tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code:

: 22330

Model Answer

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define:	2M
		(i) Apparent power (ii) Real power	
	Ans:	(i) Apparent power	
		It is the product of rms values of applied voltage and circuit current.	1 M for
		Unit: volt-ampere (VA) OR kilo-volt-ampere (kVA) OR Mega-volt-ampere (MVA)	each definitio
		$S = VI = I^2 Z $ volt-ampere (VA)	n
		(ii)Real power	
		The active power is defined as the average power Pavg taken by or consumed by the given circuit.	
		(OR)	

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

	It is the power which is actually dissipated in the circuit resistance.	
	P =V.I.CosØ Unit: - Watt OR Kilowatt	
(b)	Write equation of resultant impedance in R-L circuit.	2M
Ans:	The equation of resultant impedance in R-L circuit	2 M fo
	$Z = \sqrt{(R^2 + X_L^2)}$	equati n
	Where ,R=Resistance	
	X_L =Inductive Reactance = $2\pi f L \Omega$.	
(c)	State condition for resonance in R-L-C series circuit.	2M
Ans:	The condition for resonance in R-L-C series circuit.	2M for
	i) Inductive Reactance should be equal to capacitive reactance. That is $X_L = X_C$	any tw condit
	ii) The power factor of the circuit is Cos ϕ = 1	ns
	iii)The voltage and current in the R-L-C series circuit are in phase with each other.	
	iv)Current in the circuit is maximum and given by I =V/R.	
	v)Impedance of the circuit is minimum and given by Z =R.	
(d)	Draw –	2M
	(i) Practical voltage source	
	(ii) Ideal current source	
Ans:	i) Practical voltage source	1 M fo
		each diagra

Subject Name: Electric circuits and network

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

			5
		$\begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$ $I_{1} = Y_{11}V_{1} + Y_{12}V_{2} \dots \dots 1$ $I_{2} = Y_{21}V_{1} + Y_{22}V_{2} \dots \dots 2$ $\downarrow \qquad \qquad$	
Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total
			Marks
	a)	For R-C series circuit draw	4M
		(i) Circuit diagram	
		(ii) Vector diagram	
		(iii) Waveform of voltage and current	
	Ans:	i)Circuit diagram	1M-
			circuit
			diagram, 1M-
			vector
			diagram,
			2M-
	1		wavefor
			ms

MAHARASHT BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 2700 tified)

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Subject Code: 22330

7

	• • •	$v = V_m \sin \omega t$ ned with $i = I_m \sin (t)$			
b)	Compar (i) (ii) (iii) (iii) (iv)	re series and parallel reso Resonating frequence Impedance Current Magnification			4M
Ans:					1M
	S. No	Parameter	Series Circuit	Parallel Circuit	eacl poir
	1	Resonating frequency	$f_r = \frac{1}{2\pi\sqrt{LC}}$	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$	
		Resonating frequency Impedance	$f_r = \frac{1}{2\pi\sqrt{LC}}$ Minimum, Z = R	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ Maximum, Z = L/CR	
	1				

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Model Answer

Subject Code:

^{el} 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Explain the concept of initial and final conditions in switching circuits for elements R and L.	4M
	Ans:	Concept of Initial and final condition in switching circuits for R: Consider a resistor is connected to a voltage source, using a switch as shown in fig below $\qquad \qquad $	2M for resistan ce 2M for inductan ce
		The switch is closed at time t = 0, so we get V= iR which is time independent equation. Here current changes as per voltage without any time delay. There is no change in the value of resistor R, it remains same for initial condition and final condition. R R Initial condition equivalent circuit at t=0+ equivalent circuit at t= ∞	
		Concept of Initial and final condition in switching circuits for L:	
		Consider a inductor is connected to voltage source as shown in fig below:	

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

» 22330

Model Answer

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

$$= \frac{R_{12} (R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}}$$

In case of star network the resistance between the terminals 1 and 2 is=R1+R2, so we get

$$R_{1} + R_{2} = \frac{R_{12} (R_{23} + R_{31})}{R_{12} + R_{23} + R_{31}}$$

$$R_{2} + R_{3} = \frac{R_{23} (R_{31} + R_{12})}{R_{12} + R_{23} + R_{31}}$$

$$R_{3} + R_{1} = \frac{R_{31} (R_{12} + R_{23})}{R_{12} + R_{23} + R_{31}}$$

$$\dots = H \& HIII)$$

Subtracting equation(ii) from(i), we get

$$R_{1} - R_{3} = \frac{R_{12} R_{23} + R_{12} R_{31} - R_{23} R_{31} - R_{23} R_{12}}{R_{12} + R_{23} + R_{31}}$$

$$R_{1} - R_{3} = \frac{R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$\dots = H \& HIII$$

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

$2 R_{1} = \frac{R_{31} R_{12} + R_{31} R_{23} + R_{12} R_{31} - R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$ $R_{1} = \frac{R_{31} R_{12}}{R_{12} + R_{23} + R_{31}}$ $R_{2} = \frac{R_{12} R_{23}}{R_{12} + R_{23} + R_{31}}$ $R_{3} = \frac{R_{23} R_{31}}{R_{12} + R_{23} + R_{31}}$ The super position theorem. Write steps to find current in an element using super sition theorem.	
sition theorem. Itement of superposition theorem: In any linear network containing two or more sources, e current in any element is equal to algebraic sum of the current caused by individual	4M 2M – state
urce acting alone, while the other sources are replaced for the time being by resistances	nt
ual to their internal resistances. eps to find current using superposition theorem: Select any one energy source.	2M fo
Replace all other energy sources i.e. voltage source by short circuit and current source by en circuit.	
Calculate voltage drop and branch current due to selected energy source.	
Repeat steps 1,2,3 for each source individually.	
Add algebraically the voltage drops and branch currents to obtain combined effect of all	
Ri ei Ca	eplace all other energy sources i.e. voltage source by short circuit and current source by n circuit. alculate voltage drop and branch current due to selected energy source. epeat steps 1,2,3 for each source individually.

tified)

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

Q. No.	Sub Q. N.		Marking Scheme
4			12- Total Marks
	(a)	A series combination of resistance 100 ohm and capacitance 50µf is connected in series to a 230 V, 50HZ supply. Calculate (i) Capacitive reactance (ii) Current (iii) Power factor (iv) Power consumed	4M
	Ans:	Solution: For RC series circuit	
			1M
			1M 1M

15

TONER O BOARD OF TECHNICAL EDUCATION دلألأد

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Electric circuits and network

Subject Code: 22330

	Given R=100 A, C=50 Mf, V=230V, f=50 Hz (i) Capacitive Reactance $X_c = \frac{1}{2\pi fc} = \frac{1}{2\pi x 50 x 50 x 10^6} = \frac{63.66 A}{2\pi x 50 x 10^6}$	1M
	(ii) Current $I = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + \chi_c^2}} = \frac{230}{\sqrt{(100)^2 + (63.66)^2}}$ $= \frac{230}{118.54} = 1.94 \text{ A}$	
	(111) power factor $\cos \phi = \frac{R}{Z} = \frac{100}{118.54} = \frac{0.8435}{1.8.54}$ leading	
	(iv) Power consumed $P = V I \cos \phi = 230 \times 1.94 \times 0.8435$ = 376.36 W	
(b)	Two unpedauces given by Z1 = 10 + j5 and Z2 = 8 + j9 are joined in parallel and connected across a voltage of V = 200 + j0. Calculate the circuit current and branch currents. Draw the vector diagram.	4M
Ans:	Solution: Given, Z1=10+j5, Z2=8+j9, V=200+j0	

BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

	(a) Total admittone $Y = Y_{1} + Y_{2} = \frac{1}{Z_{1}} + \frac{1}{Z_{2}} = \frac{1}{(10+15)} + \frac{1}{(8+19)}$ $= \frac{1}{11 \cdot 18 \cdot 226 \cdot 56} + \frac{1}{12 \cdot 04 \cdot 248 \cdot 36}$	1M
	$= 0.0892.26.56^{\circ} + 0.083248.36^{\circ}$ = (0.08-0.04j) + (0.06-0.06j) = 0.14-0.1j	
	$= 0.17 \ 2.35.53^{\circ}$ (b) Circuit current, I = V × Y =(200 2°) (0.17235.53^{\circ})	1M
	$= \frac{342 - 35 \cdot 53^{\circ}}{4} $ (a) Branch current $I_1 = V \times Y_1$ = (200 20°) (0.0892-26.56°)	1M
	$= \frac{17.8 \ 2 - 26.56^{\circ}}{12} = $	
	$= 16.6 \ 2 - 48.36^{\circ} \ \Lambda$ (1) Vector Diagram $\xrightarrow{35.13^{\circ}} \ V = 200 \ V$	1M
(c)	An a.c series circuit has resistance of 10ohm, inductance of 0.1H and capacitance of 10µf,	4M

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

Ans:	Solution: For RLC series circuit	
	Given: R= 10.12, L= 0.1H, C= 10.11F, V= 200V	
	(i) Resonant frequency $f_7 = \frac{1}{2\pi \sqrt{L_c}} = \frac{1}{2\pi \sqrt{0.1 \times 10 \times 10^6}}$	
	(1) Resonant frequency fr=	2M
	2TULG 2TULG 2TULD 1 XIOXIO	
	= 159.13 Hz	
	(ii) current at resonance - v ===	1M
	(ii) current at resonance, $I = \frac{V}{Z}$ = $\frac{159.13 \text{ Hz}}{Z}$	
	- V 200 - 00 A	
	$=\frac{V}{R}=\frac{200}{10}=20$ A	
	(iii) Power at resonance	1M
	$P = V I \cos \phi$	TIM
	$= 200 \times 20 \times 1 = 4000 \text{W}$	
	: 4 KW	
(d)	Use mesh analysis to calculate ammeter current in Fig No. 1	4M

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

(e)	Find the Norton equivalent resistance for the network shown in Fig No. 2	4M
	1502 A millo A 602	
	20v Jion 4vr Fig. No. 2	
	<u> </u>	
Ans:	Solution: To find Norton's equivalent resistance removing voltage source and current source. Voltage source is replaced by short circuit and current source is replaced by open circuit so, we get circuit as	Diagram :1M
		R _N calculati n :3M

WINTER-19 EXAMINATION

Subject Code: 22330

BOARD OF TECHNICAL EDUCATION دلألأد

tified)

Subject Name: Electric circuits and network

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

BOARD OF TECHNICAL EDUCATION

tified)

Subject Name: Electric circuits and network

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

22330

Model Answer

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

A, B, C, D are the parameters of cascade network from

$$\begin{bmatrix} A & B \\ c & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \end{bmatrix} \begin{bmatrix} A_1 & B_2 \\ c_2 & D_1 \end{bmatrix}$$
For cascade configuration, ABCD parameters has to
be multiplied.
ii)Series Configuration
 V_1
 V_1
 V_2
 V_3
 V_4
 V_1
 V_2
 V_3
 V_4
 V_5
 V_1
 V_2
 V_3
 V_4
 V_2
 V_3
 V_4
 V_2
 V_3
 V_4
 V_5
 V_1
 V_2
 V_3
 V_4
 V_2
 V_3
 V_4
 V_5
 V_5
 V_1
 V_2
 V_3
 V_4
 V_2
 V_3
 V_4
 V_2
 V_3
 V_4
 V_5
 V_1
 V_2
 V_3
 V_4
 V_5
 V_1
 V_2
 V_3
 V_1
 V_2
 V_3
 V_1
 V_2
 V_3
 V_4
 V_2
 V_3
 V_4
 V_5
 V_1
 V_1
 V_2
 V_3
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_2
 V_1
 V_2
 V

WINTER-19 EXAMINATION

Subject Code: 22330

Subject Name: Electric circuits and network

Subject Code: 22330

Model Answer

		Marks
a)	Find current in 40 Ω and 10 Ω in Fig no. 4 node voltage analysis method.	6M
	Fig. No. 4	

Subject Code: 22330

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

WINTER-19 EXAMINATION

Subject Code: 22330

Model Answer

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) tified) (ISO/IEC - 2700

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

Model Answer

Subject Name: Electric circuits and network

Subject Code:

: 22330

tified)

Subject Name: Electric circuits and network

WINTER-19 EXAMINATION

Subject Code: 22330

WINTER-19 EXAMINATION

Subject Code:

: 22330

Model Answer

0.25 0.28