conditions are measure			
		periodically or on a continuous basis and this enables maintenance men to take			
		a timely action such as equipment adjustment , repair or overhaul. Predictive			
		maintenance extends the service life of an equipment without fear of failure.			
		senses adopted for predictive maintenance technique (Human senses) :			
		1. Ear :eg. Unusual sound coming out of rotating equipment.	1.5		
		2. Eye :eg. Excessive vibration of equipment or dislocation of moving			
		part.			
		3. Touch :eg. Excessive temperature of equipment.			
		4. Smell :eg. Unusual smoke coming out of equipment.			
		sensitive instruments adopted for predictive maintenance technique:			
		1. Audio gauges :eg. Unusual sound coming out of rotating equipment.	1.5		
		2. Vibration analysor: eg. Excessive vibration of equipment			
		3. Amplitude meter:eg. Excessive temperature of equipment.			
		4. Pressure, temperature and resistance strain gauges: eg. Excessive			
		temperature of equipment.			
6	с	Scheduled maintenance:	4		
		Scheduled maintenance is a stich-in-time procedure which is aimed at avoiding			
		breakdowns. Breakdowns can be dangerous to life and hence should be			
		minimized.			
		Scheduled maintenance is any repair and upkeep work performed within a set			

Subject Title: Industrial Safety & Maintenance

Subject code

22408

Page 28 of 29

timeframe. It details when given maintenance tasks are performed and by whom. Scheduled maintenance may occur at repeating intervals or in response to a work request. Scheduled maintenance often occurs at repeating intervals, such as changing an air filter every March and September, or conducting a performance inspection at the start of each year. Maintenance may also be scheduled to fulfill a work order. Once a problem is discovered, a maintenance scheduler works with a maintenance planner to resolve the problem. A time is then scheduled to conduct necessary repairs. In addition to managing the time at which maintenance tasks should occur, scheduled maintenance also deals with who performs those tasks. The time it takes for the job to be completed is compared with available work hours, which are factored into the schedule. The key here is to make sure those who should perform a given task are available to do so. Without coordinating a set time with maintenance workers and contractors, there is no guarantee that necessary work will be completed on time. This inevitably damages schedule compliance. This method of maintenance incorporates inspection, lubrication, repair and overhaul of certain equipment which if neglected may result in breakdown. Scheduled maintenance practice is generally adopted for overhauling of machines, cleaning of water and other tanks, white washing of buildings etc. In a time-based maintenance strategy, assets are periodically inspected, serviced and cleaned, with parts replaced in an effort to prevent sudden failure. While this allows those responsible for maintenance and servicing to reduce the

 Subject Title: Industrial Safety & Maintenance
 Subject code
 22408

 Page 29 of 29

 Ikelihood of failure through scheduled checks and is far more effective than
 running breakdown maintenance, it cannot guarantee breakdown won't happen.

 Advantages of scheduled maintenance:
 • Usually made up of tasks that don't require extensive training, such as
 2

 Ibbricating and retightening screws
 • Lower long term costs compared with breakdown maintenance
 2