

WINTER- 2019 Examinations Model Answer

Page 1 of 26

Important suggestions to examiners:

Subject Code: 22420

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE of the following 10 Marks				
a)	State necessity of instrument calibration.				
Ans:	(Any Two points expected: 1 Mark each)				
	Necessity of instrument calibration: -				
	To ensure reading from an instrument are consistent with other				
	measurements.				
	To determine the accuracy of the instrument reading.				
	To establish the reliability of the instrument i.e. it can be trusted.				
	Determining the precision, deviation, and reliability of the measurements,				
	which is important for manufacturers as part of design qualification.				
	 instrument Calibration Keeps Processes Safe 				
	 Calibration Maintains Certification 				
	 Reduce Costs from Manufacturing Errors 				
b)	Give classification of transducer on any two factors				
Ans:	(Any Two points expected: 1 Mark each)				
	The transducers can be classified as: -				
	1. Active and passive transducers.				
	2. Analog and digital transducers.				

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

Subjec	ct Code: 22420 WINTER– 2019 Examination WINTER– 2019 Examination Model Answer	ions Page 2 of 26
	3. On the basis of transduction principle us	ed.
	4. Primary and secondary transducer	
	5. Transducers and inverse transducers	
c)	List any two specifications of electrical pressure	e transducer.
Ans:		Any Two points expected: 1 Mark each)
	Specifications of electrical pressure transducer: -	
	1. Root Sum Squares (RSS)	
	2. Non-Linearity	
	3. Hysteresis	
	4. Non-Repeatability	
	5. Long-Term Stability	
	6. Zero Offset	
	7. Span Offset	
	8. Thermal Effects	
	9. Size	
	10. associated circuit	
	11. sensitivity	
	12. self-generated or external power source	
	13. Miscellaneous	
d)	Define Atmospheric pressure and Absolute pre-	ssure.
Ans:	Atmospheric pressure (Barometric Pressure):	(1Mark)
	It is defined as pressure exerted by the air	surrounding to the earth i.e
	P_Atmospheric=P_Absolute -P_Gauge	
	Absolute pressure	(1Mark)
	It is defined as total pressure including atmosphere	eric pressure acting on a surface area
	P_Absolute=P_Atmospheric+P_Gauge	
e)	Define laminar flow and turbulent flow.	
Ans:	Laminar flow:	(1 Mark)
	1. Laminar flow occurs when the fluid flows no disruption between them. For laminar OR	1 5
	 The flow in which fluid flows smoothly su each other 	ach that fluid layers are parallel to
	OP	

Subjec	wINTER- 2019 Examinations et Code: 22420 <u>Model Answer</u>	Page 3 of 26
	3. No streamlines intersect each other, such type of flow flow.	is known as laminar
	OR 4. When all the molecules of flow are parallel to each oth flow.	er, it is called Laminar
	Turbulent flow:	(1 Mark)
	I. Turbulent flow occurs when the fluid does not flow in	parallel layers, the lateral
	mixing is very high, and there is a disruption between	the layers. Re > 4000
	OR	
	II. When all the molecules of flow are scattered without fi Turbulent flow.	ixed position it is called
	OR The flow in which fluid flows in zig-zag manner and fluctuat	te irregularly in such a way
	that its velocity changes irregularly, such type of flow is known	
f)	Give classification of level measurement methods.	in as turbulent now.
Ans:	Give classification of rever incastrement includes.	
	Classification of Liquid Level Measurement:	
	Direct method	(1Mark)
	1. Hook type	
	2. Sight glass type	
	3. Float type	
	4. Dip stick	
	Indirect method	(1Mark)
	1. Hydrostatic pressure type	
	2. Electrical type:	
	a) Capacitance level indicator	
	b) Radiation level detector	
	c) Ultrasonic level gauge	
	3. Radar type	

Subjec	t Code: 22420	WINTER– 2019 Examinations <u>Model Answer</u>	Page 4 of 26
g)	Convert 45°C into Far	henite.	
Ans:	For 45°C into °F		
		$\frac{^{\circ}\mathrm{C}}{100} = \frac{^{\circ}\mathrm{F} - 32}{180}$	(1 Mark)
		$\frac{45}{100} = \frac{^{\circ}F - 32}{180}$	
		$\frac{45}{100}$ * 180 = °F - 32	
		$^{\circ}\mathrm{F} = \left(\frac{45}{100} * 180\right) + 32$	
		°F = 113	
		$45^{\circ}C = 113^{\circ}F$	(1 Mark)
Q. 2	Attempt any THREE	of the following	12 Marks
a)	Draw symbol and cha	aracteristic of LDR. Give material used	
Ans:	Symbol of LDP.	(Symbol: - 1 Mark, characteristic: - 2 M	arks, Material: -1 Mark)
	Symbol of LDR: -		
	\frown		<i>L</i>
	Characteristic of I Substrate	.DR: -	
		Thin Strip of Photoresistive Material (Cadmium Sulphide)	LDR Symbol
	Dark N Tim 10 ⁶ .C .C .C .C .C .C .C .C .C .C .C .C .C		

WINTER-2019 Examinations Model Answer

Subject	Code	: 22420	Model Answer	Page 5 of 26			
	,	semiconduc 2. Materials us lead selenid	ndent Resistor (LDR) is made f tor material such as cadmium sed as the semiconductor subst le (PbSe), indium antimonide (sulphide. Trate include, lead sulphide (PbS			
b)	-	application.	nu ulapillagili w.i.to construc		-		
	(Each Point: 1 M						
	Sr. No	Points	Bellows	diaphragm			
	1.	construction	Bellows	Diaphragm			
	2.	sensitivity	Less sensitive as compared to diaphragm	More sensitive as compared to diaphragm			
Ans:	3.	working principle	When there is no pressure applied to the bellows there is no any movement of the wall elements, as soon as pressure is applied inside the bellows there is an expansion on the wall of bellows.	Change in pressure causes change in dimension of diaphragm, which is transmitted to the rotary pointer through mechanical linkage. The pointer gives the reading proportional to applied pressure			
	4.	Application	 I. These are used in the large indicating gauges, recorders where space is not a problem. ii. It is useful in pneumatic controllers. iii. low pressure gauges are suitable for chemical, petrochemical, plant construction, and cleanrooms 	gauges are used for relative pressure as well as for vacuum, compound and differential pressure applications.			

Subjec	t Code: 2242	WINTER– 2019 Examinations 20 <u>Model Answer</u>	Page 7 of 26
	• So	lids, bubbles or any discontinuity in liquid will reflect ba	ck to the receiver
	Because c	of the velocity of the liquid their frequency, there will be a	a frequency shift at
	the receiv	ver end which is protentional to the velocity	
d)	Explain c	alibration of capacitive type level measurement.	
Ans:			xplanation: 4 Marks)
		Calibration of capacitance type level transmitter	
	1.	Remove the level transmitter from the system(tank).	
	2.	check whether transmitter shows zero reading by conne	cting with
		multimeter otherwise release the pressure.	
	\checkmark	<u>if the transmitter is smart</u>	
	1.	connect control circuit to the level transmitter	
	2.	multimeter to ma.	
	3.	Fill the corresponding liquid in correct density and note	down the readings.
		Fill liquid at 25%, 50%, 75% and 100% in both ascending	, and descending
		orders and note down the readings.	
	4.	check for errors if there is zero and span adjust should b	e done.
	5.	for zero calibration: drain the liquid and check the multi	imeter if it is not 0
		then go to sensor trim option in the HART then go to ze	ro trim and the
		HART communicator will automatically trim the sensor	in to zero
	6.	For span calibration: fill 100% and wait for some time th	en go to sensor trim
		and select span trim in HART communicator the 475 wi	0
		the sensor into 20ma.	ÿ
	7.	After doing zero and span trimming again check the rea	ding at
		0%,25%,50%,75% and 100%.	
	\triangleright	In case of non-smart capacitance type transmitter	
		Connect a multimeter and rotate the zero pot and stop v	vhen multimeter
	1.	shows 4ma.	
	2.	Fill the chamber to maximum liquid level and rotate the 20ma.	span screw to

WINTER-2019 Examinations

Subject Code: 22420

Model Answer

Page 8 of 26

	3. Repeat these steps and check all readings
Q.3	Attempt any THREE of the following12 Marks
a)	Give one application each of following transducer: (i) LVDT (ii) RVDT (iii) Capacitive (iv) Piezoelectric
Ans:	(One application each of following transducer: -1 mark)
	i) LVDT
	LVDT used to measure force
	LVDT used to measure strain
	LVDT used to measure weight
	LVDT used to measure tension
	LVDT used to measure pressure
	The LVDT can be used for displacement measurement ranging from fraction of
	mm to few cm.
	Testing of soil strength
	 PILL making Machine
	"Brain Probing" medical device
	Robotic Cleaner
	 Dollar bill thickness in ATM Machine.
	 Hydraulic cylinder Displacement
	temperature transducers,
	valve control,
	 servo valve displacement sensing
	ii) RVDT
	 Hydraulic pump control
	Valve position
	 Rotary actuator feedback
	Arm position
	Throttle lever position feedback
	Reeler / Dereeler

ject Code:		
	Fuel Valves as well as Hydraulic	
	Controls Fuel	
	Brake with cable systems	
	Engines bleed air-systems	
	Robotics	
iii) C	apacitive	
	The capacitive transducers are used to measure humidity in gases.	
\triangleright	It is used to measure volume, liquid level, density etc.	
≻	It is used for measurement of linear and angular displacement.	
\triangleright	Capacitive displacement sensors are used for distance measurement	
≻	Other typical applications are tolerance testing in mass production,	
≻	Vibration measurement,	
≻	Strain measurement,	
\triangleright	Thickness measurement and thickness control of thin metal foils,	
\triangleright	Thickness measurement of plastic foils during production,	
≻	beveling and bending of wafers in semiconductor production and many m	ore
(iv) P	liezoelectric	
≻	Piezoelectric transducers are used in high frequency accelerometer.	
≻	Piezoelectric materials are used in industrial cleansing apparatus.	
≻	It is used in under water detection system i.e. SONAR.	
≻	These are used in measurement of surface roughness in accelerometers and	ł
	vibration picks ups.	
\triangleright	It is used in ultrasonic flow meters, non-destructive test (NDT) equipment'	's
\succ	Piezoelectric materials are used in ultrasonic transducers.	

WINTER-2019 Examinations

Subject Code: 22420

Model Answer

Page 10 of 26

b)	Compare U tube manometer and well type manometer on any four points.				
Ans:	•	nd well type manometer (any three			
	Sr.No.	U-tube manometer	well type manometer		
	1	Both legs are having same cross section area	Both legs are having different cross section area		
	2	Transmitting fluid Manometric fluid	Applied Pressure Well WELL Type Manometer		
	3	There are two tubes of equal cross sect on either side.	ion There is a well on one side and a tube on other side.		
	4	Pressure drop is indicated by difference between heights of both tubes.	ce There is negligible change in the level of fluid in well because of large cross section area.		
	5	Difference in heights in measured.	Single height is measured.		
c)	Compare	e Nuclear Radiation type and Ultras	onic level measurement.		
Ans:			(Any Four points expected: 1 mark each)		
	Sr. No	Nuclear Radiation	Ultrasonic level		
	1.		Cannot be installed in highly hazardous areas		
	2.	5	Signal will be absorbed by foam, dust, mist, humidity		
	3.	Can be used with agitated liquids	Cannot be used with agitated liquids		
	4.	-	Low cost of installation as compare with nuclear radiation		
	5.		Does not required licensing by a regulatory agency		

WINTER-2019 Examinations Subject Code: 22420 **Model Answer** Page 11 of 26 6. Radiation safety is very involved More safety as compare with Nuclear Radiation 7. Measurements can be skewed by Measurements cannot be skewed by density density d) Draw and explain filled system thermometer. Ans: (Diagram: 2 Marks & Explanation : 2 Marks) Filled system thermometer Vapor Filled temperature scale Volatile Liquid Filled Bulb or equivalent figure **Explanation:-**• Many physical properties change with temperature, such as the volume of a liquid, the length of a metal rod, the electrical resistance of a wire, the pressure of a gas kept at constant volume, and the volume of a gas kept at constant pressure. • Filled-system thermometers use the phenomenon of thermal expansion of matter to measure temperature change.

- The filled thermal device consists of a primary element that takes the form of a reservoir or bulb, a flexible capillary tube, and a hollow Bourdon tube that actuates a signal-transmitting device and/or a local indicating temperature dial. A typical filled-system thermometer is shown in Figure.
- In this system, the filling fluid, either liquid or gas, expands as temperature increases. This causes the Bourdon tube to uncoil and indicate the temperature on a calibrated dial.

Subject Code: 224	WINTER– 2019 Examinations 420 <u>Model Answer</u>	Page 12 of 26
• T	he filling or transmitting medium is a vapor, a gas,	Liquid like, Mercury,
et	hyl, alcohol, tolune, xylene or another liquid. The liqu	uid-filled system is the
m	nost common because it requires a bulb with the small	lest volume or permits
a	smaller instrument to be used.	
• T	he gas-filled system uses the perfect gas law, which s	tates the following for
aı	n ideal gas:	
	T = kPV1	
W	Vhere T =temperature, K= constant, P= pressure, V= v	volume
• If	the volume of gas in the measuring instrument is kep	ot constant, then the
ra	atio of the gas pressure and temperature is constant, s	o that
	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	
• T	he only restrictions on Equation 1, 2 are that the	temperature must be
e	xpressed in degrees Kelvin and the pressure must be i	n absolute units.
• A	As the temperature changes ,volume of liquid changes	by following equation
	V1=V0(1+BT)3	
W	Where V1 is original volume	
V	0 is New volume	
В	is coefficient of volumetric expansion	
T is rise	in temperature	

WINTER-2019 Examinations

Subject Code: 22420

Model Answer

Page 13 of 26

Q.4	Attempt any THREE of the following 12 Marks				
a)	List any two advantages and two applications of Bellows.				
Ans:					
	Advantages:(Any Two points expected: 1 mark each)				
	1. It is used to measure absolute & differential pressure.				
	2. It is used to measure low or medium pressure rang.				
	3. Bellow joints do not require access; i.e. They can be direct buried, however a				
	telltale is recommended				
	4. No maintenance is required.				
	5. Low cost				
	Applications:(Any Two points expected: 1 mark each)				
	1. These are used in the large indicating gauges, recorders where space is not a				
	problem.				
	2. It is useful in pneumatic controllers.				
	3. low pressure gauges are suitable for chemical, petrochemical, plant				
	construction, and cleanrooms				
b)	State Seeback effect and Petlier effect.				
Ans:	<u>See back Effect: -</u> (2 Marks)				
	When a pair of dissimilar metals are joined at one end (junction, J1) , and there is a				
	temperature difference between the joined ends and the open ends (junction , $J2$),				
	thermo-emf is generated, which can be measured in the open ends (J2 or cold				
	junction).				
	<u>Peltier Effect: -</u> (2 Marks)				
	The Peltier effect is a temperature difference created by applying a voltage between				
	two dis-similar metals connected to a sample of semiconductor material.				
	OR				

WINTER- 2019 Examinations Model Answer

Subject Code: 22420		420	Model Answer	Page 14 of 26	,
	The I	Peltier effect: Hea	at is given out or absorbed when a	an electric current pass	
				1	
	acros	s a junction betw	veen two materials.		
c)	I ist any	two advantages	and applications of RADAR typ	e level measurement	
Ans:			(Any Two point		h)
11101		his is non-contact	· · · · · · · · · · · · · · · · · · ·		,
			measurements in storage tanks a	nd some process vessels.	
	3. Us	sed on difficult 'l	hard-to-handle' applications		
		igh accuracy			
		on-contact			
			through plastic tanks		
			ontents of boxes or other multi-m	edia material	
			s in chutes or presses	to our option du 1 maande op ale	6
			(Any Two poin measurement of liquids and bulk	-	.1)
			with absolute reliability,	501105	
			itters can measure in:		
	4. Lic				
	5. Pa	-			
	6. Po	wders			
	7. Bu	lk solids			
	8. Ice	e cream "Premix"	mixer		
		orage tanks for to			
d)	Name th K (iii) R		and the sensitivity of following	thermocouple type: (i) J	(ii)
Ans:	Material	used and the sens	sitivity of following thermocouple:		
	(for each thermocouple Material: - 1/2 mark &				rk &
			for each thermoco	ouple Sensitivity: -1/2 ma	lark)
	Sr No	Thermocouple type	Materials used	Sensitivity µV/0 C	
	1.	J	Iron/Constantan	45 – 57	
	2.	К	Chromel/Alumel	40 – 55	
	3.	R	Platinum/Platinu m 13% Rhodium	5 - 12	
	4.	S	Platinum/Platinu m 10% Rhodium	5-12	

WINTER-2019 Examinations

Model Answer

Page 15 of 26

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

WINTER– 2019 Examinations Model Answer

Page 16 of 26

Subjec	WINTER- 2019 ExaminationsCode: 22420Model AnswerPage 17 of 26
	A= Buoyancy effect
	 The float then rises and floats within the flowing medium (Pipe) in proportional to the flow rate The float reaches a stable position in the tube when the upward force exerted by the flowing fluid (i.e <i>S</i> + <i>A</i>) equals the downward gravitational force exerted by the weight of the float. Increase in the flow rate causes the float to rise higher in the tube Decrease in the flow rate causes the float come down to the lower level The float gives reading on a calibrated scale which is on glass tube and the flow rate can be determined by direct observation of the metering tube
b)	Draw optical type pyrometer and list its advantages.
Ans:	(Diagram: - 3 Marks, any three advantages expected: 1 Mark each) • Diagram of optical pyrometer Fyre Filter Absorption Objective Fyre Filter Filter Heated Fyre Filter Filter Heated Battery PMMC Meter Disappearing Filament Type Optical Pyrometer or equivalent figure
	> Advantages: -
	1) Flexibility
	2) Portability
	3) Monitor the temperature of moving object
	4) Simple assembling of the device enables easy use of it.
	5) Provides a very high accuracy with +/-5 degree Celsius.

WINTER- 2019 Examinations Model Answer

Page 18 of 26

	6) The temperature is measured without contacting the heated body.	
	7) Fast response.	
	8) High output signal and moderate cost.	
c)	State function of strain gauge. Give its types and explain working of any one type it.	of
Ans:	(Function: -2 Marks, Types of Strain Gauge: -2 Marks, any one strain Gau Diagram: - 1 Marks, Explanation: -1Marl	_
	Function of strain gauge: -	
1	 The strain gauge is a passive, resistive transducer which converts the 	
	mechanical elongation and compression into a resistance change.	
	This change in resistance takes place due to variation in length and cross-	
	sectional area of the gauge wire, when an external force act on it.	
	OR	
	A Strain gauge is a sensor whose resistance varies with applied force; It	
	converts force, pressure, tension, weight, etc., into a change in electrical	
	resistance which can then be measured	
	Types of strain gauge: -	
	The type of strain gauge are as	
	Wire gauge	
	1. Bonded strain gauge	
	2. Unbonded strain gauge	
	3. Foil type strain gauge	
	Semiconductor gauge	
	1. Bonded Resistances wire Strain Gauge	
	 STRAIN is defined as change in length divided by original length 	
	This change in resistance takes place due to variation in length and cross-	
	sectional area of the gauge wire, when an external force act on it.	
	When a strain produced by a force is applied on the wires, L increase and A	
	decrease.	
	Two main parameters are changes	
	 The change in gauge resistances The change in length 	
	 The change in length A resistance wire strain gauge consist of a grid of fine resistance wire. The grid 	Ы
	is cemented to carrier which may be a thin sheet of paper Bakelite or Teflon.	u
	 The wire is covered on top with a thin sheet of material so as to prevent it from 	m
	any mechanical damage.	

Subjec	t Code: 22420	WINTER– 2019 Examinations <u>Model Answer</u>	Page 22 of 26		
	Construction:-				
	Deadweight Tester (DW	Г) is used for calibration of pressure	gauges . A dead weight		
	tester is an instrument th	hat calibrates pressure by determir	uing the weight of force		
	divided by the area the for	ce is applied. Typically a dead weigh	nt tester consists of a base,		
	screw press/regulator, piston/cylinder assembly , A fluid (oil) that transm				
	pressure and a mass set of weights.				
		PRESSURE = FORCE/AREA = W/	A		
	As the area of a pistor	n of DWT is accurately Known so tha	at it is constant		
	Therefore PRESSURE(P) \propto FORCE (Weight)				
	Working:-				
	1. Connect the pro-	essure gauge to the test port on the c	lead weight tester as		
	shown in the d	iagram above.			
	2. Ensure that the	e test gauge is reading zero, if not con	rect the zero error and		
	ensure that the	gauge is reading zero before procee	ding with the calibration		
	exercise.				
	3. Select a weight	(Kg) and place it on the vertical pist	on		
	4. Turn the handl	e of the adjusting piston or screw pu	Imp to ensure that the		
	weight and pis	ton are supported freely by oil.			
	5. Spin the vertica	al piston and ensure that it is floating	g freely		
	6. At steady state	condition record the gauge reading	and weight		
	7. increasing weig	ghts until the full range or maximum	r pressure is applied to		
	the gauge and	then decreasing weights until the ga	uge reads zero pressure.		
	acceptable accurac				
b)		ods of level measurement. Explain one advantage and one disadvanta	-		
Ans:		measurement: -2 Marks, Diagram:			
	1Mark, any one advanta	ges expected: 1 Mark, any one disad	lvantages expected: 1		
	Mark)				

WINTER- 2019 Examinations Model Answer

Page 23 of 26

Direct methods

- 1. Hook type
- 2. Sight glass type
- 3. Float type
- 4. Dip stick
- > Hydrostatic method of level measurement.
- > A liquid in a tank at rest exerts a force on the walls of the tank.
- This force in a liquid at rest, is known as "hydrostatic pressure", and is proportional to the depth (or height) of liquid in the tank.
- Hydrostatic pressure methods used for liquid level measurement are listed below:
 - (i) Pressure gauge method
 - (ii) Air bellows
 - (iii) Air purge system
 - (iv) Liquid purge system

Air Purge Method (Bubbler Level Measurement)

Subject Code:	WINTER– 2019 Examinations 22420 <u>Model Answer</u>	Page 24 of 26			
Expla	nation: -				
\triangleright	It is consisting of a hollow tube which is inserted in the liquid	l of the tank.			
	Two connection are made with the bubbler tube one to the pr	essure gauge and			
	another to the regulated air supply, calibrated in terms of liqu	uid level.			
>	A bubbler is connected in the series with air supply line which	h simply as a			
	visual check to the flow of the supply of the air.				
\checkmark	A level recorder may be connected with the pressure gauge to	o keep continues			
	record of liquid level as shown in fig.				
\checkmark	When there is no liquid in the tank or the liquid in the tank is	below the bottom			
	end of the bubbler tube and the pressure gauge indicates zero).			
\checkmark	In other words, if there is no back pressure because the air eso	capes to the			
	atmosphere.				
< <p>✓</p>	As the liquid level in the tank increases, the air flow is restrict	ted by the depth			
	of liquid and the air pressure acting against liquid head appea	ars as back			
	pressure to the pressure gauge.				
< <p>✓</p>	This back pressure causes the pointer to move on a scale, calil	orated in terms of			
	liquid level.				
< <p>✓</p>	The full range of head pressure can be registered as level by k	keeping the air			
	pressure fed to the tube the range of the device is determined	by the length of			
	the tube.				
<	Because air is continuously bubbling from the bottom of the t	ube, the tank			
	liquid does not enter the bubbler tube and hence the tube is sa	aid to be purging			
×	The common purging fluid is air, but, if air reacts with the tar	nk fluid or is			
	absorbed, different gases are chosen depending on the liquid	properties.			
Advar	Advantage: -				
1.	The purge gas (compressed air) provides complete isolation fr	om the measured			
	liquid.				

WINTER-2019 Examinations Subject Code: 22420 **Model Answer** Page 25 of 26 2. Minimum Maintenance The instrument panel can be located up to several hundred feet from what is 3. being measured. 4. They are very cost effective. 5. It is most suitable for measuring the corrosive or abrasive liquid. 6. Design and construction are very simple. 7. Pressure gauge can be placed above or below the tank level and can be kept as far away as 50 ft (12.7m) from the tank with the help of piping Disadvantage: -1. Their calibration gets changed according to variations in product density. 2. Require compressed air. Related to ultrasonic flow meter: (i) Give any two types of it. (ii) Write any two c) specifications. (iii) Write two advantages over rotameter. Ans: (i) Two types of ultrasonic flow meter: -----(2 Marks) Transit time flow meters (time differences) \triangleright Doppler type. (ii) Write any two specifications: - ---(Any two Specifications expected: 1 Mark each) 1. Accuracy 2. Linearity 3. Repeatability 4. Weight 5. Mounting Type 6. End Fittings 7. Media Temperature 8. Velocity Flow Rate 9. Gas Volumetric Flow Rate 10. Liquid Volumetric Flow Rate **11. Operating Temperature** 12. Operating Pressure 13. Electrical Output (iii) Advantages over rotameter: ------ (Any Two advantages expected: 1 Mark Marks) 1. They have no moving parts. 2. Used for both solid and liquid level measurement. 3. It is a non-disturbance technique.

4. Offer no obstruction to the flow

WINTER– 2019 Examinations <u>Model Answer</u>

Page 26 of 26

- 5. o/p is insensitive to variation in viscosity, density and temperature
- 6. Linear relationship between o/p and i/p
- 7. Used for bidirectional flow
- 8. Excellent dynamic response
- 9. Good accuracy +-2%
- 10. o/p is electrical

-----END------