

WINTER – 19 EXAMINATION

Subject Name: Computer Graphics

Model Answer

Subject Code: 22318

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following :	10 M
	a	Give two applications of computer graphics.	2 M
	Ans		Any two applications : 2
		 Computer Entertainment (film, video games, advertising etc.) Medical Applications Cartography Cartography Cartography Cartography Cartography Cartography Cartography Cartography Cartography Cartography Computer Art Computer Art Computer Computer Art Computer Graphics Simulation (flight,driving) and virtual reality Graphical User Interface (GUI) Used for common paper and book publishing are sometimes used to create graphics for point of sale displays, presentations, infographics, brochures, business cards, promotional items, trade show exhibits, retail package designs and outdoor signs. 	Μ

 The use of pictures, images, icons, pop-up menus, graphical objects helps in creating a user friendly environment where working is easy and pleasant, using computer graphics we can create such an atmosphere where everything can be automated and anyone can get the desired action performed in an easy fashion. Computer-Aided Design Designing of buildings, automobile, aircraft is done with the help of computer aided drawing, this helps in providing minute details to the drawing and producing more accurate and sharp drawings with better specifications
 specifications. Computer-Aided Learning (Cal) Computer Aided Learning (CAL) is the application of computers as an integral part of the learning system for learning and teaching process.
• Animations Used for creating motion pictures, music video, television shows, cartoon animation films.
 Computer Art Using computer graphics we can create fine and commercial art which include animation packages, paint packages. Entertainment
• Entertainment Computer graphics finds a major part of its utility in the movie industry and game industry. Used for creating motion pictures, music video, television shows, cartoon animation films.
• Education and training Computer generated models are extremely useful for teaching huge number of concepts and fundamentals in an easy to understand and learn manner.
 Image processing Various kinds of photographs or images require editing in order to be used in different places. Medical Applications
• We detail Applications The use of computer graphics for medical diagnosis has provided an extraordinary ability to visualize measure and evaluate structures in a non-intrusive manner.
• Presentation and Business Graphics For the preparation of reports or summarizing the financial, statistical, mathematical, scientific, economic data for research reports, managerial reports, moreover creation of bar graphs, pie charts, time chart, can be done using the tools present in computer graphics.
• Simulation and Virtual Reality A simulation can also take the form of a computer-graphics image that represents dynamic processes in an animated sequence. Virtual reality applications are applications that make use of virtual

		mality (VD) VD is an immensive sense we even in a start start start	
		reality (VR). VR is an immersive sensory experience that digitally simulates a remote environment.	
	b	List / name two line drawing algorithms.	2 M
	Ans	Digital Differential Analyzer (DDA) Algorithm	Any two
	Alls		names: 2 M
		Bresenham's Line Drawing Algorithm	
	C	Explain the need of homogeneous co-ordinates matrix.	2 M
	Ans	Homogeneous coordinates are used extensively in computer vision and	Explanation: 2
		graphics because they allow common operations such as translation, rotation,	Μ
	1	scaling and perspective projection to be implemented as matrix operations.	2 1/
	d	Define polygon clipping.	2 M
	Ans	A set of connected lines are considered as polygon; polygons are clipped	Any suitable
		based on the window and the portion which is inside the window is kept as it	definition: 2 M
		is and the outside portions are clipped.	
		OR Polygon clipping is removal of part of an object outside a polygon.	
	е	Draw Cubic Bezier Curve.	2 M
	Ans	Draw Cubic Bezier Curve.	Any similar
	AIIS		•
			type of curve: 2 M
			IVI
		OR	
	f	Define Bitmap Graphics.	2 M
	Ans	• A bitmap is an image or shape of any kind-a picture, a text character,	Any suitable
		a photo-that's composed of a collection of tiny individual dots. A wild	definition: 2 M
		landscape on your screen is a bitmapped graphic, or simply a bitmap.	
		• It is a pixel based image, not scalable and size of image is high.	
	g	List various character generation methods.	2 M
	Ans	Stroke Method	Any two
		Bitmap Method	names: 2 M
		 Starburst Method 	
2		Attempt any THREE of the following :	12 M
	a	Write short note on Augmented Reality.	4 M
	Ans	• Augmented reality (AR) is made up of the word "augment" which	Explanation:
		means to make something great by adding something to it.	4M
		 Augmented Reality is a type of virtual reality that aims to duplicate 	
		• Augmented Reality is a type of virtual reality that aims to duplicate the world's environment in a computer.	
		*	
		• Augmented reality is a method by which we can alter our real world by adding some digital elements to it	
		by adding some digital elements to it.	

		• This is done by superimposing a digital image on the person's current	
		view thus it enhances the experience of reality.	
		• Virtual reality makes a virtual environment and puts the user in it	
		whereas Augmented reality just adds the virtual components into the	
		user's real-world view.	
		• For Augmented reality you only need a modern smartphone then you	
		can easily download an AR app like Google's " just a line " and try	
		this technology.	
		• One of the most popular ways AR has infiltrated everyday life is through mobile games. In 2016, the AB game "Bakéman Co" has a mobile games and the second	
		through mobile games. In 2016, the AR game "Pokémon Go" became a sensation worldwide, with over 100 million estimated users at its	
		peak, according to CNET.	
		 The goal of Augmented Reality is to create a system in which the user 	
		cannot tell the difference between the real world and the virtual	
		augmentation of it. Today Augmented Reality is used in	
		entertainment, military training, engineering design, robotics,	
		manufacturing and other industries.	
	b	Explain scan line algorithm of polygon clipping.	4 M
A	Ans	• For each scan line crossing a polygon, the area-fill algorithm locates	Algorithm: 4 M
		the intersection points of the scan line with the polygon edges.	_
		• These intersection points are then sorted from left to right, and the	
		corresponding frame-buffer positions between each intersection pair	
		are set to the specified fill color.	
		• Scan line algorithm works by intersecting scan line with polygon	
		edges and fills the polygon between pairs of intersections. The	
		following steps depict how this algorithm works.	
		Step 1: Find out the Y_{min} and Y_{max} from the given polygon.	
		Scan line	
		p_0 p_1 p_2 p_3	
		· ·	
		Y _{min}	
		• Step 2 : ScanLine intersects with each edge of the polygon from	
		Ymin to Ymax. Name each intersection point of the polygon. As per	
		the Fig. 2.21 shown, they are named as p0, p1, p2, p3.	
		• Step 3 : Sort the intersection point in the increasing order of X	
		coordinate (n^2, n^2) and (n^2, n^2)	
		i.e. (p0, p1), (p1, p2), and (p2, p3).	

	• Step 4 : Fill all those pair of coordinates that are inside polygons and ignore the alternate pairs.	
c	Write 2D and 3D scaling matrix.	4 M
Ans		2D matrix: 2
	 Scaling means to change the size of object. This change can either be 	2D matrix. 2 M,
	positive or negative.	3D matrix: 2 M
	 To change the size of an object, scaling transformation is used. In the 	
	scaling process, you either expand or compress the dimensions of the object.	
	• Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result.	
	• Let us assume that the original co-ordinates are (X, Y), the scaling factors are (S _X , S _Y), and the produced co-ordinates are (X', Y'). This can be mathematically represented as shown below:	
	$\circ \mathbf{X'} = \mathbf{X} \cdot \mathbf{S}_{\mathbf{X}} \text{ and } \mathbf{Y'} = \mathbf{Y} \cdot \mathbf{S}_{\mathbf{Y}}$	
	• The scaling factor S _X , S _Y scales the object in X and Y direction respectively. The above equations can also be represented in matrix form as below:	
	$\begin{bmatrix} \mathbf{X'} \\ \mathbf{Y'} \end{bmatrix} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{\mathbf{X}} & 0 \\ 0 & \mathbf{S}_{\mathbf{y}} \end{bmatrix}$	
	OR	
	P'	
	$=\mathbf{P}\cdot\mathbf{S}$	
	• Where, S is the scaling matrix.	
	• The scaling process is shown in the Fig	
	•	
	20- <u>-</u>	
	15	
	5 A 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
	(a) Before Scaling (b) After Scaling	
	3D Scaling Matrix	

d	$S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ It specifies three co-ordinates with their own scaling factors. If scale factors, Sx = Sy = Sz = S > 1 then the scaling is called as magnification. Sx = Sy = Sz = S < 1 then the scaling is called as reduction. Therefore, point after scaling with respect to origin can be calculated as, $P=P \cdot S$ Explain midpoint subdivision line clipping algorithm. Step 1: Scan two end points for the line P1(x1, y1) and P2(x2, y2).	4 M Algorithm: 4 M
	 Step 1: Scan two end points for the fille fill(x1, y1) and f2(x2, y2). Step 2: Scan corners for the window as (Wx1, Wy1) and (Wx2, Wy2). Step 3: Assign the region codes for endpoints P1 and P2 by initializing code with 0000. Bit 1 - if (x < Wx1) Bit 2 - if (x > Wx2) Bit 3 - if (y < Wy1) Bit 4 - if (y > Wy2) Step 4: Check for visibility of line P1, P2. If region codes for both end points are zero then the line is visible, draw it and jump to step 6. If region codes for end points are not zero and the logical Anding operation of them is also not zero then the line is invisible, reject it and jump to step 6. If region codes for end points does not satisfies the condition in 4 (i) and 4 (ii) then line is partly visible. Step5: Find midpoint of line and divide it into two equal line segments and repeat steps 3 through 5 for both subdivided line segments until you get completely visible and completely invisible line segments. 	
e	Explain interpolation techniques in curve generation.	4 M
Ans	Specify a spline curve by giving a set of coordinate positions, called control points, which indicates the general shape of the curve These, control points are then fitted with piecewise continuous parametric polynomial functions in one of two ways. When polynomial sections are fitted so that the curve passes through each control point, the resulting curve is said to interpolate the set of control points. On the other hand, when the polynomials are fitted to the general control -point path without necessarily passing through any control point, the resulting curve is said to approximate the set of control points interpolation curves are commonly used to digitize drawings or to specify animation paths. Approximation curves are primarily used as design tools to	Diagram: 2 M, Explanation: 2 M

		structure object surfaces an approximation spline sur face credited for a design application. Straight lines connect the control -point positions above the surface. Interpolation using univariate spline	
3		Attempt any THREE of the following :	12 M
	a	Explain with diagram the techniques of Raster Scan Display.	4 M
	Ans	• The most common type of graphics monitor employing a CRT is the	Explanation: 2
		Raster-scan displays, based on television technology	М,
		• JPG images are raster based. Light occurs when an electron beam	Diagram: 2 M
		stimulates a phosphor.	
		• In Raster scan, the electron beam from electron gun is swept	
		horizontally across the phosphor one row at time from top to bottom.	
		• The electron beam sweeps back and forth from left to right across the	
		screen. The beam is on, while it moves from left to right. The beam is off, when it moves back from right to left. This phenomenon is called	
		the horizontal retrace.	
		 As soon as the beam reaches the bottom of the screen, it is turned off 	
		and is rapidly retraced back to the top to start again. This is called the	
		vertical retrace.	
		• Raster scan displays maintain the steady image on the screen by	
		repeating scanning of the same image. This process is known as	

b	 Picture definition is stored in a memory area called the refresh buffer or frame buffer. This memory area holds the set of intensity values for all the screen points. The stored intensity values are then retrieved from frame buffer and painted on the screenone row at a time. Each screen point is referred as Pixel orpel. Each pixel on the screen can be specified by it row and column number. Intensity range for pixel position depends on capability of the raster system. In black and white system, the point on screen is either on or off. Only one bit is needed to control the intensity of the screen. In case of color systems, 2 bits are requiredOne to represent ON (1), another one is OFF (0). Refreshing on raster scan is carried out at the rate of 60 to 80 frames per seconds. The video or display controller has direct access to memory locations in the frame buffer. It is responsible for retrieving data from the frame buffer and converts 0's and 1's in one line into its corresponding video signals and this is called a scan line. If the intensity is one (1) then controller sends a signal to display a dot in the corresponding position on the screen. If the intensity is zero (0) then no dot is displayed. 	4 M
 Ans	flood_fill(x,y,old_color,new_color)	Correct
	{	procedure: 4 M
	if(getpixel(x,y) = old_color)	
	{	
	<pre>putpixel(x,y,new_color);</pre>	
	flood_fill(x+1,y,old_color, new_color);	
	flood_fill(x-1,y,old_color, new_color);	
	flood_fill(x,y+1,old_color, new_color);	
	flood_fill(x,y-1,old_color, new_color);	
	flood_fill(x+1,y+1,old_color, new_color);	
	flood_fill(x-1,y-1,old_color, new_color);	
	flood_fill(x+1,y-1,old_color, new_color);	
	flood_fill(x-1,y+1,old_color, new_color);	

	}	
	}	
с	Explain 2D transformations with its types.	4 M
Ans	A transformation is a function that maps every position (x, y) into a new position (x', y'). Instead of applying the transformation function to every point in every line that makes up the object, we simply apply the function to the object vertices and then draw new lines between the resulting new endpoints. Basic Transformations:	2D transformation: 1 M, Types: 1 M each
	1)Translation 2)Scaling 3)Rotation	
	 1)Translation: A translation is applied to an object by repositioning it along a straight-line path from one coordinate location to another. Translation refers to the shifting (moving) of a point to some other place, whose distance with regard to the present point is known. Translation can be defined as "the process of repositioning an object along a straight line path from one co-ordinate location to new co-ordinate location." A translation moves an object to a different position on the screen. You can translate a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y) to get the new coordinate (X', Y') 	

From the above Fig. you can write that:
X' = X + tx
Y' = Y + ty
The pair (tx, ty) is called the translation vector or shift vector. The above equations can also be represented using the column vectors.
$\mathbf{P} = [\mathbf{X}] [\mathbf{Y}] \mathbf{p}'$
= [X] [Y] T = [tx] [ty]
XX 7 ', ',
We can write it as,
$\mathbf{P}' = \mathbf{P} + \mathbf{T}$
Rotation
• Rotation as the name suggests is to rotate a point about an axis.
The axis can be any of the co-ordinates or simply any other
specified line also.
• In rotation, we rotate the object at particular angle θ (theta) from
its origin. From the following figure, we can see that the point
$P(X, Y)$ is located at angle φ from the horizontal X coordinate
with distance r from the origin.
• Let us, suppose you want to rotate it at the angle θ . After rotating
it to a new location, you will get a new point P' (X', Y').
it to a new ideation, you will get a new point 1 (11, 1).
Using standard trigonometric the original coordinate of point P(X, Y) can be
represented as:
$X = r \cos \phi \tag{1}$
±
$Y = r \sin \phi \tag{2}$
Some way we can represent the point $\mathbf{P}'(\mathbf{V}', \mathbf{V}')$ as:
Same way we can represent the point P' (X', Y') as: $x' = r \cos(h + 0) = r \cos h \cos 0$, $r \sin h \sin 0$ (2)
$\mathbf{x}' = \mathbf{r} \cos \left(\phi + \theta \right) = \mathbf{r} \cos \phi \cos \theta - \mathbf{r} \sin \phi \sin \theta \tag{3}$
$y' = r \sin (\phi + \theta) = r \cos \phi \sin \theta + r \sin \phi \cos \theta$ (4)
Substituting equation (1) and (2) in (3) and (4) respectively, we will get
$\mathbf{x}' = \mathbf{x}\cos\theta - \mathbf{y}\sin\theta$
$y' = x \sin \theta + y \cos \theta$
Representing the above equation in matrix form,

 $\begin{bmatrix} X' Y' \end{bmatrix} = \begin{bmatrix} X' Y' \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ OR $P' = P \cdot R$ Where, R is the rotation matrix $\mathbf{R} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ The rotation angle can be positive and negative. Scaling: Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. Let us assume that the original co-ordinates are (X, Y), the scaling factors are (SX, SY), and the produced co-ordinates are (X', Y'). This can be mathematically represented as shown below: X' = X .SX and Y' = Y .SYThe scaling factor SX, SY scales the object in X and Y direction respectively. The above equations can also be represented in matrix form as below: $\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$ OR $P' = P \cdot S$ Where, S is the scaling matrix.

		The following figure shows text clipping –	
		STRING 1 STRING 2 STRING 2	
		STRING 3	
		(a) Before Clipping (b) After Clipping This clipping method is based on characters rather than the entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then you reject only the portion of string being outside. If the character is on the boundary of the clipping window, then we discard only that portion of character that is outside of the clipping window.	
4		Attempt any THREE of the following :	12 M
	a	Explain inside and outside test for polygon.	4 M
	Ans	This method is also known as counting number method. While filling an object, we often need to identify whether particular point is inside the object or outside it. There are two methods by which we can identify whether particular point is inside an object or outside namely, Odd-Even Rule, and Non-zero winding number rule.	Explanation: 4 M
		1. Odd-Even Rule: In this technique, we count the edge crossing along the line from any point (x, y) to infinity. If the number of interactions is odd then the point (x, y) is an interior point. If the number of interactions is even then point (x, y) is an	

	Image: second	
	In another alternative method, give directions to all the edges of the polygon. Draw a scan line from the point to be test towards the left most of X direction. Given the value 1 to all the edges which are going to upward direction and all other -1 as direction values. Check the edge direction values from which the scan line is passing and sum up them. If the total sum of this direction value is non-zero, then this point to be tested is an interior point, otherwise it is an exterior point. In the above figure, we sum up the direction values from which the scan line is passing then the total is $1 - 1 + 1 = 1$; which is non-zero. So the point is said to be an interior point.	
b	Explain composite transformation over arbitrary point.	4 M
Ans	 To do rotation of an object about any selected arbitrary point. To do rotation of an object about any selected arbitrary point P1(x1,y1), following sequence of operations shall be performed. 1. Translate: Translate an object so that arbitrary point P1 is moved to coordinate origin. 2. Rotate: Rotate object about origin. 3. Translate: Translate object so that arbitrary point P1 is moved back to the its original position. Rotate about point P1(x1,y1). 1) Translate P1 to origin. 2) Rotate 3) Translate back to P1. Equation for this composite transformation matrix form is as follows: 	Explanation: 2 M, Matrix: 1 M, Diagram: 1M

	d	Write DDA Arc ge	4 M			
	d Ans	Write DDA Arc ge 1. Read the centre o 2. Read the arc angl 3. Read the starting 4. Calculate $d\Theta$ $d\Theta=\min(0.01,1/3.2*$ 5. Initialize angle = 6. while (angle < Θ) do { Plot(x,y) x=x-(y-y0) * $d\Theta$ y=y-(x-x0) * $d\Theta$ Angle =Angle + $d\Theta$	4 M Correct algorithm: 4 M			
		}				
		7. stop				
5		Attempt any TWO	of the follow	ing ·		12 M
5	a	Use Bresenham's li				
		(15,10).				
	Ans	x1 = 6 y1 =	5 & x2 = 1	5 y2 = 10		Calculations of dx, dy and p: 2
		Calculation	Result			M; Calculations of
		dx = abs(x1 - x2)	9 = abs(6 - 15)			steps: 4 M
		dy = abs(y1 - y2)	5 = abs(5 - 10)			
		p = 2 * (dy - dx)	-8 = 2 * (5 - 9)			
		ELSE	x = x1 y = y1 end = x2			
			x = 6 y = 5 end = 15			
		S T E Pwhile(x < end)	x = x + 1	$if(p < 0) \{ p = p = 2 * dy \} else \{ p = p + 2 * (dy - dx) \}$	=	
		1 7 < 15	7 = 6 + 1	IF 2 = -8 + 2 * 5	x = 7 y = 5	
		2 8 < 15	$8 = 7 + 1 \qquad ELSE - 6 = 2 + 2 \\ (5 - 9)$		* x = 8 y = 6	

3	9 < 15	9 = 8 + 1	IF $4 = -6 + 2 * 5$	x = 9 y = 6	
4	10 < 15	10 = 9 + 1	ELSE -4 = 4 + 2 * (5 - 9)	x = 10 y = 7	
5	11 < 15	11 = 10 + 1	IF $6 = -4 + 2 * 5$	x = 11 y = 7	
6	12 < 15	12 = 11 + 1	ELSE -2 = 6 + 2 * (5 - 9)	x = 12 y = 8	
7	13 < 15	13 = 12 + 1	IF 8 = -2 + 2 * 5	x = 13 y = 8	
8	14 < 15	14 = 13 + 1	ELSE 0 = 8 + 2 * (5 - 9)	x = 14 y = 9	
9	15 < 15	15 = 14 + 1	ELSE -8 = 0 + 2 * (5 - 9)	x = 15 y = 10	
			OR		

Δ.	$x_{1} = 6$ $x_{2} = 15$ $x = 1x_{2}$ $y = 1y_{2} = 1$ $x = x_{1}$ y = y e = 2	$Y_{1} = 10$ $- \chi_{1} = 15$ $Y_{1} = 10 - 5$ = 6 1 = 15 $\times \Delta Y - \Delta \chi$ $\times 5 - 9$ $y_{1} = 10$	-6] = 09			
	1 2 3 4 5	(6,5) (7,6) (8,6) (9,7) (10,7)	2 6 7 8 9 10 11 12	л с с Г Г 8 8	e 1 -8 2 -6 4 -4 6	
	6 7 8 9 10	(11, 8) (12, 8) (13, 9) (14, 9) (15, 10)	12 13 14 15	9 9 10	-2 8 0	

#define N 32 #define K 3 #define MAX N * K typedefstruct{int x; int y; } point; void rot(int n, point *p, int rx, int ry){ int t; if(!ry){ if(rx == 1){ p - x = n - 1 - p - x;p -> y = n - 1 - p -> y;} t = p - x; $p \rightarrow x = p \rightarrow y;$ $p \rightarrow y = t;$ } } void d2pt(int n, int d, point *p){ int s = 1, t = d, rx, ry; p -> x = 0;p -> y = 0;while (s < n)rx = 1&(t / 2); $ry = 1\&(t ^ rx);$ rot(s, p, rx, ry); p->x += s * rx; p -> y += s * ry;t /= 4; s *= 2; } } int main(){ int d, x, y, cx, cy, px, py; char pts[MAX][MAX]; point curr, prev; for(x = 0; x < MAX; ++x)

	Ans	 STROKE METHOD Stroke method is based on natural method of text written by human being. In this method graph is drawing in the form of line by line. 	Each Method of character generation: 2 M			
		iii. Bitmap				
		ii. Starburst				
	a	i. Stroke	U IVI			
6	a	Attempt any TWO of the following : Explain character generation methods:	12 M 6 M			
6		Attempt ony TWO of the following :	12 M			
		}				
		return0;				
		}				
		<pre>printf("\n");</pre>				
		for(y = 0; y < MAX; ++y)printf("%c", pts[y][x]);				
		for(x = 0; x < MAX; ++x){				
		}				
		prev = curr;				
		$\begin{cases} 101(x - cx + 1, x < px, ++x) \text{ pis}[x][cy] = _, \\ \end{cases}$				
		else for($x = cx + 1$; $x < px$; ++x) pts[x][cy] = '_';				
		} else{				
		for(y = cy + 1; y < py; ++y) pts[cx][y] = '';				
		else				
		for(y = py + 1; y < cy; ++y) pts[cx][y] = ' ';				
		if(py < cy)				
		if(cx == px)				
		py = prev.y * K; pts[cx][cy] = '.';				
		cy = curr.y * K; px = prev.x * K;				
		cx = curr.x * K;				
		d2pt(N, d, &curr);				
		$for(d = 1; d < N * N; ++d)$ {				
		pts[0][0] = '.';				
		prev.x = prev.y = 0;				
		for(y = 0; y < MAX; ++y) pts[x][y] = ' ';				

c	Explain Cyrusblek line clipping algorithm.	6 M
Ans	 Cyrus Beck Line Clipping algorithm: Cyrus Beck Line Clipping algorithm is used to clip 2D/3D lines against convex polygon/polyhedron. Cyrus Beck Line clipping algorithm is actually, a parametric line-clipping algorithm. The term parametric means that we require finding the value of the parameter t in the parametric representation of the line segment for the point at that the segment intersects the clipping edge. Consider line segment P₁P₂. The parametric equation of line segment P₁P₂ is, P(t) = P₁ + t(P₂ - P₁) (1) Where, t value defines a point on the line going through P1 and P2. 0 <= t <= 1 defines line segment between P1 and P2. If t = 0 then P(0) = P₁. 	Description of algorithm: 6 M **Cyrus Beck is considered instead of Cyrusblek
	If $t = 1$ then $P(1) = P_2$. • Consider a convex clipping region R, f is a boundary point of the convex region R and n is an inner normal for one of its boundaries as shown in Fig	
	 Convex region, boundary point and inner normal. Then we can distinguish in which region a point lie by looking at the value of the dot product n.[P(t) - f], as shown in Fig. If dot product is negative i.e., n.[P(t) - f] < 0 (2) then the vector P(t) - f] is pointed away from the interior of R. If dot product is zero i.e., n.[P(t) - f] = 0 (3) then the vector P(t) - f] is pointed parallel to the plane containing f and perpendicular to the normal. If dot product is positive i.e., 	
	$\begin{array}{l} n.[P(t) - f] < 0 & \dots (2) \\ \text{then the vector } P(t) - f] \text{ is pointed away from the interior of } R. \\ \bullet \text{ If dot product is zero i.e.,} \\ n.[P(t) - f] = 0 & \dots (3) \\ \text{then the vector } P(t) - f] \text{ is pointed parallel to the plane containing } f \text{ and} \end{array}$	

$t = -(n_i.Wi) / (n_i.D) \dots (9)$	
where, $D \neq 0$ and $i = 1, 2, 3$	
• The equation (9) is used to obtain the value of t for the intersection of the	
line with each edge of the clipping window. We must select the proper	
value for t using following tips :	
1. If t is outside the range $0 \le t \le 1$, then it can be ignored.	
2. We know that, the line can intersect the convex window in at most two	
points, i.e. at two values	
of t. With equation (9), there can be several values of t in the range of $0 \le t$	
<= 1 . We have to choose the largest lower limit and the smallest upper	
limit.	
3. If $(n_i ext{ D}_i) > 0$ then equation (9) gives lower limit value for t and if $(n_i ext{ D}_i)$	
< 0 then equation (9)	
gives upper limit value for t.	
Algorithm Cyrus Beck Line Clipping Algorithm:	
Step 1 : Read end points of line P_1 and P_2 .	
Step 2 : Read vertex coordinates of clipping window.	
Step 3 : Calculate $D = P_2 - P_1$.	
Step 4 : Assign boundary point b with particular edge.	
Step 5 : Find inner normal vector for corresponding edge.	
Step 6 : Calculate D.n and $W = P_1 - b$	
Step 7 : If $D.n > 0$	
$t_{L} = -(W.n)/(D.n)$ else	
$t_{\rm U} = - (W.n)/(D.n)$ end if	
Step 8 : Repeat steps 4 through 7 for each edge of clipping window.	
Step 9 : Find maximum lower limit and minimum upper limit.	
Step 10 : If maximum lower limit and minimum upper limit do not satisfy	
condition $0 \le t \le 1$ then	
ignore line.	
Step 11 : Calculate intersection points by substituting values of maximum	
lower limit and minimum upper limit in parametric equation of line P_1P_2 .	
Step 12 : Draw line segment $P(t_L)$ to $P(t_U)$.	
Step 12 : Draw line segment I ((L) to I ((t)). Step 13 : Stop.	
Need an excel	