

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC -270001 – 2005 certified)

WINTER -2019 EXAMINATION

SUBJECT CODE:

22402

MODEL ANSWER

Important Instructions to examiners:

1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language error such as grammatical, spelling errors should not be given more importance.

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidate's answer and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

Que. NO	Answer with question	Mark
Q.1	Attempt any FIVE of the following	10 M
a)	Define core of section.	
Ans.	Core of a section: Core of the section is that portion around the centroid in within which the line of action of load must act, so as to produce only compressive stress is called as core of the section. It is also defined as the region or area within which if load is applied, produces only compressive resultant stress. If Compressive load is applied, the there is no tension anywhere in the section.	01 M
	emax = d/8 e = Core of section Core of section Gove of section For Circular section For Circular section Gove of section Gove o	01 M

b)	State the condition for no tension in the column section	
Ans.	Condition for no tension in the column section	
	σ_0 = Direct stress and σ_b = Bending stress	
	, if $\sigma_0 > \sigma_b$ the resultant stress is compressive, If $\sigma_0 = \sigma_b$ the minimum stress is zero and the maximum stress is 260, the stress distribution is compressive . but $\sigma_0 < \sigma_b$ the stress is partly compressive and partly tensile. A small tensile stress at the base of a structure may develop tension cracks. Hence for no- tension condition, direct stress should be greater than or equal to bending	01 M
	stress. $\sigma_0 > = \sigma_b$ P / A = M/Z P / A = Pxe/Z, e = < Z/A Hence for no -tension condition, eccentricity should be less than Z/A	01 M
c)	State expression for deflection of simply supported beam carrying point load at midspan.	
Ans.	A simply supported beam of span L carrying a central point load F at midspan	
	F F	01 M
	To find the maximum deflection at mid-span, we set $x = L/2$ in the equation and obtain ,maximum deflection = Yc Yc = Y max = F L ³ / 48 EI	01 M
d)	State the values of maximum slope and maximum deflection for a cantilever beam of span 'L' carrying a point load 'W' at the free end . EI = constant	
Ans.	$A = \frac{1}{2} $	01 M 01 M

e)	Compare a simply supported beam and a continuous beam w.r.t deflected shape of a beam.	
Ans.	The firm of a curve to which the longitudinal axis of the beam bends after loading is called elastic curve or deflected shape of the beam. In the figure shows the deflected shape for various types of continuous beam. The deflected shape is shown by a dotted curve. Deflected shape simply supported beam and continuous beam W_1 W_2 G_A (i) Continuous beam with simply supported ends W_1 H_2 H_3 H_4 H_3 H_4	01 M
	W_{1} H_{0} H_{0	01 M (Any one sketc h)
f)	Write the values of stiffness factor for beams. i) Simply supported at both ends ii)/fixed at one end simply supported at other end	
Ans.	 i)Stiffness factor for a beam Simply supported at both the ends = 3EI/L ii) Stiffness factor for a beam fixed at one end and simply supported at other end = 4EI/L 	01 M 01 M
g)	Make the following truss perfect by adding or removing the members, if required as shown in fig. No.1 (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	

	stress distribution diagram as below	
	σ _{min} + σ _{max}	01 M
	Stress distribution diagram at base	
d)	Calculate the values of direct stress and bending stress at the base of chimney. Write interpretation of obtained values of stresses. Use following data	
	i) External diameter = 3m	
	ii) Internal diameter = 2m	
	iii) Height of chimney = 44m	
	iv) Weight of masonry = 20 kN/m2	
	v) Co-efficient of wind resistance = 0.60	
Ans.	vi)Wind pressure = 1 kN/m2	
	Solution :	
	Solution :	
	Given = d1= 3m, d2=2m, height of chimney h =44	
	i)Area of the section = A = $(\pi / 4) \times (3^2 - 2^2) = 3.926 \text{ m}^2$ I xx = I = $\pi / 64 (3^4 - 2^4) = 51.05 \text{ mm}^4$	
	Wind pressure = $P = 1 \text{ kN/m}^2 = 1000 \text{ N/m}^2$	
	ii) Direct stress on the base $\sigma_0 = W / A$	
	$= A x h x \rho = (3.926 x 44 x 20) / A$	
	$=880 \text{ kN/m}^2$	01 M
	iii) section modulus $Z = \pi /32 x (3^4 - 2^4)/3 = 2.127 m^3$	
	iv) Total wind load $P = C \times P \times P$ projected area	
	= 0.6 x P x D x h = 0.6 x 1 x 3 x 44 = 79.2	
	v) Moment on the base M= P x h/2 =79.2 x 44 /2 =1742.40 kNm vi)Bending stress on the base section $\sigma b = (M \times y) / I$	
	VIIBEDOID STRESS OD THE DASE SECTION $\sigma D = (N + Y + V) / T$	
		01 M
	$\sigma b = \pm M/Z = 1742.40 / 2.127 = \pm 819.18 \text{ kN/m}^2$ $\sigma max = \sigma 0 + \sigma b = 880 + 819.18 = 1699.18 \text{ kN/m}^2$ Comp	01 M

	1) At $x=0$, $y=0$ putting in deflection equation	
	$EI(0) = 0 + C_1 \times 0 + C_2$	
	$C_2 = 0$	
	2) At $x = 3m$, $y=0$ putting in deflection equation	01 N
	EI (0) = $3^3 + 3C_1 + 0 - \frac{9}{6}(3-1)^3$	
	$C_1 = -5$	
	Putting values of C_1 and C_2 in Slope and Deflection Equation.	
	$EI\frac{dy}{dx} = \frac{6x^2}{2} - 5 - \frac{9(x-1)^2}{2}$ Final Slope Equation	
		01 N
	$EIy = \frac{3x^3}{3} - 5x - \frac{9(x-1)^3}{6}$ Final Deflection Equation	
	Calculate Deflection under point load	
	At $x = 1m$, $y = y_c$ putting in deflection equation.	
	EI $y_c = \frac{3(1)^3}{3} - 5(1) - 9(0)$	01 N
	$y_c = \frac{-4}{EI}$	
	yc – EI	
	20KN 32KN	
b)	$A = \frac{2m}{2m} = $	
	AJB	
b) Ans:	$A = \frac{2m}{2m} = $	
-	A $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ $\frac{1}{2m}$ B Assume beam is simply supported beam and calculate support Reactions.	
	A f	
	A A $\frac{1}{2m}$ $\frac{2m}{2m}$	
	A A A A A A A A A A A A A A	
	A A f 2m	
	A A A A A A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C C C C C C C C C C C C C	
-	A A A A A C C C C C C C C C C C C C	01 N

$$M_{A} = M_{A1} + M_{A2} = \cdot \frac{W_{i}a_{i}b_{i}^{2}}{L^{2}} - \frac{W_{i}a_{i}b_{i}^{2}}{L^{2}}$$

$$= -\frac{20x2x4^{2}}{6^{2}} - \frac{32x4x2^{2}}{6^{2}} = -17.78-14.22$$

$$M_{A} = -32.0 \text{ kN.m}$$

$$M_{B} = M_{B1} + M_{B2} = -\frac{W_{i}a_{i}^{2}b_{i}}{L^{2}} - \frac{W_{i}a_{i}^{2}b_{i}}{L^{2}}$$

$$= -\frac{20x2^{2}x4}{6^{2}} - \frac{32x4^{2}x2}{6^{2}} = -8.89-28.44$$

$$M_{B} = -37.33 \text{ kN.m}$$
Draw final BMD for simply supported beam and fixed beam by overlapping each other

$$M_{A} = -\frac{2m^{2}x4}{6^{2}} - \frac{32x^{4}x2}{6^{2}} = -8.89-28.44$$

$$M_{B} = -37.33 \text{ kN.m}$$
Draw final BMD for simply supported beam and fixed beam by overlapping each other

$$M_{A} = \frac{2m}{2m} - \frac{2m}{2m} - \frac{2m}{6} + \frac{2}{2m} - \frac{2}{2m$$

(ii)	State two advantages of fixed beam over simply supported beam.	
	1. End slopes of fixed beam are zero	
	2. A fixed beam is more stiff, strong and stable than a simply supported beam.	
	3. For the same span and loading, a fixed beam has lesser values of bending	02 M
Ans:	moments as compared to a simply supported beam.	for any 2
	4. For the same span and loading, a fixed beam has lesser values of	any 2
	deflections as compared to a simply supported beam.	
0.4		12
Q.4. a)	Attempt any THREE of the followingState Clapeyron's theorem of three moments for continuous beam with same	12
u)	and different EI	
Ans:	The claperon's theorm of three moment is applicable to two span continuous beams. It state that "For any two consecutive spans of continuous beam subjected to an external loading and having uniform moment of inertia, the support moments M_A , M_B and M_C at supports A,B and C respectively are given by following equation	01 M
	$M_{A} + 2M_{B}(L_{1} + L_{2}) + M_{C}L_{2} = -\left[\frac{6A_{1}X_{1}}{L_{1}}\right] - \left[\frac{6A_{2}X_{2}}{L_{2}}\right]$	01 M
	A constant then claperon's theorem can be stated in the form of following equation. $M_{A} \frac{L_{1}}{I_{1}} + 2M_{B} \left(\frac{L_{1}}{I_{1}} + \frac{L_{2}}{I_{2}}\right) + M_{C} \frac{L_{2}}{I_{2}} + M_{C} \frac{L_{2}}{I_{2}} = -\left[\frac{6A_{1}X_{1}}{L_{1}I_{1}} + \frac{6A_{2}X_{2}}{L_{2}I_{2}}\right]$	01 M
	$M_A \frac{1}{I_1} + 2M_B \left(\frac{1}{I_1} + \frac{1}{I_2}\right) + M_C \frac{1}{I_2} + M_C \frac{1}{I_2} - \left[\frac{1}{L_1 I_1} + \frac{1}{L_2 I_2}\right]$ Where L ₁ and L ₂ are length of span AB and BC respectively. I ₁ and I ₂ are moment of inertia of span AB and BC respectively. A ₁ and A ₂ are area of simply supported BMD of span AB and BC respectively. X ₁ and X ₂ are distances of centroid of simply supported BMD from A and C respectively.	01 M

			ition factors for the	e members OA, OB,	OC and OD for the	
c)				$ \begin{array}{c} B \\ 3m(21) \\ \hline 0 \\ 2m(1) \\ \hline D \end{array} $		
Ans:	Joint	Member	Stiffness Factor	Total stiffness	Distribution Factor	
		OA	$\frac{K_{OA}}{L} = \frac{4E(2I)}{4}$ $= 2 EI$	$\sum K_o = 2EI + 2EI + 3EI = 7EI$	$DF_{OA} = \frac{2EI}{7EI}$ $DF_{OA} = 0.286$	01 M for each
	0	OB	$K_{OB} = \frac{3EI}{L}$ $= \frac{3E(2I)}{3} = 2EI$		$DF_{OB} = \frac{2EI}{7EI}$ $DF_{OB} = 0.286$	D.F.
		OC	$K_{oc} = \frac{3EI}{L}$ $= \frac{3E(3I)}{3} = 3EI$		$DF_{OC} = \frac{3EI}{7EI}$ $DF_{OC} = 0.428$	
		OD	$K_{OD} = 0$		DF _{OD} =0	
			stribution Method.	30		
d)			20 Kh A 20 Kh A 3m Fi	$\frac{1}{m}$ B $\frac{1}{m}$		
Ans:	1.		imply supported BM $\frac{2^2}{2} = \frac{20x3^2}{8} = 22.5kN$	I for span AB		
			Fixed end Moment for $\frac{20x3^2}{12} = -15kN.m$	or span AB		

$\mathbf{D} \mathbf{A} = \mathbf{D} \mathbf{D} \mathbf{W} \mathbf{U} \mathbf{A} = \mathbf{A} \mathbf{W} \mathbf{A} \mathbf{A}$	
RA = RB = W1/2 = 20X3/2 = 30KN	
2)Find slope &deflection	
$EI d^2 y / dx^2 = M$ -Differential equation	
Taking moment at section X-X, and at distance x from A	
$EI d^2 y / dx^2 = 30x - 20x^2 / 2$	
$EI d^2 y / dx^2 = 30x + 10x^2$	
Integrating w. r to x	
EI dy /dx = $30 x^2/2 + C1 = -10x^3/3$	
EI dy/dx= $15x^2$ +C1 $\begin{vmatrix} -3.33x^3 \end{vmatrix}$ slope equation	01 M
Again integrating w.r to x	
EIy= $15x^{3}/3+C1x + C2 - 3.33x^{4}/4$	
EIy= $5x^3$ +C1x + C2 -0.832 x ⁴ Deflection equation	01 M
To find C2	
Boundary condition	
x=0 Y=0 put in Deflection Equations .	
E1(0) = 5(0) + c1(0) + c2 - 0.83(0)4	
C2=0 To find C1	
To find C1 Boundary condition	
At $x=3$ $y=0$ put in deflection equation	
$0=05(3)3+c1x3+0-0.832*3^4$	
3C1=67.608	
C1=-22.53	01 M
Put this value in Deflection equation	
$EIy = 5x^{3} - 22.53 \times -0.832x^{4}$	
To find Maximum Deflection	
Put $x=L/2 = 3/2 = 1.5$ m	
$EIY = 5(1.5)^{3} - 22.53 \times 1.5 - 0.832(1.5)^{4}$	
EIY= -21.132	01 M
3 2	
$E=200 \text{ GPA} = 200 \times 10^3 = \text{N/mm}^2$	
$E = 200 \times 10^3 = 2 \times 10^8 \text{ KN/m}^2$ (note:- W is in KN/m and L is in m.)	

	$I=2x10^8 = mm^4$	
	$I=2x10^{-4}m^{4}$	
	Y= -21.132/EI	
	$= 21.132/(200 \times 10^{-4} \times 200 \times 10^{8})$	
	Y max = 0.0005288 m=0.000528m	01 M
	Y max=0.528 mm (- ve indicate downward deflection)	UI IVI
b)	Calculate Maximum Slope & Maximum Deflection Of A Cantilever Beam As	
	Shown In Fig	
	A Jammann B 2m 1	
Ans:	Given :-	
	$E=100 \text{ GPA}=100 \times 10^3 \text{ N/mm}^2$	
	Width =100 mm ,depth=200mm	
	$I = bd^{3}/12 = 100*(200)^{3}/12 = 66.66X10^{6}$	
	Maximum deflection =Deflection due to UDL+ deflection due to point load YB=yB1+yB2	
	Yb1=-WL ⁴ / 8EI = $(-2X(2000)^4)$ / (8X100 * 10 ³ * 66.66X10 ⁶)	1M
	=-0.600 mm	
	$Yb2 = -WL^{4}/3EI = (-5000X(2000)^{3})/(3*100*66.66*10^{6}*10^{3})$	1M
	= -2.01 mm YB = YB1+YB2 = -(0.6+2.01) = -2.6 mm	1 M
	$a_{B} = a_{B} + a_{B} = -(0.6+2.01) = -2.6 \text{ mm}$ maximum slope = slope due to UDL + slope due to point load $\theta = -\theta + 1 + \theta + 2$	
	$\theta 1 = W L^3 / 6 EI = (2*2000^3 / 6*100*10^3 * 66.66X10^6)$	
	=0.0004 Radian	1M
	$\theta 2 = W L^2 / 2 EI = (5000 * 2000^2 / 2 * 100 X 10^3 * 66.66 * 10^6)$	
	=0.0015 Radian	1M
	$\theta = 0.0004 + 0.0015 = 0.0019$ Radian	
	deflection Maximum =2.6mm (-ve indicates the downward deflection)	
	Maximum slope =0.0019 Radian	1 M

Q.6.	Attempt Any Two of the fo	ollowing		12 M
a)	calculate support moment	t for a spam as shown in	fig no.11 Use moment	
	distribution method			
	A John CP	m B 2m C A Am		
	7	1		
Ans:		BC as a fixed beam and find	fixed end moment	
	M AB = $-WL^2/12 = -10(5)^2/$			
	M BA = $WL^2/12 = 10(5)^2/12$	2= 20.83 KN-m		
	M BC = -Wab ² /L ² = 50(2) (2)	$\frac{1}{4^{2}} = -25$ KN-m		01 M
	$M CB = + Wab^2 / L^2 = 5*2*2^2$	$2/4^2 = 25 \text{ KN-m}$		VI IVI
	To find the Stiffness factor a	at joint B		
	K BA = 3EI/L AB = 3E(2I)/5	-		
	K BC = 3EI/LBC = 3EI/4 = 0	.75 EI		
	∑K=1.2EI+0.75EI= 1.95 EI			
	Distribution Factor			01 M
	DFBA=KBA/∑K =1.2EI/1.95	EI= 0.62		UI IVI
	DFBC = KBC/ Σ K =0.75EI/1.9	95EI = 0.38		
	Point	A B	C	
	Member	AB BA	BC CB	
	Distribution factor	0.62	0.38	
	Fixed end moment	-20.83 20.83	-25 25	
	Release support A& C	20.85	-25	
	Release support A& C and then carry over from	+20.83	-2.3	
	A to B from C to B	+20.03		
			-12.5	02 M
		10.415	-12.5	
	Initial moment	0	-37.5 0	
		31.245	0	
	Ist distribution C balance	+3.87	+2.37	
	B			
	Final moment	+35.12	-35.12	
	Assume span AB and BC to b	e simply supported beam and fi	ind free BM.	
	_	0KN/m		
	M max =w1 ² /8 =10*(5) ² /8			
	$\begin{bmatrix} 10 & 10 & -10 & (3) & 78 \\ 10 & 10 & -10 & (3) & 78 \end{bmatrix}$	-51.25 1813.111		<u> </u>

			1
Fcd=1.41 KN (C)			
∑FX=0			
$\frac{\sum FX = 0}{0 = \text{Fcd } \cos \theta - \text{Fcb}}$			
$Fcb = Fcd \cos \theta$			
$rcb = rcd \cos \theta$ = 1.41 cos 45			
			02 M
=0.997			02 M
= 1KN(T)			
Consider section (2)-(2) cut at C	D BC FD		
Consider right hand side			
Consider right hand side			
Fod Fredsiria			
Fed D F			
	\sum fy=0		
	$\overline{0}$ =-1-Fcd sin θ +Fbd		02 M
	Fbd=1+Fcd sin 45		
	Fbd=2(T)		
∑fx=o			
$\stackrel{-}{0}$ = - Fcd cos θ +Fed			
$1.41 \cos 45 = Fed$			
Fed $=1.41 \cos 45$			
Fed = 1 kN(c)			
Consider section (3)-(3	B), take moment at @ A		
0=Fbe cos 45 +Fed *2 +			
10 = 1.41 Fbe			
F be $=7.092$ (-ve indic	ate compressive)		01 M
$\sum fx=0$	1		
$0 = -fab+feb \cos 45 + fed$			
Fab =7.092X COS 45 +	1		
Fab = 6.014 (T)			01 M
MEMBER	FORCE (KN)	NATURE	
	6.014	TENSION	
BC	1	TENSION	
CD	1.41	COMPRESSION	
DE	12	COMPRESSION	
	7.092	TENSION COMPRESSION	
DĽ	1.074		

Fcd= 55.91 KN (T)			
Fcb = -90.143 KN (C)			0
Consider Joint B			
90.143 90.143 FbJ	EN 90.143 (05 563)		(
9 01 43 5in 36.31	90-14351 m 56-31		
Σ FY =0 0= Fbd -100+90.143 sin 4 Fbd= 50 KN	56.31+90.143sin56.31	NATUDE	
∑FY =0 0= Fbd -100+90.143 sin 5 Fbd= 50 KN MEMBER	56.31+90.143sin56.31 FORCE in KN	NATURE	
$\sum FY = 0$ 0= Fbd -100+90.143 sin 3 Fbd= 50 KN MEMBER AB	56.31+90.143sin56.31 FORCE in KN 90.143	COMPRESSION	
$\sum FY = 0$ 0= Fbd -100+90.143 sin 3 Fbd= 50 KN MEMBER AB BC	56.31+90.143sin56.31 FORCE in KN 90.143 90.143	COMPRESSION COMPRESSION	
$\sum FY = 0$ 0= Fbd -100+90.143 sin 3 Fbd= 50 KN MEMBER AB	56.31+90.143sin56.31 FORCE in KN 90.143	COMPRESSION	