

WINTER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry

Subject code 22315

Page **1** of **19**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION Model Answer

Subject Title: Industrial Stoichiometry

Subject code 22315

Page **2** of **19**

Q	Sub	Answer	marks
no	q.no.		
	1	Any 5	10
1	a	Given: Pressure = 800 mm Hg	
		760 mm Hg= 101.325 kPa	1
		800 mm hg = 106.66 kPa	
		760 mm Hg= 14.7 psi	
		800 mm hg = 15.47 psi	1
1	b	Raoult'slaw: It states that at a given temperature, the equilibrium partial	
		pressure of a component of a solution in the vapour is equal to the product	1
		of the mole fraction of the component in the liquid phase and the vapour	
		pressure of the pure component.	
		$\mathbf{p}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}}.\mathbf{x}_{\mathbf{A}}$	1
		Ideal gas equation is	
		PV=nRT	
		Where P= pressure	
		V=Volume	
		n= number of moles	
		R= Universal gas constant	
		T= absolute temperature	

Subject Title: I	t Title: Industrial Stoichiometry Subject code 22315		Page 3 of 19
1 0	с	→ Water evaporated X kg/hr	2
		Feed F Kg/hr	
		X ₁ % solid Evaporator	
		Thick liquor Y kg/hr	
		X ₂ % solid	
		Block diagram of evaporation	
1 (d	Stoichiometric coefficient	
		CO = 1	1
		$H_2 = 2$	
		$CH_3OH = 1$	
		Weight ratio of CO to $H_2 = 28/4 = 7$	1
1 6	e	Net Calorific value (NCV): It is the calorific value of the fuel when the	2
		water in the combustion products is present in vapour form .	
1 1	f	Sensible Heat: Sensible heat is the heat that must be transferred to raise or	1
		lower the temperature of a substance or mixture of substance.	
		Latent Heat: It is the heat required to change the phase of a substance at	1
		constant temperature and pressure.	
1 8	g	Force : A push or a pull is called force. It is the product of force and	1
		acceleration	
		F=M*a	
		SI unit of force is Newton.	1
2		Any 3	12

Subject Title: Indust	rial Stoichiometry	Subject code	22315	Page 6 of 19
	of the process exit stream is expected. - The composition and properties of the p that is bypassed.			
2 c	Basis – 10kmol SO ₂ 100 kmol air Reaction $SO_2 + \frac{1}{2}O_2 = SO_3$ Air fed = 100kmol O_2 in air = 100 × (0.21) = 21 kmol Theoretical requirement of O ₂ 1 Kmol SO ₂ = 0.5 kmol O ₂			1
	$= \frac{0.5}{1} \times 10$ $= 5 \text{ kmol}$			1

ct Title: Industrial Stoichiometry Subject code 22315		Page 7 of 19	
	\therefore % excess of O ₂ used	1	
	$=\frac{O_2 \text{ in supplied} - O_2 \text{ theo read}}{O_2 \text{ theo read}}$		
	$=\frac{21-5}{5}\times 100$		
	= 320	1	
2 d	∴ % excess air used = 320% Basis : 1 mol of benzoic acid crystal		
	1. $C(s) + O_2(g)> CO_2(g)$ $\Delta H_1 = -393.51 \text{ KJ/mol}$		
	2. H ₂ (g) +1/2 O ₂ (g)> H ₂ O(l) Δ H ₁ = - 285.83 KJ/mol		
	$3.C_7 H_6O_2(c) + 7.5 O_2(g)> 7CO_2(g) + 3 H_2O(l)$	1	
	$\Delta H^0 c = -3226.25 \text{ KJ/mol}$		
	4. $7C(s) + 3 H_2(g) + O_2(g)> C7 H_6O_2(g)$		
	$\Delta H^0 f = ?$ $\Delta H^0 f$ = Standard heat of formation of benzoic acid crystal		
	Reaction(4) = 7 x Reaction (1) + 3x Reaction (2) – Reaction (3)	1	
	$\Delta H^0 f = 7 \times \Delta H_1 + 3 \times \Delta H_2 - \Delta H^0 c$		
	= 7 x (-393.51) +3 x (-285.83) – (-3226.25)	1	
	= (-2754.57) + (-857.49) - (-3226.25)		
	= -385.11 KJ/mol 3612.06	1	
	$\Delta H^0 f = -385.11 \text{ KJ/mol} \text{ ans.}$		
3	Any 3	12	
3 a	Basis: 100 kmol air	1	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title:	pject Title: Industrial Stoichiometry		S	ubject code	22315	Page 8 of 19		
		Vol% = Mol%						
		Avg. mol.wt of air	$= M_1 X_1 + M_2 X_2$	X_2			1	
			= 32 * 0.21 +	28 * 0.79				
			= 28.84				2	
3	b	Steps involved in s	solving materi	al balance witho	ut chemical	reactions:	4	
		1.Assume suitable	basis of calcula	ation as given in pr	oblem.			
		2. Adopt weight un	its in case of p	roblem of process	without cher	mical		
		reaction.						
		3. Draw block diag	ram of process					
		4. Show input and	output streams					
	5. Write overall material balance							
	6. Write individual material balance							
		7. Solve above two algebraic equations8. Get values of two unknown quantities.						
	9.Write balances as follows:							
			feed	product	Co	mponent		
					ren	noved		
		Unchanging						
		component						
		Outgoing						
		component						
3	c	Basis: 100 kmol/h	r acetaldehyde	e charged to reacto	or			
		Reaction :						
		$CH_3CHO + \frac{1}{2}O_2$	→ CH ₃ (СООН			1	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: I	ndustrial Stoichiometry	Subject code	22315	Page 9 of 19
	Let X be the kmol of product obtained per hour Acetic acid formed = $0.5926 \text{ X} \text{ kmol/hr}$ Acetaldehyde unreacted = $0.1481 \text{ X} \text{ kmol hr}$ From reaction , 1 kmol CH ₃ CHO = 1 kmol CH ₃ COOH Acetaldehyde reacted to produce acetic acid = $0.5926 \text{ X} \text{ x} (1/1) = 0.5926 \text{ X}$			1
	Material balance of CH ₃ CHO CH ₃ CHO fed to reactor = CH ₃ CHO reacted+CH $100 = 0.5926 \text{ X} + 0.1481 \text{ X}$	I ₃ CHO unreacted	1	1
	X = 135 kmol /hr Acetaldehyde reacted = 0.5926 (135) = 80 kmo % conversion of CH ₃ CHO = (80/100) x 100			1
3 (Basis: 1 mol of Na ₂ CO ₃ $C_2H_5OH(g) + \dots \rightarrow CH_3CHO(g) + H$ $\Delta H^o_R = Standard heat of reaction$ $= [\Sigma \Delta H^o_c] reactant - [\Sigma \Delta H^o_c] product$ = [1 x (-1410.09)] - [1 x (-1192.65) + 1 x (-28)]	t		1 1

Subject	Title	: Indus	strial Stoichiometry Subject code 22315	Page 10 of 19
			= -1410.09 + 1478.48	2
			= 68.39 KJ	
	4		Any 3	12
	4	a	Force = 20 kgf	
	Diameter of piston (d)= 5 cm			
	Area = $\pi d^2/4$		1	
			$=\pi 5^2/4 = 19.625 \mathrm{cm}^2$	
			Pressure = F/area	1
			$= 20/19.625 = 1.019 \text{ kgf/cm}^2$	1
			$= 1.019* 9.808*10^{4}/1000 = 99.95 kPa$	1
	4	b		
			Basis : Gas mixture containing 0.274 kmol HCl,0.337 kmol N ₂ ,0.089 kmol	
			O ₂ .	
			Total moles of the gas mixture = $0.274 + 0.337 + 0.089 = 0.7$ kmol	
			Mole fraction of HCl (X_{HCl}) = 0.274/0.7 = 0.399	
			Mole fraction of $N_2 (X_{N2}) = 0.337/0.7 = 0.481$	
				1
			Mole fraction of $O_2(X_{O2}) = 0.089/0.7 = 0.127$	
			(a) Average molecular weight of the Gaseous mixture	
			$Mavg = \Sigma MiXi$	
			$= M_{HCl} \cdot X_{HCl} + M_{N2} \cdot X_{N2} + M_{O2} \cdot X_{O2}$	
			= 36.5 x 0.391 +28 x 0.481 + 32 x 0.127	1
			∴ Mavg = 31.80	
		1		

Subject Title: Industri	ial Stoichiometry	Subject code	22315	Page 11 of 19
	(b)Volume occupied by this mixture T = 303 K P= 405.3 kPa PV = nRT $\therefore V = \frac{nRT}{P}$			1
4	$= \frac{0.7 \times 8.3145 \times 303}{405.3}$ = 4.35 m ³			1
	SOLUTION : BASIS : 1000 kg of desired mixed acid. Waste acid, 30 % H ₂ SO ₄ ,35% HNO ₃			
	Con.nitric acid Blending	red mixed acid kg H ₂ SO ₄ , 42% HN	NO3	1
	Block diagram for fortifying waste acid w	ith concentrate	ed acids	

Subject Title: Industrial StoichiometrySubject code22315	Page 12 of 19
Let x, y and z be the kg of waste acid , concentrated sulphuric acid and	
concentrated nitric acid required to make 1000 kg desired acid.	
Overall material Balance:	
x + y + z = 1000(i)	
Material Balance of H ₂ SO ₄ :	
0.3 x + 0.98 y = 0.39 x 1000(ii)	1
0.3 x + 0.98 y = 390	
Y = (390 - 0.3 x) / 0.98	
\therefore Y = 397.96 - 0.306 x(iii)	
Material Balance of HNO ₃ :	
0.35 x + 0.72 z = 0.42 x 1000	
0.35 x + 0.72 z = 420(iv)	
z = (420 - 0.35 x)/0.72	
\therefore z = 583.3 - 0.486 x(v)	1
Put values of y and z from equations (iii) and (v) in eqn (i) and solve for x.	
\therefore x + (397.96 - 0.306 x) + (583.3 - 0.486 x) = 1000	
\therefore x = 90.1 kg	
We have , $y = 397.96 - 0.306 x$	
$= 397.96 - 0.30 \ge 90.1$	
\therefore y = 370.4 kg	
We have , $z = 583.3 - 0.486 x$	
$= 583.3 - 0.486 \ge 90.1$	
$\therefore z = 539.5 \text{ kg}$	
Amount of waste acid required = 90.1 kg	
Amount of concentrated sulphuric acid required = 370.4 kg	1
Amount of concentrated nitric acid require = 539.5 kgAns	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

4 d Basis : 100 Kmol of feed Feed contains 60 kmol A , 30 kmol B and 10 kmol inerts Let X be the kmol of A reacted by reaction : $2A + B - C$ From reaction 2 kmol A = 1 kmol B = 1 kmol C B reacted = (1/2)* X = 0.5 X kmol C formed = (1/2)* X = 0.5 X kmol C formed = (1/2)* X = 0.5 X kmol 1 Material Balance of A give A unreacted = (60 - X) kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = (1/2)* X = 0.5 X kmol B unreacted = (30 - 0.5 X) kmol Total moles of product stream = (60-X) + (30-0.5X) + 10=0.5X = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =	Subject Title: I	ndustrial Stoichiometry	Subject code	22315	Page 13 of 19
Let X be the kmol of A reacted by reaction : 2A + B C From reaction 2 kmol A = 1 kmol B = 1 kmol C B reacted = $(1/2)^* X = 0.5 X$ kmol C formed = $(1/2)^* X = 0.5 X$ kmol 1 Material Balance of A give A unreacted = $(60 - X)$ kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60 - X) + (30 - 0.5X) + 10 = 0.5X$ = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A = * 100 Total kmol of product stream $2 = \frac{60 - X}{2} = $	4 0	Basis : 100 Kmol of feed			
2A + B C From reaction 2 kmol A = 1 kmol B = 1 kmol C B reacted = (1/2)* X = 0.5 X kmol C formed = (1/2)* X = 0.5 X kmol A unreacted = (60 - X) kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = (1/2)* X = 0.5 X kmol B unreacted = (30 - 0.5 X) kmol Total moles of product stream = (60-X) + (30-0.5X) + 10=0.5X = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		Feed contains 60 kmol A, 30 kmol B and 10 km	mol inerts		
From reaction 2 kmol A = 1 kmol B = 1 kmol C B reacted = $(1/2)$ * X = 0.5 X kmol C formed = $(1/2)$ * X = 0.5 X kmol Material Balance of A give A unreacted = $(60 - X)$ kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)$ * X = 0.5 X kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60 - X) + (30 - 0.5X) + 10 = 0.5X$ = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		Let X be the kmol of A reacted by reaction :			
B reacted = $(1/2)^* X = 0.5 X$ kmol C formed = $(1/2)^* X = 0.5 X$ kmol 1 Material Balance of A give A unreacted = $(60 - X)$ kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		2A + B C			
C formed = $(1/2)^* X = 0.5 X$ kmol Material Balance of A give A unreacted = $(60 - X)$ kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		From reaction $2 \text{ kmol } A = 1 \text{ kmol } B = 1 \text{ kmol}$	C		
Material Balance of A give A unreacted = $(60 - X)$ kmolMaterial Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmolTotal moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ $= 100 - X$ KmolMole % of A in product stream = 2% Kmol A in product streamMole % of A =		B reacted = $(1/2)^* X = 0.5 X$	kmol		
A unreacted = $(60 - X)$ kmol Material Balance of Inerts : Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A = * 100 Total kmol of product stream 60 - X 2 = * 100 100 - X 1		C formed = $(1/2)^* X = 0.5 X$	kmol		1
Material Balance of Inerts :Inerts in feed = Inert in product = 10 kmolC formed = $(1/2)^* X = 0.5 X$ kmolB unreacted = $(30 - 0.5 X)$ kmolTotal moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ $= 100 - X$ KmolMole % of A in product stream = 2%Kmol A in product streamMole % of A =		Material Balance of A give			
Inerts in feed = Inert in product = 10 kmol C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = 100 - X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A = * 100 Total kmol of product stream 60 - X 2 = * 100 100 - X 1		A unreacted = $(60 - X)$ kmol			
C formed = $(1/2)^* X = 0.5 X$ kmol B unreacted = $(30 - 0.5 X)$ kmol Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = 100 -X Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		Material Balance of Inerts :			
B unreacted = $(30 - 0.5 \text{ X})$ kmol Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = $100 - X$ Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		Inerts in feed $=$ Inert in product $= 10$) kmol		
Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = $100 - X$ Kmol Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		C formed = $(1/2)^* X = 0.5 X$ kmol			
= 100 - X Kmol 1 Mole % of A in product stream = 2% Kmol A in product stream Mole % of A =		B unreacted = $(30 - 0.5 \text{ X})$ kmol			
Mole % of A in product stream = 2% Kmol A in product streamMole % of A =		Total moles of product stream = $(60-X) + (30-C)$	0.5X) + 10=0.5X		
Kmol A in product streamMole % of A = * 100Total kmol of product stream $60 - X$ $2 = * 100$ $100 - X$		= 100 - X Kmol			1
Mole % of A = * 100 Total kmol of product stream 60 - X 2 = * 100 100 - X 1		Mole % of A in product stream $= 2\%$			
Total kmol of product stream $60 - X$ $2 = * 100$ $100 - X$		Kmol A in product stream			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mole % of A =	* 100		
2 = * 100 $100 - X$ 1		Total kmol of product stream			
2 = * 100 $100 - X$ 1					
2 = * 100 $100 - X$ 1					
100 – X		60 - X			
1		2 = * 100			
X = 59.184 kmol = amount of A reacted		100 - X			
X = 59.184 kmol = amount of A reacted					1
		X = 59.184 kmol = amount of A re	eacted		

Subject Title	e: Indust	rial Stoichiometry S	Subject code	22315	Page 14	1 of 19
		Kmol A reacted Conversion of A = * Total kmol of A feed	100			
		59.184 Conversion of A = * 100 = 98.64 % 60	- Ans		1	
4	e	 Classification of fuels: 1. Solid fuel- example: coke, wood, bagasse, ch 2. Liquid fuel – example: kerosene, petrol, diese 3. Gaseous fuel – example: Acetylene, LPG, bie 	sel, methanol	ne	4	
5		Any 2			12	
5	a	Basis: 0.577 mol fr of acetone in.the mixture Mol fr. of butane = 1-0.577 = 0.423 Partial pr of bu Applying Raoults law to butane	utane = 698 n	nm Hg	2	
		Partial pr = Mol fr * vapour pr Vapour pressure = Partial pressure/ mol fr			2	
		= 698/0.423 = 1650 mm Hg			2	
5	b	Evaporated 15000kg/hr Feed 15% NaOH 10% NaCl 75% H ₂ O	45 2 53 N	er ick Liquor 5% NaOH % NaCl 3% H ₂ O aCl ipitated	1	

(ISO/IEC - 27001 - 2005 Certified)

Subject Title: Indust	rial Stoichiometry Subject code 22315	Page 15 of 19
	Basis : 15000 kg/hr of weak solution fed to the evaporator.	1
	Let X,Y,Z be the kg/hr of water evaporated thick liquor & Nacl precipitated respectively.	
	Overall Material Balance : Σ Input stream = Σ Output stream 15000 = X + Y + Z	1
	Material balance of NaOH NaOH in feed = NaOH in thick liquor $0.15 \ge 15000 = 0.45 \ge Y$ $\therefore Y = 5000 \ge 0.47$	1
	Material balance of NaCl NaCl in feed = NaCl in thick liquor + NaCl precipitated	
	$0.10 \ge 15000 = 0.02 \ge Y + Z$ $\therefore 1500 = 100 + Z$ $\therefore Z = 1400 \frac{kg}{hr}$	1
	We know X + Y + Z = 15000 $\therefore X = 8600 \ kg/hr$ $\therefore Water \ evaporated = 8600 \ \frac{kg}{hr}$	
	$\frac{1}{hr}$ Thick liquor obtained = 5000 kg/hr NaCl crystal precipitated =1400 kg/hr	1
5 c	Basis 100 mol of ethylene	
	Reaction I C ₂ H ₄ + $\frac{1}{2}$ O ₂ \longrightarrow C ₂ H ₄ O	
	Reaction II $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$	1
	From reaction I	
	1Kmol of C_2H_4O formed= 1Kmol C_2H_4 reacted	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject Title:	Industrial Stoichiometry Sub	oject code	22315	Page 16 of 19
	$\therefore C_{2}H_{4}O \text{ reacted to from 80 kmol } C_{2}H_{4}O$ $= \frac{1}{1} \times 80$ $= 80 \text{Kmol}$ From reaction II 2kmol of CO ₂ formed= 1 Kmol C ₂ H ₄ reacted			1
	$\therefore C_2 H_4 \text{ reacted to form 10 kmol CO}_2$ = $\frac{1}{2} \times 10$ = 5Kmol $\therefore C_2 H_4 \text{ totally reacted} = 80 + 5 = 85$ $\therefore \% \text{ conversion of } C_2 H_4 = \frac{85}{100} \times 100$			1 1
6	= 85% % yield of C ₂ H ₄ O = $\frac{80}{85} \times 100$ = 94.12% Any 2			1 1 12
6	a Basis : 100 kg of product gases leaving the oxidizer Reaction : $4HCl + O_{2} \rightarrow 2Cl_{2} + 2 H_{2}O$ Product contains 13.2 kg HCl,6.3 kg O_{2} ,42.9 kg N_{2} , 30 H ₂ O Quantity of HCl unreacted = 13.2 kg We have from reaction : 1 kmol HCl = 2 kmol of Cl ₂ 146 kgl HCl = 142 kg of Cl ₂ Quantity of HCl reacted to produce 30 kg of Cl ₂ = (144)	2		1
	kg Material balance of HCl			

Subject Title: Indust	trial Stoichiometry		Subject code	22315	Page 17 of 19
	HCl feed = HCl reacted	d + HCl unreacted = 3	0.85 + 13.2 = 44.0	5 Kg	
	Moles of HCl feed = $(44.05/36.5) = 1.2068$ kmol				
	We have from reaction : 1 kmol HCl \equiv 1 kmol of O ₂				1
	146 kgl HCl \equiv 32 kg of O ₂				
	Quantity of O_2 reacted = (32/146) x 30.85 = 6.76 kg				
	Material balance of O ₂				
	O_2 feed = O_2 reacted + O_2 unreacted = 6.76 + 6.3 = 13.06 kg				
	N_2 charged = N_2 in proc	duct $gas = 42.9 \text{ kg}$			1
	Air charged = $(O_2 + N_2)$	$_2$) in air charged = 13.0	06 + 42.9 = 55.96	kg	
	Moles of air charged = (55.96/28.84) =1.94 kmol				
	Theoretical O ₂ required for 1.2068 kmol HCl = $(1/4)$ x1.2068			8	
	= 0.3017 kmol			1	
	Theoretical air required = $0.3017 \text{ x} (100/21) = 1.44 \text{ kmol}$				
	% excess air = (Air supplied – Air theoretically required)/ Air			Air	1
	theoretically required x 100				
	$= (1.94-1.44)/1.44 \times 100 = 34.72$				1
	Composition of Gases Entering the reactor:				1
	Component	Quantity in Kg	Weight %		
	HCl	44.05	44.05		
	O ₂	13.05	13.05		

Subject Title	e: Indust	trial Stoichiometry		Subject code 2	2315	Page 18 of 19
		N ₂	42.90	42.90		1
		Total	100.00	100.00		
6	b	Basis: 100 Kg of cok	e			
		Amount of carbon in coke = $0.9 * 100 = 90 \text{ Kg}$				
		Amount of C = $90/12 = 7.5$ katom				1
		Reaction : C + O ₂	$\rightarrow CO_2$			
		From reaction, 1 katom $C = 1$ k	mol O ₂			
		12 Kg C = 32				
		90 Kg C = $(32/12)^*$ 90 Kg O ₂				1
		O_2 theoretically required = $(32/12)^* 90 = 240 \text{ Kg}$			1	
		O_2 theoretically required = 240/32 = 7.5 kmol				
		Air theoretically required = $7.5 * (100/21) = 35.71$ kmol				1
		% excess of air = 50%		0/		
		Air actually supplied =	Air theoretically requi	% excess ired (1+) 100		
		Air actually supplied =				1
		Air actually supplied	= 53.57 kmol	ans.		1
6	c	Basis: 100 Kmol/min	of CO ₂			
		Q= Heat added				
		T_2				
		$= n \int Cp dT$				1

Subject Title: Industrial Stoichiometry	Subject code 22315	Page 19 of 19
T_{1} T_{2} $= n \int [21.3655 + 64.2841 \times 10^{-3} \text{ T} - T_{1}]$ $= n [21.3655 (T_{2} - T_{1}) + 64.2841 \times 10]$ $- 41.0506 \times 10^{-6}/3 (T_{2}^{3} - T_{1}^{3}) + 10$	9.7999 x $10^{-9}T^3$] dT $T^3/2 (T_2^2 - T_1^2)$	1
Where n= 100 kmol/min, $T_2 = 383$ K = 100 [21.3655 (383 - 298) + 64.2841 $10^{-6}/3$ (383 ³ - 298 ³) +9.7999 x $10^{-9}/4$ (2	K, $T_1=298$ K x $10^{-3}/2$ (383 ² - 298 ²) -41.0506 x	1
= 330335.5 KJ/min = 5505.6 KJ/s Q = 5505.6 KW Ans.		2

