MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code

22409

Page **1** of **17**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code

22409

Page **2** of **17**

No.	Answer	Marking
		scheme
1	Attempt any FIVE of the following	10
a	Definition of	
	Fluid static:	
	The branch of fluid mechanics which deals with the study of fluids at rest.	1
	Fluid dynamics:	
	The branch of fluid mechanics which deals with the study of fluids in motion.	1
b	Eg for Newtonian fluid (any two)	¹∕₂ mark
	H ₂ O, CHCl ₃ , gases, low viscosity liquids	each
	Eg for Newtonian fluid (any two)	¹∕₂ mark
	Complex fluid like rubber latex, sewage sludge, polymer solutions, starch	each
	solutions, toothpaste, tomato ketch up.	
c	SI units of	¹∕₂ mark
	Volumetric flow rate: m ³ /s	each
	Mass flow rate: kg / s	
	Density: kg / m^3	
	Reynolds number: no unit (Dimensionless number)	
d	Different flow meter (any four):	¹∕₂ mark
	Orifice meter, venturimeter, rotameter, pitot tube	each
e	Definition of NPSH:	2
	Net Positive Suction Head is the amount by which the pressure at the suction	
	point of the pump (sum of velocity head and suction head) is in excess of the	
	vapour pressure of the liquid	
	a b c	a Attempt any FIVE of the following a Definition of Fluid static: The branch of fluid mechanics which deals with the study of fluids at rest. Fluid dynamics: The branch of fluid mechanics which deals with the study of fluids in motion. b Eg for Newtonian fluid (any two) H2O, CHCl3, gases, low viscosity liquids Eg for Newtonian fluid (any two) Complex fluid like rubber latex, sewage sludge, polymer solutions, starch solutions, toothpaste, tomato ketch up. c SI units of Volumetric flow rate: m ³ /s Mass flow rate: kg / s Density: kg / m ³ Reynolds number: no unit (Dimensionless number) d Different flow meter (any four): Orifice meter, venturimeter, rotameter, pitot tube e Definition of NPSH: Net Positive Suction Head is the amount by which the pressure at the suction point of the pump (sum of velocity head and suction head) is in excess of the

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code

22409

Page **3** of **17**

1	f	Parts of pump (any four):	¹∕₂ mark
		Suction pipe, delivery pipe, pump casing, impeller or cylinder with a	each
		reciprocating element or a rotating element, suction valve, delivery valve	
1	g	Two vacuum generating equipment:	1 mark
		Jet ejectors, vacuum pumps, vacuum blowers	each
2		Attempt any THREE of the following	12
2	a	Newton's law of viscosity:	
		It states that shear stress τ (F/A) is proportional to shear rate or velocity	
		gradient (du / dy) and the proportionality constant is called viscosity (μ) of	2
		the fluid.	
		Shear stress α shear rate	
		(F /A) α (du / dy)	
		$(F/A) = \mu (du/dy)$	
		Principle of hydrostatic equilibrium:	
		Pressure exerted by a fluid is the force exerted by the fluid on the walls of the	2
		container. The principle of hydrostatic equilibrium states that the pressure at	
		any point in a fluid at rest is due to the weight of the overlying fluid.	
2	b	Diagram of Venturimeter:	2 marks
		LOW PRESSURE	for
		HIGH PRESSURE LOW PRESSURE TAP	diagram
		A Barrow and a state of the sta	and 2
		5° TO 15° FLOW	marks for
		19° TO Z3° 5 TO 15	labeling.
		THROAT THROAT	
		INLET CONVERGENT DIVERGENT UNLET CONE OUTLET CONE	
		INLET CONE OUTLET CONE	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Fluid Flow Operation

Subject code

22409

Page **4** of **17**

2	c	Purpose of fitting:	1 mark
		(i) Tee: For branching the pipe in 3 directions.	each
		(ii) Cross: For branching the pipe in 4 directions.	
		(iii) Plug: To close the end of the pipe.	
		(iv) Bend: For changing the direction of flow.	
2	d	Classification of pumps:	4
		Pumps can be classified as Positive Displacement Pump and Centrifugal	
		pumps. Positive Displacement Pumps are classified into Reciprocating pumps	
		and Rotary pumps. There are different types of reciprocating pumps like Piston	
		pump, Plunger pump, diaphragm pump etc. There are different types of rotary	
		pumps like gear pump, lobe pump, screw pump etc. Reciprocating pumps can	
		be single acting or double acting pumps. Depending on the number of	
		cylinders, the reciprocating pumps can also be classified as simplex, duplex	
		and triplex pumps.	
3		Attempt any THREE of the following	12
3	a	Derivation of equation of continuity:	
		Mass balance states that for a steady state flow system, the rate of mass	
		entering the flow system is equal to that leaving the system provided	1
		accumulation is either constant or nil.	
		Let $v_1,\rho_1\&A_1$ be the avg. velocity, density& area at entrance of tube & v_2 ,	
		ρ_2 & A ₂ be the corresponding quantities at the exit of tube.	

WINTER-19 EXAMINATION **Model Answer**

jeet title	. 1 10	id Flow Operation Subject code 22409	Page 5 of 17
		Let \vec{m} be the mass flow rate	
		Rate of mass entering the flow system = $v_1 \rho_1 A_1$	2
		Rate of mass leaving the flow system = $v_2 \rho_2 A_2$	
		Under steady flow conditions	
		$\dot{m} = \rho_1 v_1 A_1 = \rho_2 v_2 A_2$	
		$\dot{m} = \rho v A = constant$ Equation of continuity	1
3	b	Pitot tube:	
		Diagram:	
		Ptot tube all h . A : stagnachon	1
		htered	
		->	
		and the second sec	
		Construction and working:	
		In simple form, it consists of a single pitot tube with mouth pointing in the	
		direction of flow. In modified pitot tube construction, two concentric tubes are	
		arranged in the directions of flow. The fluid is brought to rest at the entrance of	
		the inner tube. Similarly a hole is made on the outer tube to such size that fluid	2
		entering through the hole represents bulk velocity or velocity of fluid in	
		adjacent layer of fluid. These two tubes are in turn connected to two limbs of	
		U tube manometer. The differential pressure created in the manometer	
		represents the velocity at that point.	
		The point velocity or local velocity is calculated as $V = \sqrt{(2g\Delta H)}$	
		Where ΔH is differential height of manometric fluid.	
		Application:	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Fluid Flow Operation

Subject code 22409

Page **6** of **17**

		It is a velocity measuring of	levice used to measure loca	al velocity. It is generally	
		used to measure the veloci	ty in open channel.		1
3	c	5cm	10 cm		
		Friction loss due to sudden	expansion (h _{fe}) is given by	y the equation	
			$(h_{fe}) = Ke \frac{u_1^2}{2}$		
		Where Ke is expansion los	s coefficient		
			$\mathrm{Ke} = [1 - \frac{A1}{A2}]^2$		1
		A_1 = area of the smaller p	ipe = $\frac{\Pi}{4} D_1^2 = \frac{\Pi}{4} (0.05)^2 = 1$.9625*10 ⁻³ m ²	1
		$A_2 =$ area of the larger pip	$e = \frac{\Pi}{4} D_2^2 = \frac{\Pi}{4} (0.1)^2 = 7$	$1.85*10^{-3}m^2$	
		Ke = $[1 - \frac{A_1}{A_2}]^2 = (1 - \frac{A_2}{A_2})^2$	$\frac{1.9625*10^{-3}}{7.85*10^{-3}}\Big)^2 = 0.5625$		1
		u ₁ = Velocity of flowing fl	uid through the smaller pip	be = 2 m / s	1
		$h_{fe} = Ke \frac{u_1^2}{2} = 0.5625 * \frac{1}{2}$	$\frac{(2)^2}{2} = 1.125 \text{ J/kg}$		
3	d	Comparison between con	npressor and fan on the b	easis of following points	2 marks
		Criteria	Fan	Compressor	each
		Speed	High speed machines.	Low speed machines.	
			Used for air circulation	They are mainly used	
			than developing	for discharge at high	
			pressure.	pressure.	
		Pressure developed	Less.	High	

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code 22409

Page **7** of **17**

	Less than 30 kPa.	The pressure developed	
		depends on the type of	
		compressor.	
		Reciprocating	
		compressor develop	
		high pressure than	
		centrifugal compressor.	
4	Attempt any THREE of the following		12
4 a	P_1 - $P_2 = h (\rho_m - \rho)g$ (Derivation)		
	Process fluid 3m m m m m m m m m m		1

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code 22409

Page **8** of **17**

	T	The differential pressure enting across the menometer can be determined by	
		The differential pressure acting across the manometer can be determined by	
		using principle of hydrostatic equilibrium.	
		As per this principle, pressure exerted by height of liquid column can be	
		expressed as $P = \rho gh$ (1)	
		Where h is the height of liquid column (m)	
		By applying this principle, pressure acting at point 1 can be expressed as	
		$P = P_1 \dots (2)$	
		At point 2 in left limb	
		$P_2 = P_1 + (x + \Delta h) \rho g \dots (3)$	
		By using the principle that fluid exert same pressure at same level, we can	
		write $P_2 = P_3$ (4)	
		$P_3 = P_2 = P_1 + (x + \Delta h) \rho g \dots (5)$	
		Similarly pressure exerted at point 4 will be less than P ₃ by magnitude equal	3
		to pressure exerted by mercury column of height Δh	
		$P_4 = P_3 - \Delta h \rho_m g \dots (6)$	
		Using similar procedure, we can write P ₅ as	
		$P_5 = P_4 - x \rho g \dots (7)$	
		Substituting the value of P_3 and P_4 from equation (5) and (6),	
		$P_5 = P_3 - \Delta h \rho_m g - x \rho g = P_1 + (x + \Delta h) \rho g - \Delta h \rho_m g - x \rho g$	
		P_1 is upstream pressure and P_5 is downstream pressure	
		$P_1 > P_5$	
		Simplifying the above equation, we get $P_1 - P_5 = \Delta h (\rho m - \rho)g$	
		$\Delta \mathbf{P} = \Delta \mathbf{h} (\rho \mathbf{m} - \rho) \mathbf{g}$	
4	b	Kinematic viscosity $v = 30$ stokes = $30 \text{ cm}^2 / \text{s} = 30*10^{-4} \text{ m}^2 / \text{s}$	
		D = 200 mm = 0.2 m	
L	I		

WINTER-19 EXAMINATION **Model Answer**

Subject title: Fluid Flow Operation

Subject code 22409

Page **9** of **17**

		Q = 25 1	$/ s = 25*10^{-3} m^3 / s$	
		Area of p	pipe = $\frac{\Pi}{4} D^2$ = (3.14*0.2 ²) / 4 = 0.0314m ²	1
			u = Q / A = 0.025 / 0.0314 = 0.796 m / s	1
		$N_{Re} = \frac{D u}{v}$	$= 0.2 * 0.796 / (30*10^{-4}) = $ 53.06	
		Ŭ	Re is less than 200, flow is laminar	1
4	c		tion of Rotameter with graph	
			on of Rotameter is establishing a relation between volumetric flow	
			float position.	
			e procedure for calibration of Rotameter is as follows.	
		i.	Connect the rotameter in fluid circuit consisting of flow measuring	
			tank, pipe line arrangement and pump.	
		ii.	Rotameter should be connected vertically.	
		iii.	Start the flow of fluid through the Rotameter.	
		iv.	Note down the float position by referring to scale fixed adjacent to	
			Rotameter tube.	3
		v.	Collect fixed volume of fluid and note down the time required for	
			collection.	
		vi.	By varying the flow, note down the float position and	
			corresponding volumetric flow rate by collecting certain volume of	
			fluid and noting down the time for collection each time.	
		vii.	Vary the float position over the entire height of Rotameter tube.	
		viii.	Plot calibration curve between height of float and corresponding	
			volumetric flow rate	

WINTER-19 EXAMINATION **Model Answer**

		η vs Q (efficiency vs Dis	scharge or volumetric flow	rate)	
		•	Discharge or volumetric f		
			s Discharge or volumetric f		
4	e		ciprocating compressor a		2 mark
		compressor:			each
		Criteria	Reciprocating	Centrifugal compressor	
			compressor		
		Speed	Slow speed machine	High speed machine	
		Rate of flow	High pressure and low	Low pressure and high	
			discharge	discharge	
				Objective is mainly	
				volumetric discharge	
				than pressure.	
5		Attempt any TWO of th	ne following	<u> </u>	1
5	a	Data:			
		Density of water = 1000	kg / m^3		
		Viscosity of water $=\mu = 0$.0008 kg/m.s		
		Fanning Friction factor	f = 0.0001		
		Diameter of pipe =d=25	mm =0.025 m		
		Area of pipe: A = π /4 D	$r^{2} = \pi / 4^{*} (0.025)^{2} = 0.00049$	906 m^2	2
		Length of pipe $=$ L $= 100$ n	m		
		Mass flow rate(\dot{m}) = 1	kg/s		
			As $\dot{m} = \rho$ u.A		
			$\dot{m} = 1000 * u * 0.00049$	06	

WINTER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation Subject code 22409 Page 12 of 17 The pressure drop through a pipe is given by $\Delta P = \frac{4 f L \rho u^2}{2 D}$ 1 $\Delta P = \frac{4 * 0.0001 * 100 * 1000 * (2.04)^2}{2 * 0.025}$ $\Delta P = 3329.28 \frac{N}{m^2} = 3.32928 * 10^3 3 k N/m^2$ 2 5 Data : b Diameter of orifice: $d_0 = 25 \text{ mm} = 0.025 \text{ m}$ Diameter of pipe: D = 50 mm = 0.05 mCoefficient of orifice = $C_o = 0.62$ Density of water = 1000 kg/m^3 Density of mercury = 13600 kg/m^3 Area of orifice = $A_0 = \pi/4 d_0^2 = \pi/4 (0.025)^2 = 4.906 * 10^{-4} m^2$ 1 β = Diameter of throat / Diameter of pipe = 25/50 = 0.5 1 Pressure drop across the meter = $\Delta h = 11 \text{ cm} = 0.11 \text{ m of mercury}$ Let's find out the value of pressure drop in terms of process fluid(water) ΔH $\Delta H = \Delta h \left[\frac{\rho_{Hg-} \rho_{H_{20}}}{\rho_{H_{20}}} \right]$ $\Delta H = 0.11 \left[\frac{13600 - 1000}{1000} \right] = 1.386 \text{ m of water}$ 1 The flow equation of orificemeter is $Q = \frac{C_o A_o}{(1-\beta^4)} \cdot \sqrt{2g\Delta H}$ $Q = \frac{0.62x4.906x10^{-4}}{\sqrt{(1-0.5^4)}} \cdot \sqrt{2x9.81x1.386} = 1.691 \times 10^{-3} m^3/s$ 2 1 Volumetric flow rate $Q = 1.691 \times 10^{-3} \text{ m}^3/\text{s}$ Single acting reciprocating pump: 5 с Diagram

Working:

Si

Reciprocating pump consists of a piston or plunger which reciprocates in stationary cylinder. Suppose the piston is initially at extreme left position and when crank rotates thro 180^{0} , piston moves to extreme right position.

Therefore due to outward movement of piston, a partial vacuum is created in cylinder, which enables the atmospheric pressure acting on the liquid surface in the sump below to force the liquid up the suction pipe & fill the cylinder by forcingly opening the suction valve(it is called as a suction stroke). When the crank rotates thro further 180[°], piston moves inwardly from its extreme right position towards left. The inward movement of piston causes the pressure of liquid in the cylinder to rise above atmospheric pressure, because of which the suction valve closes & delivery valve opens . The liquid is then forced up the delivery valve & raised to the required height (Delivery stroke).

3

WINTER-19 EXAMINATION

Model Answer

Subject title: Fluid Flow Operation

Subject code 22409

Page 14 of 17

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Fluid Flow Operation

Subject code 2

22409

Page **15** of **17**

		decrease in velocity. The steam slows down and the inlet gas stream picks up	
		speed and, at some point in the throat of the diffuser, their combined flow	
		reaches the exact speed of sound. A stationary, sonic-speed shock wave forms	
		there and produces a sharp rise in absolute pressure. Then, in the diverging	
		section of the diffuser, the velocity of the mixture is sub-sonic and the	
		increasing cross sectional area increases the pressure but further decreases the	
		velocity.	
6	b	Pipe length: 30m	
		Pipe ID = 25 mm = 0.025 m	
		Mass flow rate = 1.3 kg/s	
		Height difference between the level of acid in tank and discharge point $=12m$	
		Viscosity of acid = 0.025 N.s/m ²	
		Density of acid = 1840 kg/m^3	
		Pump efficiency = 55%	
		Area of pipe A = $\pi / 4$ D ² = $\pi / 4^* (0.025)^2 = 0.0004906$ m ²	
		Mass flow rate(\dot{m}) = 1.3 kg/s	
		$\dot{m} = \rho$ u.A	
		u = 1.3 / (0.0004906 * 1840) = 1.44 m/s	1
		To predict the type of flow, value of Reynold's number must be calculated.	
		As N _{Re} = $\frac{D.u\rho}{\mu}$	
		$N_{\rm Re} = \frac{0.025x1.44*1840}{0.025} = 2650$	1
		As $N_{Re} > 2100$ and < 4000 , the flow is in a transition region and for practical	
		purpose, it is treated as turbulent.	
		For turbulent flow, Fanning friction factor	
L			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject title: Fluid Flow Operation

Subject code 22409

WINTER-19 EXAMINATION **Model Answer**

Subject title: Fluid Flow Operation

Subject code 22409

Page **17** of **17**

6	c	Data:	
		Diameter of pipe= $D = 250 \text{ mm} = 0.25 \text{ m}$	
		Specific gravity of $oil = 0.8$	
		Density of oil = Specific gravity * density of water = $0.8 \times 1000 = 800 \text{ kg/m}^3$	
		Pressure at station A = 120945 N/m^2	
		Volumetric flow rate of oil = $Q = 120$ lit/s = $120*10^{-3}$ m ³ /s	
		Area of pipe = A= $\pi/4$ d ² = $\pi/4$ (0.25) ² = 0.04906 m ²	1
		$u = \frac{Q}{A} = \frac{120 \times 10^{-3}}{0.04906} = 2.44 \ m/s$	1
		Total energy at point A (in terms of meters of oil) $= \frac{P}{\rho \cdot g} + Z + \frac{u^2}{2 \cdot g}$	2
		$=\frac{120945}{800*9.81}+3.5 +\frac{(2.44)^2}{2.9.81}=19.21 \text{ m of oil}$	
		Total energy at point A (in terms of J/kg of oil) = $\frac{P}{\rho} + g.Z + \frac{u^2}{2}$	
		$=\frac{120945}{800} + 9.81 * 3.5 + \frac{(2.44)^2}{2}$	
		=188.5 J/kg	2