MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Mechanical Operation

Subject code 22313

Page **1** of **19**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Mechanical Operation

Subject code 22313

Page **2** of **19**

Q No.		Answer	Marking
			scheme
	1	Attempt any FIVE of the following	10
1	a	Definition of Sphericity:	
		Sphericity(φ_s) is the ratio of surface-volume ratio for a sphere of diameter Dp	
		to the surface–volume ratio for the particle whose nominal size is Dp.	
		OR	
		It is the ratio of surface area of sphere of same volume as particle to surface	
		area of particle	
1	b	Principles by which size reduction takes place	
		1. Compression	¹∕₂ mark
		2. Impact	each
		3. Attrition	
		4.Cutting	
1	c	Definition:	
		(i) Mesh number:	
		It is the number of openings per linear inch counting from the center of any	1
		wire to a point exactly one inch distant.	
		(ii) oversize particle:	
		Particles whose size is greater than the size of the opening of the screen	1
		(screen aperture) is known as oversize particle	
1	d	Equipment used for	
		(i) sedimentation:(any one)	
		Thickener, clarifier	1

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Mechanical Operation

Subject code 22313

Page **3** of **19**

		(ii) Filteration:(any one)	
		Rotary drum filter, sand filter, plate and frame filter press, basket centrifuge	1
		etc	
1	e	Working principle of cyclone separator:	2
		A cyclone separator is essentially a settling chamber in which centrifugal force	
		is use for separating fine solid particles from gases.	
1	f	Conveyor used for	
		(i) Horizontal movement:(any one)	
		Belt conveyor, chain conveyor, screw conveyor, pneumatic conveyor	1
		(ii) Vertical movement	
		Bucket elevator	1
1	g	Diagram of turbine type agitator:	2 marks
			for any one diagram
		(a) Open (b) Bladed disk/ (c) Vertical (d) Shrouded curved	
		straight blade flat disk blade curved blade blade with diffuser ring	
2		Attempt any THREE of the following	
2	а	Open circuit grinding:	
		If the feed material is passed only once through the size reduction machine and	
		no attempt is made to return the oversize material to it for further reduction,	2
	1	the process is known as open circuit grinding	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject title: Mechanical Operation

Subject code 22313

		screen. Intermediate hammer mills give a product 25 mm to 20 mesh in	
		particle size. For fine production, the peripheral speed of hammer tips may	
		reach 112 m/s & they reduce 0.1 to 15 t/hr of the material to sizes finer than	
		200 mesh.	
3	b	Data:	
		Radius of Ball mill = $R = D/2 = 1200 / 2 = 600 \text{ mm} = 0.6 \text{ m}$	
		Radius of Ball = $d/2 = 75 / 2 = 37.5 \text{ mm} = 0.0375 \text{m}$	
		The critical speed of Ball mill is	
		$N_c = 1/2\pi \sqrt{\frac{g}{R-r}}$	
		$N_c = 1/2\pi \sqrt{\frac{9.81}{0.6 - 0.0375}} = 0.665 \text{ rps}$	2
		Operating speed of Ball mill = $N_c * 0.7$	
			2
		= 0.55 X 0.665 = 0.4655 rps = 27.93rpm	2
3	с	Magnetic drum separator:	
		Diagram:	
		Stationary magnet Magnetic material	2

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Mechanical Operation

Subject code 22313

Page **9** of **19**

	1		1
		Working: The feed (mixture of magnetic & non-magnetic materials) is admitted at the	
		top & is allowed to fall on the rotating drum. The non-magnetic material is	
		discharged in a normal manner. The magnetic material adheres to the drum &	2
		falls off underside when the drum loses the contact of the magnet assembly.	
3	d	Diagram with parts and particle entry and exit:	
		(i) Belt conveyor:	
		Solids feed (particle entry) Head end Return idlers Driving Solids Carrying idlers (particle exit)	2
		(ii) Screw Conveyor:	
		Drive Coading (particle entry) Unloading (particle exit)	2
4		Attempt any THREE of the following	12
4	a	$\frac{P}{\dot{\mathrm{m}}} = 0.3162 W_i \left[\frac{1}{\sqrt{D_{pb}}} - \frac{1}{\sqrt{D_{pa}}} \right]$	
		$\dot{m} = 150 \text{ ton/hr.}$	
		$W_i = 12.74$	
		D_{pb} = Product size =3.125 mm	

Subject title: Mechanical Operation

Subject code 22313

			Page 10 of 19
		$D_{pa} = Feed size = 50 mm$	
		Putting all the values,	
		$\frac{P}{150} = 0.3162 * 12.74 \left[\frac{1}{\sqrt{3.125}} - \frac{1}{\sqrt{50}}\right]$	2
		$\frac{P}{150} = 0.3162 * 12.74 \left[\frac{1}{0.561} - \frac{1}{0.1414}\right]$	
		$\frac{P}{150} = 1.71$	2
		Power required $P = 256.4 kW$	
4	b	Importance of screening/ screen analysis in chemical industry:	1 mark
		Screening is carried out in industry to	each for
		1. Remove fines from the feed material before sending it for size reduction.	any four
		2. Prevent the oversize material from entering into any other unit operation.	
		3. Produce a commercial grade material to meet particle size specification.	
		4. Remove fines from a finished product prior to shipping	
		5. Determination of particle size is more important in Chemical Engineering,	
		as the particle size determines the effectiveness of final product. The	
		characters of particle such as bulk density, physical stability, permeability and	
		many more are decided by its size.	
4	c	Basket centrifuge	
		Principle: A centrifuge is any rotating machine in which centrifugal force is	1
		utilized for separation of solids from liquids.	
		Working:	
		Slurry fed to the rotating basket is forced against basket sides by centrifugal	
		force. The liquid passes through the filter medium into the casing and out	
		through a discharge pipe, while the solids form a filter cake against the filter	

Subject title: Mechanical Operation Subject code 22313 **Diagram:** Wash spray Cloth covered outer drum Inner drum Cake Slurry feed Doctor blade 2 8 Slurry trough 4 **Industrial application** e (i) Fabric filter:(any two) Fabric filters are used filters to control emission of air pollutants by power 1 mark each plants, steel mills, pharmaceutical producers, food manufacturers etc (ii)Electrostatic filter:(any two) Electrostatic precipitators are used in ore dressing, for removing ash from 1 mark mined coal, recycling of plastic waste, Coal-burning electric generating each plants, primary and secondary smelters, incinerators etc 5 Attempt any TWO of the following 5 Wet scrubber: a **Construction and working** The contaminated air is drawn through a packing zone filled with suitable packing which are irrigated with cleaning liquor. The impurities come in good 4 contact with the absorbing liquor and hence a high cleaning efficiency is obtained. A mist eliminator following the packing zone removes any entrained liquid particles, leaving the exhaust air containing less than 2% of the original

Page 12 of 19

12

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject code 22313

Page 13 of 19

WINTER-19 EXAMINATION **Model Answer**

Subject title: Mechanical Operation

Subject code 22313

Page **14** of **19**

		Wet scrubber systems generally consist of the following components:	
		• Ductwork and fan system	
		• A saturation chamber (optional)	
		Scrubbing vessel	
		Entrainment separator or mist eliminator	
		Pumping (and possible recycle system)	
		Spent scrubbing liquid treatment and/or reuse system	
		• An exhaust stack	
		Working:	
		In a wet scrubber, the polluted gas stream is brought into contact with the	
		scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of	
		liquid, so as to remove the pollutants.	
5	b	Swirling and Vortexing:	
		If low viscosity liquid is stirred in an unbaffled tank by a centrally mounted	
		agitator, there is a tendency for nearly pure rotary flow pattern to be developed	
		and lighter liquid, ie air is usually drawn in to form a vortex and the degree of	3
		agitation is very much reduced. This phenomenon which takes place in an	
		unbaffled tank regardless of the type of impeller is known as vortexing.	
		Methods to avoid Vortexing :	
		There are four methods of prevention of swirling and vortex formation	
		a) Off-center mounting of the impeller.	
		b) Use of Baffles	
		c) Use of diffuser ring with turbines	3
		d) Angular entry of agitators.	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Mechanical Operation

Subject code 22313

Page **16** of **19**

		(iii) Screw Conveyor:(any two)		
		It is used for conveying		
		1. Municipal Dewatered Sludge or Bio solids		1 mark
		2. Oilfield Drill Cuttings		each
		3. Food Waste		
		4. Dewatered Grit or Screenings		
		5. Filter Press Cake		
6		Attempt any TWO of the following		12
6	a	Batch sedimentation:		
			A- clear liquid B- Original slurry C- transition zone D- settled solids	2
		Prepare slurry of uniform concentration. The particl	es begin to settle and attain	
		terminal settling velocity under hindered settling con	nditions. The heavier faster	
		settling particles settled at the bottom are indicated l	by zone D. Above zone D	
		forms another layer called zone C, which is a transition layer, the solid content		
		of which varies from that in the original pulp to that	in zone D. Above zone C	
		is zone B which has the same concentration as the o	riginal pulp. Above zone B	4
		is zone A, which is a zone of clear liquid.		
		As sedimentation continues, the depth of zone A and	d D increases, that of zone	
		C remains constant and zone B decreases. After furt	her settling, zone B and C	

Subject title: Mechanical Operation

Subject code 22313

Page **18** of **19**

		conveyed. Fan or blower is used to deliver air into the pipeline. Feeders are	
		used to introduce the material into the pipeline against the conveying gas	
		pressure. Gas/ solid disengaging device are used at the discharge end of the	
		pipeline, which separates the conveyed bulk solid from the conveying air	
		stream. The cyclone separator or bag filter units are used for this purpose. The	
		clean gas/ air coming out from these devices is fed back for conveying	
		purpose. These systems are useful for picking up solid from one point band	
		delivering them to various discharge points. They are used for free flowing	
		materials up to ¹ / ₄ inch size. But it is unsuitable for multiple pick up points on	
		account of excess air leakage.	
		(OR)	
		Pneumatic conveying is nothing but transportation of dry bulk particulates or	
		granular material through pipe line by a stream of air or gas.	
		This conveying system consist of the source of air/gas feeder with hopper,	
		receiving hopper fitted with a means of separating the conveyed product from	
		the conveying air	
		In this system, air or suitable gas is blown along a pipeline with help of fan or	
		blower, which carries the bulk solid to be conveyed, fed from feeder that is	
		finally discharged into a receiving hopper. The fan or blower is used to deliver	
		air into pipeline. Feeders are used to introduce the material into the pipe line	
		against the conveying gas pressure	
6	c	Mixer/blender used for mixing dry powder:	
		Ribbon blender	1
		Ribbon blender:	
	1		1

