

## WINTER - 19 EXAMINATION

Subject Name: Thermal Engineering Model Answer

Subject Code:

22337

# Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| <b>).1</b> . | Attempt any <u>FIVE</u> of the following:                                                                                                                                                                  | 10<br>Marks |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| a)           | Define-<br>(i) Intensive property<br>(ii) Extensive property. Give one example of each.                                                                                                                    |             |
| Sol.         | ensive Property:                                                                                                                                                                                           | 01 mark     |
|              | t is defined as the property which is does not depend upon the mass of the system.<br>Or                                                                                                                   |             |
|              | Intensive properties are those whose values are independent of the mass possessed by the system.                                                                                                           |             |
|              | Ex. Pressure, Temperature, Density, Specific volume, specific Enthalpy, etc.                                                                                                                               |             |
|              | tensive Property:                                                                                                                                                                                          | 01          |
|              | It is defined as the property which depends upon the mass of the system.                                                                                                                                   | 01 marl     |
|              | Or                                                                                                                                                                                                         |             |
|              | Extensive properties are those whose values are dependent of the mass possessed by the system, such as volume, enthalpy, and entropy.                                                                      |             |
|              | Extensive properties are denoted by uppercase letters, such as volume (V), enthalpy (H) and entropy (S).                                                                                                   |             |
|              | Per unit mass of extensive properties are called specific properties and denoted by lowercase letters. For example, specific volume $v = V/m$ , specific enthalpy $h = H/m$ and specific entropy $s = S/m$ |             |
|              |                                                                                                                                                                                                            | 1           |



| Sol.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 501        | and the pathow of the second stands and the second s |                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 mark                                  |
|            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | each                                     |
|            | τ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
|            | P V=C T N=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|            | $\gamma \rightarrow$ 5 $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|            | Figure: P-V and T-S representation of Isochoric process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| <b>c</b> ) | A sample of 35 Kg of dry steam contains 0.7 Kg of water is in suspension,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |
| ,          | find its dryness fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| Sol.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|            | Mass of dry steam=35 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 mark                                  |
|            | Mass water suspension=0.7 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VI IIIAI N                               |
|            | Weight of wet steam=35+0.7=35.7 kg<br>So,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formula                                  |
|            | Dryness fraction X=Actual mass of dry steam/ weight of wet steam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 mark                                  |
|            | = 35 / (35 + 0.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
|            | =0.098039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |
| <b>d</b> ) | Suggest the different methods to control the speed of rotation of steam turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|            | constant at all varying loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
| Sol.       | Following are the different methods to control the speed of rotation of steam turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
|            | constant at all varying loads;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/ mont                                  |
|            | a) Throttle governing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> / <sub>2</sub> mark<br>each |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cach                                     |
|            | b) Nozzle control governing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
|            | c) By pass governing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|            | d) Combine throttle and nozzle control governing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
|            | e) Combine throttle and by pass governing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |
| e)         | Explain the functions of steam nozzle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| Sol.       | The steam nozzle is a passage of varying cross section by means of which the thermal energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 marks                                  |
|            | of <b>steam</b> is converted into kinetic energy. When <b>steam</b> f lows through a <b>nozzles</b> expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| <b>f</b> ) | process take place.(Only function is expected and not in detail working)<br>Write the elements of forced draught cooling tower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| Sol.       | Following are the elements of forced draught cooling tower;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 501        | a) Forced draught fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> /2 mark                     |
|            | b) Eliminator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | each                                     |
|            | c) Spray header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
|            | d) Spray nozzle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |



| e) Circulating pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Define-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (i) Thermal conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (ii) Thermal resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thermal conductivity of material is define as ,"the amount of energy conduct through a body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| of unit area and unit thickness in unit time when the difference in temperature between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| face causing heat flow is unit temperature difference."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\therefore Q = -K.A.\frac{dt}{dx} \therefore Q = -K.A.\frac{dt}{dx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Q dt_{V} Q dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $K = \frac{1}{A \cdot dx} = \frac{1}{A \cdot dx} = \frac{1}{A \cdot dx}$ K=Thermal conductivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| substance resist heat flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Attempt any <u>THREE</u> of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Explain the concept of flow work associated with flow processes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A control volume may involve one of more forms of work at the same time work is<br>needed to push the fluid into or out of the boundaries of a control volume if mass flow is<br>involved. This work is called the flow work (flow energy). Flow work is necessary for<br>maintaining a continuous flow through a control volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $q_{2}(q)$<br>$p_{1}v_{1}v_{1}$<br>$h_{1}$<br>$h_{1}$<br>$q_{1}$<br>$h_{2}$<br>$h_{3}$<br>$h_{1}$<br>$h_{2}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$<br>$h_{3}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= \lfloor n 2^{-1} + 2^{-1} \rfloor + 1^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Q - W = V_2 - V_1^2 + (a - Z_1) - C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 + 12 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| + (lie-hi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (i) Thermal conductivity<br>(ii) Thermal resistance<br>Thermal conductivity of material is define as ,"the amount of energy conduct through a body<br>of unit area and unit thickness in unit time when the difference in temperature between the<br>face causing heat flow is unit temperature difference."<br>$\therefore Q = -K \cdot A \cdot \frac{dt}{dx} \therefore Q = -K \cdot A \cdot \frac{dt}{dx}$ $\therefore K = \frac{Q}{A} \cdot \frac{dt}{dx} K = \frac{Q}{A} \cdot \frac{dt}{dx}$ Thermal conductivity.<br>Thermal resistance is a property of a heat and measured by a temperature difference of a<br>substance resist heat flow.<br>Attempt any <u>THREE</u> of the following:<br>Explain the concept of flow work associated with flow processes.<br>A control volume may involve one or more forms of work at the same time Work is<br>needed to push the fluid into or out of the boundaries of a control volume if mass flow is<br>involved. This work is called the flow work (flow energy). Flow work is necessary for<br>maintaining a continuous flow through a control volume.<br>$A \cdot 2 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ |







| $T = \frac{1}{2} \frac{2}{2} \frac{pt}{c}$ $T = \frac{1}{2} \frac{2}{c} \frac{pt}{c}$ $T = \frac{1}{1} \frac{pt}{c}$ $T = \frac{pt}{c}$ | 02 = final<br>endition<br>superheated.<br>ers 1-2 =<br>itial wet<br>condition of steam | or<br>harts         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|
| h p c                                                                                                                                                                                                                                                                                                                                                                                 | condition of steam                                                                     |                     |
| 2-2-                                                                                                                                                                                                                                                                                                                                                                                  | CHP Anto                                                                               | 1 mark<br>or labels |
| <ul> <li>d) Explain the working of Lamont boiler with neat</li> </ul>                                                                                                                                                                                                                                                                                                                 |                                                                                        |                     |







| (   | Q.3. | Attempt any <u>THREE</u> of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12<br>Marks          |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|     | a)   | Write the criteria for selection of nozzle for given situation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| Sol |      | <ul> <li>Following are the situation for selection criteria of nozzle.</li> <li>Situation first: <ul> <li>It is used when the back pressure is equal or more than the critical pressure ratio. It is also used</li> <li>for non – compressible fluids.</li> <li>Convergent nozzle: Cross sectional area is decreases continuously from entrance to exit.</li> </ul> </li> <li>Situation second: <ul> <li>When back pressure is less than critical pressure divergent nozzle is used.</li> <li>Divergent nozzle: Cross sectional area is increases continuously from entrance to exit.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                 | 02 marks             |
|     |      | Situation third:<br>When back pressure is less than critical pressure convergent divergent nozzle is used.<br>Convergent and Divergent nozzle: Cross sectional area of nozzle first continuously decreases<br>and then increases from entrance to exit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 marks             |
|     | b)   | Explain the need of compounding. Suggest the method of compounding for reaction steam turbine with justification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| Sol |      | <ul> <li>Need of compounding:</li> <li>The compounding of steam turbine means the methods to reduce the speed of rotor shaft.</li> <li>To increase the thermal efficiency in power plants, high pressure and high temp. steam is used.</li> <li>If the entire pressure drop (from boiler pressure to condenser pressure)is carried out one stage only.</li> <li>Then the velocity of steam entering into the turbine will be extremely high.</li> <li>This will make the rotor to run at a very high speed, which is not useful from practical point of view.</li> <li>Hence it becomes necessary to reduce the rotor speed of turbine by gearing or no. of stages.</li> <li>Following are the methods of compounding: <ul> <li>i. Velocity compounding</li> <li>ii. Pressure compounding</li> <li>iii. Pressure Velocity compounding</li> </ul> </li> </ul> | 02 marks<br>02 marks |
|     | c)   | A nitrogen gas is expanded from 8 bar to 1 bar at 47°C according to law PV<br>= C. Plot the process on P-V and T-S diagram and state the formulas to<br>be used to find out work done, Amount of heat supplied and change in<br>entropy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |







| <b>d</b> ) | Determine the amount of heat supplied to 2kg of water at 25°C to convert<br>it into steam at 5 bar and 0.9 dry. |          |
|------------|-----------------------------------------------------------------------------------------------------------------|----------|
| Sol.       | Note: Value of C <sub>p</sub> of water is not given assuming it standard value.                                 |          |
|            | Q.3.d. given tata                                                                                               |          |
|            | mass of writer mue = 2kg.                                                                                       |          |
|            | Twater = 25°C                                                                                                   |          |
|            | dynamess fraction ar = 0.9                                                                                      |          |
|            | Heat in writer = m. G. OT.                                                                                      |          |
|            | Heat. In where = $m \cdot cp \cdot 21$<br>= 2 × 4.187 × 25                                                      |          |
|            | = 2×4.187×25<br>= 209.35 kJ(1)                                                                                  | 01 marks |
|            |                                                                                                                 |          |
|            | From steam table by Rhigh at 5 bar,                                                                             |          |
|            | hf = 640.1  ks/kg<br>hfg = 2107.4  ks/kg.                                                                       |          |
|            | nfg= 210/14 +3/19g.                                                                                             |          |
|            | Enthalpy of steam (H) stam = hf ta hfg                                                                          |          |
|            | per kg. = 640.1 +0.9(2107.4)                                                                                    |          |
|            | =253676 60/kg.                                                                                                  | 01 marks |
|            | for 2 kg steam = 2×21536.71                                                                                     |          |
|            | $= 5073 \cdot 52 + j$                                                                                           |          |
|            | : Amount of heart needed to convert water<br>into steam at (9) day.                                             |          |
|            | = 5073.53 - 209.35                                                                                              |          |
|            | = 4864.17 KJ                                                                                                    |          |
|            |                                                                                                                 |          |



| (  | Q.4.       | Attempt any <u>THREE</u> of the following:                                                                                                                                  | 12 Marks |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    | a)         | Explain Dalton's law of partial pressure. How it is applicable to condenser?                                                                                                |          |
| So | l.         | It states that' "The pressure exerted by mixture of air and steam is equal to sum of partial pressures, which each constitute would exert, if it occupies the same volume". | 02 marks |
|    |            | Air<br>+ Steam = Air + Steam                                                                                                                                                | 02       |
|    |            | Figure: Dalton's law of partial pressure                                                                                                                                    | 02 marks |
|    |            | In condenser total pressure is the sum of partial pressure of steam and air.                                                                                                |          |
|    |            | Mathematically,                                                                                                                                                             |          |
|    |            | $P_c = P_a + P_s$                                                                                                                                                           |          |
|    |            | Where;                                                                                                                                                                      |          |
|    |            | $P_c$ = Pressure in condenser containing mixture of air and steam                                                                                                           |          |
|    |            | $P_a = Partial pressure of air$                                                                                                                                             |          |
|    |            | $P_s = Partial pressure of steam$                                                                                                                                           |          |
|    | <b>b</b> ) | A system is composed of a gas contained in a cylinder fitted with a piston.                                                                                                 |          |
|    |            | The gas expands from the state 1 for which internal energy $U 1 = 75$ KJ to                                                                                                 |          |
|    |            | state 2 for which U2 = -25 KJ. During the expansion the gas does 60 KJ of                                                                                                   |          |
|    |            | work on the surrounding. Determine the heat transferred to or from the                                                                                                      |          |
|    |            | system during the process.                                                                                                                                                  |          |
| L  |            |                                                                                                                                                                             |          |







Г

|     | c) | 3 m <sup>3</sup> of gas of 30°C and 6 bar pressure is expanded isothermally to 1 bar. Find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|     |    | work done, change in internal energy and heat transferred during the process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Sol | l. | Q:4. c)<br>$F_{1}$<br>$F_{1}$<br>$F_{1}$<br>$F_{1}$<br>$F_{1}$<br>$F_{2}$<br>$F_{1}$<br>$F_{1}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>$F_{2}$<br>F | 01 mark<br>01 mark |
|     |    | $= \frac{6 \times 3}{1}$ $\frac{\sqrt{2} = 18 \text{ m}^3}{1}$ $\frac{\sqrt{2} = 18 \text{ m}^3}{1}$ $\frac{\sqrt{2} = 18 \text{ m}^3}{1}$ $= 6 \times 10^5 \times 3 \log e \left(\frac{6}{1}\right)$ $= 32.25 \times 10^5 \text{ k·J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 mark            |



|            | ov = internal energy                                                                                                                                                                        | 01 mark  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|            | 0 0                                                                                                                                                                                         |          |
|            | SU = internal energy<br>SU = ziero as constant temp. proces.                                                                                                                                |          |
|            | : Heat transfer Q = U+W                                                                                                                                                                     |          |
|            | Q = Nº                                                                                                                                                                                      |          |
|            | Q= N2<br>Q= 32:25 ×105 KJ                                                                                                                                                                   |          |
|            |                                                                                                                                                                                             |          |
| <b>d</b> ) | Explain construction and working of shell and tube type heat exchanger. A ice plant producing 2000 Kg ice per day required the condenser. Suggest the type of condenser with justification. |          |
| Sol.       | Shell fluid out                                                                                                                                                                             |          |
|            |                                                                                                                                                                                             |          |
|            | Baffle Header                                                                                                                                                                               | 0.0      |
|            |                                                                                                                                                                                             | 02 marks |
|            |                                                                                                                                                                                             |          |
|            |                                                                                                                                                                                             |          |
|            |                                                                                                                                                                                             |          |
|            |                                                                                                                                                                                             |          |
|            | L≢⊥ ↓<br>Tube fluid out                                                                                                                                                                     |          |
|            | Shell fluid in                                                                                                                                                                              |          |
|            | Shell and tube heat exchanger consist of a bundle of round tubes placed inside the cylindrical                                                                                              |          |
|            | shell. Tube axis parallel to that of shell. One fluid inside the tubes while the other over the                                                                                             |          |
|            | tubes.                                                                                                                                                                                      |          |
|            | The main components of this type of heat exchanger are:                                                                                                                                     |          |
|            | i. Shell                                                                                                                                                                                    |          |
|            | ii. Tube bundle                                                                                                                                                                             | 01       |
|            | iii. Front and rear headers of shell                                                                                                                                                        | 01 mark  |
|            | iv. baffles                                                                                                                                                                                 |          |
|            | The baffles provide the support to tubes and also deflect the fluid flow approximately normal to tubes. This increases the turbulenes of shall side fluid and improves heat transfer. The   |          |
|            | to tubes. This increase the turbulence of shell side fluid and improves heat transfer. The various types of baffles are existing and their type, spacing, shape, will depend on the flow    |          |
|            | rate, shell side pressure drop, required tube support, flow vibrations etc.                                                                                                                 |          |
|            | The fluid combination may be :                                                                                                                                                              |          |
|            | 1 Liquid to liquid                                                                                                                                                                          |          |
|            | 2 Liquid to gas                                                                                                                                                                             |          |
|            | 3 Gas to gas                                                                                                                                                                                |          |
|            |                                                                                                                                                                                             | I        |



|      | A ice plant producing 2000 Kg ice per day required the evaporative condenser is used.<br>Justification:                                                                                                                                                                                                                                  | 01 mark  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | The evaporative condenser is essentially a combination of a water-cooled condenser and an air-cooled condenser, utilizing the principle of heat rejection by the evaporation of water into an air stream traveling across the condensing coil.                                                                                           |          |
| Q.5. | Attempt any <u>TWO</u> of the following:                                                                                                                                                                                                                                                                                                 | 12 Marks |
| a)   | <ul> <li>(i) Suggest the methods to improve the performance of steam turbine.</li> <li>Explain anyone in brief.</li> <li>(ii) Identity the different losses occurred in steam turbine.</li> </ul>                                                                                                                                        |          |
| Sol. | i) Methods to improve turbine efficiency                                                                                                                                                                                                                                                                                                 |          |
|      | 1) Reheating of Steam                                                                                                                                                                                                                                                                                                                    |          |
|      | 2) Regenerative feed heating                                                                                                                                                                                                                                                                                                             | 01 mark  |
|      | 3) Binary Vapour Plant                                                                                                                                                                                                                                                                                                                   | 01 marx  |
|      | Regenerative feed heating System                                                                                                                                                                                                                                                                                                         |          |
|      | The process of draining steam from turbine at certain points during it's expansion and using this steam for heating feed water supplied to boiler is known as regenerative feed heating. It increases the thermal efficiency of plant, The temperature stresses in the boiler are reduced due to decreased range of working temperature. | 01 mark  |
|      | Boiler<br>Feed<br>Feed<br>Hot well                                                                                                                                                                                                                                                                                                       | 01 mark  |
|      | ii) Losses occurred in steam turbine                                                                                                                                                                                                                                                                                                     |          |
|      | <b>Residual velocity loss</b> - The steam leaves the turbine with a certain absolute velocity which results in loss of KE. This loss is about 10 to 12%. It can be reduced by multistaging.                                                                                                                                              |          |
|      |                                                                                                                                                                                                                                                                                                                                          | 1        |



|   | steam pressure at entry to turbine is less than the boiler pressure.                                                                                                                                                                                                                                                   |                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|   | <b>Losses due to friction in nozzle-</b> Friction occurs both in nozzle and turbine blades. In nozzle, nozzle efficiency is considered, whereas in turbines, blade velocity coefficient is taken into account. This loss is about 10%                                                                                  | 03 marks         |
|   | <b>Loss due to leakage</b> -The leakage occurs between the shaft, bearings and stationary diaphragms carrying the nozzles in case of impulse turbines. In reaction turbine the leakage occurs at blade tips. This is about 1-2%.                                                                                       | (Any 3<br>Point) |
|   | Loss due to mechanical friction-This occurs in bearings and may be reduced by lubrication                                                                                                                                                                                                                              |                  |
|   | <b>Loss due to wetness of steam</b> -In multistage turbine, condensation occurs at last stage ,so in dragging water particles with steam, some KE of stem is lost                                                                                                                                                      |                  |
|   | <b>Radiation loss-</b> As turbines are heavily insulated to reduce the heat loss to surroundings by radiation and so these losses are negligible                                                                                                                                                                       |                  |
| ł | An exterior wall of house consists 10.6 cm layer of common brick. It is<br>followed by 3.8 cm layer of gypsum plaster and 5.83 cm of rock wool<br>insulation. Estimate the amount of heat transferred through structure it.<br>Thermal conductivity of brick = 0.7 W/mKThermal conductivity of Plaster = 0.48 W/mK<br> |                  |
|   |                                                                                                                                                                                                                                                                                                                        |                  |
| S | Note:       1. Temperature gradient not mentioned.         (If student assume a data and solve the numerical with correct procedure then gives appropriate marks)                                                                                                                                                      |                  |
|   |                                                                                                                                                                                                                                                                                                                        |                  |







| <u> </u>   |                                                                                                                                                                                                               |          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|            | -> Given:                                                                                                                                                                                                     |          |
|            | Steam is 15% wet                                                                                                                                                                                              |          |
|            | i degress fraction = 85%.                                                                                                                                                                                     |          |
|            |                                                                                                                                                                                                               |          |
|            | Pi=7 bar                                                                                                                                                                                                      |          |
|            | $P_2 = 1.2$ barz                                                                                                                                                                                              |          |
|            | PV1.3 = C Polytopic Process                                                                                                                                                                                   |          |
|            | is guality of steam at the end of expansion                                                                                                                                                                   | 03 marks |
|            | At initial condition. concidering unit mass                                                                                                                                                                   |          |
|            | At 7 bas from steam table.                                                                                                                                                                                    |          |
|            | Vg = 0.273 1                                                                                                                                                                                                  |          |
|            | $V_1 = \lambda e V q$                                                                                                                                                                                         |          |
|            | = 0.85 × 0.273 .                                                                                                                                                                                              |          |
|            | = 0.23205 m <sup>3</sup>                                                                                                                                                                                      |          |
|            | Pivi = mRTi                                                                                                                                                                                                   |          |
|            | 7×105×0.23205 = 1×=287×J1                                                                                                                                                                                     |          |
|            |                                                                                                                                                                                                               |          |
|            | $T_1 = \frac{162435}{287}$                                                                                                                                                                                    |          |
|            | Now PY" = =                                                                                                                                                                                                   |          |
|            | $\frac{1}{12} \left( \frac{N-1}{2} \right) = \frac{N-1}{2}$                                                                                                                                                   |          |
|            | $\overline{T_1} = \left(\frac{1}{p_1}\right)^m  \therefore  \overline{T_2} = \overline{T_1} \times \left(\frac{12}{p_1}\right)  1 \cdot 3 - 1$                                                                |          |
|            | $= 565.97 \times (1.2)^{1.3}$                                                                                                                                                                                 |          |
|            |                                                                                                                                                                                                               |          |
|            | $\frac{\tau_{2}}{\tau_{1}} = \left(\frac{P_{2}}{P_{1}}\right)^{\frac{N-1}{N}} \qquad $ |          |
|            | J2 = 376.77 °K                                                                                                                                                                                                |          |
|            | at 1.2 bas T3 = 104.81 °C                                                                                                                                                                                     |          |
|            |                                                                                                                                                                                                               |          |
|            | = 377.81°K                                                                                                                                                                                                    |          |
|            | Saturated temprature is greater tan actual temp.                                                                                                                                                              |          |
|            |                                                                                                                                                                                                               |          |
|            | .: The steam is in wet condition.                                                                                                                                                                             | 03 marks |
|            | "> work dane                                                                                                                                                                                                  |          |
|            | For $PV^{1/3} = C$                                                                                                                                                                                            |          |
|            | $W = \frac{mR}{N-1} (T_1 - T_2)$                                                                                                                                                                              |          |
|            |                                                                                                                                                                                                               |          |
|            | $= \frac{01 \times 0.287}{1.3 - 1} (565.97 - 376.77)$                                                                                                                                                         |          |
|            | 1.3-1 (565.97-376.77)                                                                                                                                                                                         |          |
|            | = 0:9566 (109.2)                                                                                                                                                                                              |          |
|            | = 0.3566 (183.2)<br>W = 180.38 kJ                                                                                                                                                                             |          |
|            | VV = 180.38 KJ                                                                                                                                                                                                |          |
|            |                                                                                                                                                                                                               |          |
|            |                                                                                                                                                                                                               |          |
|            |                                                                                                                                                                                                               |          |
| Q.6.       | Attempt any <u>TWO</u> of the following:                                                                                                                                                                      | 12 Marks |
| <b>a</b> ) | A mass of 0.8 Kg of air at 1 bar and $25^{\circ}C$ is contained in a gas tight                                                                                                                                |          |
| <i>a)</i>  |                                                                                                                                                                                                               |          |
|            | frictionless piston cylinder device. The air is now compressed to a final                                                                                                                                     |          |
|            | pressure of 5 bar. During this process the heat is transferred from air such                                                                                                                                  |          |
|            | that the temperature inside the cylinder remains constant. Calculate the heat                                                                                                                                 |          |
|            | transferred and work done during process and direction of each in the                                                                                                                                         |          |
|            |                                                                                                                                                                                                               |          |
|            | process.                                                                                                                                                                                                      |          |
|            |                                                                                                                                                                                                               |          |
| 1          |                                                                                                                                                                                                               | 1        |



| For isothermal Process<br>Heat Transfer<br>$\Delta g = MRT, \lambda n \left(\frac{P_1}{P_2}\right)$<br>Congider $R = 0.287$ KJ/kg ok<br>$= 0.8 \times 0.287 \times 298 \times \lambda n \left(\frac{1}{5}\right)$                                                                                                                                                                       | narks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $P_{1} = 1 \text{ bar}, P_{2} = 5 \text{ bar}$ $T_{1} = 25^{\circ}c = 298^{\circ}k$ $Const Temp Process i.e. T_{1} = T_{2}$ $For isothermal Process$ $Heat Transfer S = MRT_{1} \ln \left(\frac{P_{1}}{P_{2}}\right) Consider P = 0.287 \text{ kJ} \log \circ k = 0.8 \times 0.287 \times 298 \times \ln \left(\frac{1}{5}\right) = 68.420 \times (-1.6094) = -110.11 \text{ kJ} 02\pi$ |       |
| $P_{1} = 1 bar, P_{2} = 5 bar T_{1} = 25°_{C} = 298°K Const Temp Process i.e. T_{1} = T_{2}$ $for isothermal Process Heat Transfer bg = MRT, ln \left(\frac{P_{1}}{P_{2}}\right)Consider P = 0.287 KJ  kg °K= 0.8 \times 0.287 \times 298 \times ln \left(\frac{1}{5}\right)= 68.420 \times (-1.6094) = -110.11 \text{ kJ} 02 \text{ m}$                                                |       |
| $T_{1} = 25^{\circ}c = 298^{\circ}k$ $Const Temp Process i.e. T_{1} = T_{2}$ $for isothermal Process$ $Heat Transfer S = MRT_{1} ln\left(\frac{P_{1}}{P_{2}}\right) Consider R = 0.287 KT   kg \circ k = 0.8 \times 0.287 \times 298 \times ln\left(\frac{1}{5}\right) = 68.420 \times (-1.6094) = -110.11 kT 02 m$                                                                     |       |
| For isothermal Process<br>Heat Transfer<br>$\Delta g = mRT_1 \lambda n \left(\frac{P_1}{P_2}\right)$<br>Consider $R = 0.287 \text{ KJ} \text{ lkg ok}$<br>$= 0.8 \times 0.287 \times 298 \times \ln\left(\frac{1}{5}\right)$<br>$= 68.420 \times (-1.6094)$<br>= -110.11  KJ<br>02 m                                                                                                    |       |
| Heat Transfer<br>bg = MRT, $\lambda n \left(\frac{P_1}{P_2}\right)$<br>Congider R=0.287 KJ  kg °K<br>= 0.8 × 0.287 × 298 × $\lambda n \left(\frac{1}{5}\right)$<br>= 68.420 × (-1.6094)<br>= -110.11 kJ                                                                                                                                                                                 | narks |
| $b_{g} = mRT, \lambda n \left(\frac{P_{1}}{P_{2}}\right)$<br>Consider $P = 0.287$ KJ lkg °K<br>$= 0.8 \times 0.287 \times 298 \times \lambda n \left(\frac{1}{5}\right)$<br>$= 68.420 \times (-1.6094)$<br>= -110.11  KJ $02  m$                                                                                                                                                        | narks |
| $\begin{array}{rcl} \text{consider} & R = 0.287 & \text{KJ}   \text{Kg} \circ \text{K} \\ &= 0.8 \times 0.287 \times 298 \times \ln\left(\frac{1}{5}\right) \\ &= 68.420 \times (-1.6094) \\ &= -110.11 \text{ KJ} \end{array} $                                                                                                                                                        | narks |
| $= 0.8 \times 0.287 \times 298 \times \ln\left(\frac{1}{5}\right)$<br>= 68.420 × (-1.6094)<br>= -110.11 KJ                                                                                                                                                                                                                                                                              | narks |
| $= 68.420 \times (-1.6094) $ 02 m<br>= -110.11 kJ                                                                                                                                                                                                                                                                                                                                       | narks |
| = -110.11  kJ                                                                                                                                                                                                                                                                                                                                                                           | narks |
|                                                                                                                                                                                                                                                                                                                                                                                         |       |
| WORK Transfer                                                                                                                                                                                                                                                                                                                                                                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                         |       |
| $\Delta w = \Delta cg$                                                                                                                                                                                                                                                                                                                                                                  |       |
| : DW = -110.11 KJ                                                                                                                                                                                                                                                                                                                                                                       |       |
| is work done is negative it mean's work is                                                                                                                                                                                                                                                                                                                                              |       |
| done on the system from surrounding                                                                                                                                                                                                                                                                                                                                                     |       |
| is Heat transfer is negative it means Heat                                                                                                                                                                                                                                                                                                                                              |       |
|                                                                                                                                                                                                                                                                                                                                                                                         | nark  |
| that mean's heart is rejected from system                                                                                                                                                                                                                                                                                                                                               | nai K |
| to Surrounding                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                                                                         |       |
| b)         For steam power plant having capacity 600 MW capacity a cooling tower is                                                                                                                                                                                                                                                                                                     |       |
| required to set up with condenser. Suggest the type of condenser and cooling                                                                                                                                                                                                                                                                                                            |       |
| tower with justification.                                                                                                                                                                                                                                                                                                                                                               |       |
| Sol.         For Steam power plant having Capacity 600 MW the requirement of condenser and cooling tower is as follow.                                                                                                                                                                                                                                                                  |       |
| 1) Condenser:- Given Capacity is medium to low capacity for this we can use <b>Jet Condenser</b>                                                                                                                                                                                                                                                                                        | arks  |
| -Which cooling water and steam are mixed to each other,                                                                                                                                                                                                                                                                                                                                 |       |
| -Mainly it requires less quantity of cooling water.                                                                                                                                                                                                                                                                                                                                     |       |
| -It is simple in construction and less costly.                                                                                                                                                                                                                                                                                                                                          |       |



|      | -Maintenance cost Is also less.                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 2) Cooling Tower :- For this Capacity we can use Force draught cooling tower                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | - Less space is required                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | -Cooling rate and efficiency of tower is high                                                                             | 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | -Temperature of water coming out from tower can be controlled.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c)   | Suggest the type of heat exchangers for following applications -                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | (i) Dairy plant (Milk Chilling Plant)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | (ii) Condenser of refrigeration system. (House hold system) Justify your answers.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sol. | Types of Heat Exchanger Used for                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 1) Dairy Plant (Milk Chilling Plant)- Plate Type Heat Exchanger                                                           | 1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Because, It is made up of aluminum alloy which provides higher rate of heat transfer.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | Due to larger surface area, It has more heat transfer as compare to other heat exchanger which is useful for dairy plant. | 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | It is lighter in weight.                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | 2) Condenser of Refrigeration System:- Counter Flow tube type heat Exchanger                                              | 1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Because, High performance due to large surface area                                                                       | 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Compact and light in weight                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | In tubes generally turbulent flow is develop which reduces scale deposition.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | Less installation and maintenance cost.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                           | <ul> <li>2) Cooling Tower :- For this Capacity we can use Force draught cooling tower         <ul> <li>Less space is required</li> <li>Cooling rate and efficiency of tower is high</li> <li>Temperature of water coming out from tower can be controlled.</li> </ul> </li> <li>c) Suggest the type of heat exchangers for following applications -         <ul> <li>(i) Dairy plant (Milk Chilling Plant)</li> <li>(ii) Condenser of refrigeration system. (House hold system) Justify your answers.</li> </ul> </li> <li>Sol. Types of Heat Exchanger Used for         <ul> <li>1) Dairy Plant (Milk Chilling Plant)- Plate Type Heat Exchanger             Because, It is made up of aluminum alloy which provides higher rate of heat transfer.             Due to larger surface area, It has more heat transfer as compare to other heat exchanger which is useful for dairy plant.             It is lighter in weight.</li>             C) Condenser of Refrigeration System:- Counter Flow tube type heat Exchanger             Because, High performance due to large surface area             Compact and light in weight             In tubes generally turbulent flow is develop which reduces scale deposition.</ul></li> </ul> |