(ISO/IEC - 2700 rtified)

# WINTER – 19EXAMINATION

MAHARASHTI (Autonomous)

## Subject Name: Applied Electronics Model Answer Subject Code:

22329

### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.<br>No. | Sub<br>Q. N. |                            |                                                                                     | Answer                                                                                                                              |                                                                                                                                | Marking<br>Scheme   |
|-----------|--------------|----------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Q.1       |              | Attempt any l              | TVE of the followin                                                                 | ıg:                                                                                                                                 |                                                                                                                                | 10-Total<br>Marks   |
|           | a)           | List the types             | of coupling used in                                                                 | BJT amplifier.                                                                                                                      |                                                                                                                                | 2M                  |
|           | Ans:         | i. Resistar<br>ii. Impedar | ng used in BJT amp<br>ce capacitance (RC)<br>ce coupling<br>mer coupling<br>oupling |                                                                                                                                     |                                                                                                                                | Each ½ M            |
|           | b)           |                            |                                                                                     | gnal amplifier with power amplifier(any four)                                                                                       |                                                                                                                                |                     |
|           | Ans:         | Sr.N                       | lo Parameters                                                                       | Small signal<br>Amplifiers                                                                                                          | Power Amplifiers                                                                                                               | Any four<br>points: |
|           |              | 1                          | Amplification<br>quantity                                                           | It increases voltage<br>into high resistance<br>load. Hence small<br>signal amplifiers are<br>also called as<br>voltage amplifiers. | It increases power<br>into low resistance<br>load. Hence these<br>amplifiers are also<br>called as large<br>signal amplifiers. | each ½ M            |
|           |              | 2                          | Current<br>Gain(β)                                                                  | High(typically 100)                                                                                                                 | Low(5 to 20)                                                                                                                   |                     |
|           |              | 3                          | Input<br>Resistance(R <sub>i</sub> )                                                | Quite low                                                                                                                           | Very large                                                                                                                     |                     |
|           |              | 4                          | Output                                                                              | High                                                                                                                                | low                                                                                                                            |                     |



|          |            |                  | Impedance(R <sub>o</sub> ) |                                    |                                   |                                    |
|----------|------------|------------------|----------------------------|------------------------------------|-----------------------------------|------------------------------------|
|          |            | 5                | Physical size              | Small                              | Large in size                     |                                    |
|          |            | 6                | Coupling                   | R-C coupling                       | Transformer                       |                                    |
|          |            |                  |                            |                                    | coupling                          |                                    |
|          |            | 7                | Power output               | low                                | High                              |                                    |
| c)       | State four | r advanta        | ages of negative           | feedback used in feedba            | ack amplifier.                    | 2 <b>M</b>                         |
| Ans:     | 0          |                  | gative feedback:           | (Any Four)                         |                                   | Each <sup>1</sup> / <sub>2</sub> M |
|          |            |                  | lecreases                  |                                    |                                   |                                    |
|          |            |                  | tput decreases             |                                    |                                   |                                    |
|          |            |                  | gain of amplifier          | improves                           |                                   |                                    |
|          |            |                  | an amplifier.              |                                    |                                   |                                    |
|          | -          |                  | point is stabilized.       |                                    | d output resistance decreases in  |                                    |
|          |            |                  | figurations.               | certain configuration an           | u output resistance decreases in  |                                    |
|          |            |                  | is increased               |                                    |                                   |                                    |
| d)       |            |                  | criteria of oscill         | ation.                             |                                   | 2M                                 |
| <br>Ans: | Where, Av  | v = gain c       | of an amplifier wi         | thout feedback also calle          | ed open loop gain                 | 1M                                 |
|          |            | -                | -                          | and open loop gain. It is          |                                   |                                    |
|          |            |                  |                            |                                    | cillations. for positive feedback |                                    |
|          | are:       |                  | -                          |                                    | -                                 |                                    |
|          | 1. βΑ      | $\mathbf{A} = 1$ |                            |                                    |                                   | 1M                                 |
|          | 2. To      | tal phase        | shift should be 3          | $60^{\circ} \text{ or } 0^{\circ}$ |                                   |                                    |
| e)       | Differenti | iate posit       | tive feedback and          | d negative feedback (fo            | ur points)                        | 2M                                 |
| Ans:     | Sr.        | Parame           | eter                       | Positive feedback                  | Negative feedback                 | Any Four                           |
|          | No.        |                  |                            |                                    |                                   | points                             |
|          | 1          | Faadha           | altainnal                  | In phase with the input            | t 180° out of phase               | Each ½ M                           |
|          |            | reedba           | ck signal                  | signal.                            | with the input signal.            |                                    |
|          |            |                  |                            | Signai.                            | with the liput signal.            |                                    |
|          | 2          | Net inp          | out signal                 | Increases                          | Decreases                         |                                    |
|          | 3          | Gain             |                            | Increases                          | Decreases                         |                                    |
|          | 4          | Noise I          | ncreases                   | Increases                          | Decreases                         |                                    |
|          | 5          | Stabilit         | у                          | Poor                               | Improved                          |                                    |
|          | 6          | Input in         | npedance                   | decreases                          | increases                         |                                    |
|          | 7          | Output           | impedance                  | increases                          | decreases                         |                                    |
|          | 8          | Uses             |                            | Oscillators, Schmitt               | Amplifiers,                       |                                    |
|          |            |                  |                            | trigger                            | bootstrapping                     |                                    |
|          |            |                  |                            |                                    |                                   |                                    |

| State the need of tuned amplifier in electronic circuits.(four points)                                                                                                                                                                                                                                                                                               | 2M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(Note:Any two points can be given full marks)</li> <li>Need of tuned amplifier: <ul> <li>i. Selects the desired radio frequency signal.</li> <li>ii. Amplifies the selected high or radiosignal to a suitable voltage level.</li> <li>iii. As a filter.</li> </ul> </li> </ul>                                                                              | 2M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| List the uses of heat sink (four points)                                                                                                                                                                                                                                                                                                                             | 2M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Uses of heat sink: <ol> <li>It is used to avoid thermal runaway in electronic circuits.</li> <li>Use to transfer heat generated by a mechanical or an electronic device to the surroundings.</li> <li>Use to optimize the heat exchange between component and surrounding by maximizing the contact surface between heat sink and air.</li> </ol></li></ul> | Each<br>point<br><sup>1</sup> / <sub>2</sub> M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>(Note: Any two points can be given full marks)</li> <li>Need of tuned amplifier: <ul> <li>i. Selects the desired radio frequency signal.</li> <li>ii. Amplifies the selected high or radiosignal to a suitable voltage level.</li> <li>iii. As a filter.</li> </ul> </li> <li>List the uses of heat sink (four points)</li> <li>Uses of heat sink: <ul> <li>i. It is used to avoid thermal runaway in electronic circuits.</li> <li>ii. Use to transfer heat generated by a mechanical or an electronic device to the surroundings.</li> <li>iii. Use to optimize the heat exchange between component and surrounding by</li> </ul> </li> </ul> |

| Q.2 |      | Attempt any THREE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12-Total<br>Marks                         |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|     | a)   | Explain the working principle of FET amplifier and list its two applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>4M</b>                                 |
|     | Ans: | Circuit diagram:<br>$R_1$ $R_D$ $V_{DD}$<br>$V_{IN}$ $V_{IN}$ $V_{G}$ $V_{GS}$ $V_{DS}$ | Circuit<br>diagram:<br>1 <sup>1</sup> ⁄2M |
|     |      | <ul> <li>Explanation:</li> <li>i. When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage. This produces variation in the drain current. As the gate to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 ½M                                      |
|     |      | <ul> <li>source voltage. This produces variation in the drain current. This the gate to source voltage increases, the drain current also increases. As the result of this voltage drop across R<sub>D</sub> also increases. This causes the drain voltage to decreases.</li> <li>ii. As the input voltage rises, gate to source voltage becomes less negative, it will increase the channel width and increase the level of drain current I<sub>D</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
|     |      | iii. As the input voltage falls, it will decrease the channel width and decrease the level of drain current I <sub>D</sub> . Thus I <sub>D</sub> varies sinusoidally above its Q point value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |
|     |      | <ul> <li>iv. The drain to source voltage V<sub>DS</sub> is given by V<sub>DS</sub> = V<sub>DD</sub> - I<sub>D</sub>R<sub>D</sub></li> <li>v. Therefore as I<sub>D</sub> increases the voltage drop I<sub>D</sub>R<sub>D</sub> will also increase and voltage V<sub>DS</sub> will decrease.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
|     |      | vi. If $\Delta I_D$ is large for a small value of $\Delta V_{GS}$ ; the $\Delta V_{DS}$ will also be large and we get amplification. Thus the AC output voltage $V_{DS}$ is 180° out of phase with AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |

| (Autono | RASHTI<br>mous)<br>EC - 2700 | BOARD OF TECHNICAL EDUCATION<br>rtified) |        |
|---------|------------------------------|------------------------------------------|--------|
|         |                              | input voltage.                           |        |
|         | Ар                           | oplications: (Any 2)                     | 1M     |
|         |                              | i. Low noise amplifier                   | (1/2 M |
|         | i                            | i. Buffer amplifier                      | each)  |
|         | ii                           | i. Cascade amplifier                     |        |
|         | iv                           | v. Analog switch                         |        |
|         |                              | v. Multiplexer                           |        |
|         | v                            | i. Chopper                               |        |
|         | vi                           | i. Current limiter                       |        |

#### Compare the performance of voltage series and current series type of negative **4**M b) feedback amplifiers.(four points)

| ns: | Sr.No   | Parameters     | voltage series negative feedback                                                                               | current series type     |          |
|-----|---------|----------------|----------------------------------------------------------------------------------------------------------------|-------------------------|----------|
|     |         |                | amplifiers                                                                                                     | negative feedback       |          |
|     |         |                |                                                                                                                | amplifiers              | Each poi |
|     | 1       | Block          |                                                                                                                |                         | -1M      |
|     |         | diagram        | $A = \frac{V_{\sigma}}{V_{i}}$ $A = \frac{V_{\sigma}}{V_{i}}$ $F_{v_{\sigma}} = \frac{V_{\sigma}}{V_{\sigma}}$ | Vin Op-amp              | RL RL    |
|     | 2       | Gain           | Decreases                                                                                                      | Decreases               |          |
|     | 3       | Output         | Decrease                                                                                                       | Increase                |          |
|     |         | resistance     | $Z_{if} = \frac{ZI}{1+\beta A}$                                                                                | $Z_{if}=Z_i(1+\beta A)$ |          |
|     | 4       | Input          | Increases                                                                                                      | Increase                |          |
|     |         | resistance     | $Z_{if}=Z_i(1+\beta A)$                                                                                        | $Z_{if}=Z_i(1+\beta A)$ |          |
|     | 5       | Disortion      | Decrease                                                                                                       | Decrease                |          |
| ]   | Draw th | e block diagra | am of SMPS and state its working princ                                                                         | iple.                   | 4M       |
| ns: | Diagran | n:             |                                                                                                                |                         | 2M       |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         |          |
|     |         |                |                                                                                                                |                         | 1        |





**4M** 

Circuit

diagram 1M BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous)



Page 6/16



MAHARASHTI (Autonomous) (ISO/IEC - 2700

| Q.3 |            | Attempt any THREE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-Total<br>Marks                |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|     | a)         | Classify the power amplifiers on the basis of operation and input/output waveforms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4M</b>                        |
|     | Ans:       | <ul> <li>Depending upon the operation and input/output waveforms power amplifiers are classified into following type.</li> <li>1) Class A amplifier.</li> <li>2) Class B amplifier.</li> <li>3) Class C amplifier.</li> <li>4) Class AB amplifier.</li> <li>5) Class D amplifier.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Any 4 types<br>1M each           |
|     | b)         | Describe the operation of class-C type of power amplifier with the help of neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4M                               |
|     | Ans:       | <ul> <li>Circuit diagram:</li> <li>Circuit diagram:</li> <li>Operation:</li> <li>Class C power amplifier is a type of amplifier where the transistor conducts for less than one half cycle of the input signal. Less than one half cycles means the conduction angle is less than 180° and its typical value is 80° to 120°.</li> <li>Biasing resistor R<sub>b</sub> pulls the base of Q<sub>1</sub> further downwards and the Q-point will be set below the cut-off point in the DC load line. As a result the transistor will start conducting only after the input signal amplitude has risen above the base emitter voltage (Vbe~0.7V) plus the downward bias voltage caused by R<sub>b</sub>. That is the reason why the major portion of the input signal is absent in the output signal.</li> <li>Inductor L<sub>1</sub> and capacitor C<sub>1</sub> forms a tank circuit which is used in the extraction of the required signal from the pulsed output of the transistor.</li> <li>Values of L1 and C<sub>1</sub> are so selected that the resonant circuit oscillates in one frequency (generally the carrier frequency) all other frequencies are attenuated.</li> </ul> | 2M<br>2M                         |
|     | <b>c</b> ) | Justify the need of current time base generator to obtain the specified sawtooth waveform with one example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4M                               |
|     | Ans:       | <ul> <li>Justification:-</li> <li>Current Time base generator is a circuit where the output current is a linear function of time over a specified time interval.</li> <li>Time base circuits are used by radar systems to determine range to a target, by comparing the current location along the time base to the time of arrival of radio</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Justification<br>2M,<br>Waveform |



## **Example:**

- A cathode ray tube (CRT) consists of three primary parts, the electron gun that provides a stream of accelerated electrons, the phosphor-covered screen that lights up when the electrons hit it, and the deflection plates that use magnetic or electric fields to deflect the electrons in-flight and allows them to be directed around the screen.
- It is the ability for the electron stream to be rapidly moved using the deflection plates that allow the CRT to be used to display very rapid signals.
- To display such a signal on an oscilloscope for examination, it is desirable to have the electron beam sweep across the screen so that the electron beam cycles at the same frequency as the carrier, or some multiple of that base frequency.
- This is the purpose of the current time base generator, which is attached to one of the set of deflection plates, normally the X axis, while the amplified output of the radio signal is sent to the other axis, normally Y. The result is a visual re-creation of the original waveform.



### Fig: A current time base circuit.



|     |      | However the current IADJ is very small and constant. Therefore the voltage drop across R2 due to IADJ is also very small and can be neglected.<br>Therefore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|     |      | $V_0=1.25.(1+\frac{R_1}{R_2})$<br>The output is a function of R <sub>1</sub> for a given value of R <sub>2</sub> and can be varied by adjusting the value of R <sub>1</sub> . The resistor R <sub>2</sub> usually is 240 ohm. Normally no capacitor is needed unless the LM317 is situated far from the power supply filter capacitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Output<br>equation-<br>1M |
| Q.4 |      | Attempt any THREE of the following :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-Total<br>Marks         |
|     | a)   | Draw the two stage BJT amplifier. State the formula for overall gain of this amplifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4M                        |
|     | Ans: | Diagram:<br>Vcc<br>R1<br>Vcc<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R2<br>R2<br>R2<br>R3<br>R2<br>R3<br>R2<br>R3<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R2<br>R3<br>R2<br>R3<br>R2<br>R3<br>R2<br>R3<br>R2<br>R3<br>R2<br>R3<br>R2<br>R3<br>R3<br>R3<br>R2<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R2<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3<br>R3 | 3M                        |
|     |      | Let $Av_1$ -Voltage gain of first amplifier<br>Av_2-voltage gain of second amplifier<br><b>Overall voltage gain, <math>Av = Av_1 * Av_2</math></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formula<br>1M             |
|     | b)   | Draw the circuit diagram of class AB power amplifier and describe its working.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4M                        |
|     | Ans: | Circuit diagram:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2M                        |
|     |      | The circuit consists of two center-tapped transformers $T_1$ and $T_2$ , two identical transistors $Q_1$ and $Q_2$ , Resistor R and diode D. The DC voltage developed across the diode D is connected to the bases of both the transistors through the secondary winding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |

| Ans: | Diagram:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2M        |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| c)   | feedback amplifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>4M</b> |  |  |  |
|      | <ul> <li>When positive half cycle of the input signal is applied, the base of Q<sub>1</sub> becomes positive and base of Q<sub>2</sub> negative. Therefore Q<sub>1</sub> is ON and Q<sub>2</sub> is OFF. As transistors Q<sub>1</sub> and Q<sub>2</sub> are biased just above cut off. Therefore as positive input cross zero, collector current ic<sub>1</sub> starts flowing through Q<sub>1</sub>, through transformer T<sub>2</sub> as shown and ic<sub>2</sub> = 0. A positive sinusoidal voltage will appear across load.</li> <li>When negative half cycle is applied across input the base of Q<sub>1</sub> becomes negative while the base of Q<sub>2</sub> is positive. Therefore Q<sub>1</sub> is off and Q<sub>2</sub> conduct, as soon as input cross zero, negative sinusoidal voltage will appear across load.</li> <li>With the help of neat circuit diagram, explain the operation of voltage shunt type</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |  |  |
|      | • Resistor $R_1$ , $R_2$ are chosen to provide biasing to the transistors $Q_1$ , $Q_2$ , input transformer $T_1$ provides phase splitting function in which two voltages are out of phase with each other. $V_{CC}$ is tied to the transistor collectors through the centre tapped output transformer $T_2$ . $R_e$ is stabilized resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |  |  |
|      | <b>Circuit operation:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |  |  |  |
|      | $V_{in} \bigcirc V_{in} \bigcirc V$ |           |  |  |  |
|      | OR<br>Circuit diagram:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |  |  |  |
|      | iv. Thus at any instant any one transistor in the circuit is conducting. Then the output transformer joins these two halves & produces a full sine wave in the load resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |
|      | <ul> <li>The base of the transistor Q<sub>2</sub> is positive and that of Q<sub>1</sub> is negative.</li> <li>As a result of this Q<sub>2</sub> conducts, while the transistor Q<sub>1</sub> is OFF.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |
|      | <ul> <li>The base of the transistor Q₁ is positive and that of Q₂ is negative.</li> <li>iii. As a result of this Q₁ conducts, while the transistor Q₂ is OFF. ¬ DURING DURING NEGATIVE HALF CYCLE:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2M        |  |  |  |
|      | <ul> <li>i. When there is no a.c. input signal is applied both the transistors Q<sub>1</sub>&amp; Q<sub>2</sub> are cut off. Hence no current is drawn from VCC.</li> <li>ii. DURING POSITIVE HALF CYCLE:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |  |  |
|      | equal to cut-in voltage and they will conduct for complete half cycleperiod of the input<br>to eliminate the cross-over distortion.<br>WORKING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |

|            | Fig. shows common emitter transistor amplifier with a feedback resistor $R_F$ connected<br>between its output and input terminals. This is collector to base biasing when the input<br>signal is applied to the input then amplified output $V_O$ is produced with 180 <sup>o</sup> phase shift<br>(out of phase with input) with the input.<br>Hence the feedback current is given by –<br>$I_F = \frac{V_b - V_o}{R_F}$<br>$\therefore V_b << V_o$<br>$\therefore I_f = -\frac{V_o}{R_F}$<br>Thus if we reduce the output voltage to zero then feedback voltage will reduce to zero,<br>therefore it is voltage feedback. As $I_S = I_f + I_i$ it is shunt type therefore it voltage shunt |                                                                              |                                                                         |              |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|--|--|
| <b>d</b> ) | negative feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en RC phase shift oscillator and                                             | l crystal oscillator.                                                   | 4M           |  |  |
| Ans:       | (Note: Any other relevant point also can be considered.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                         |              |  |  |
|            | Sr.<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RC phase shift oscillator                                                    | Crystal oscillator                                                      | points<br>1M |  |  |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | This oscillator is used for low frequency range.                             | Quartz crystal is mainly<br>used in radio-frequency<br>(RF) oscillators | each point   |  |  |
|            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Used resistor and capacitor<br>network to decide frequency<br>of oscillator. | Crystal decides the frequency of oscillator.                            |              |  |  |
|            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RC phase shift oscillators are comparatively less stable.                    | crystal oscillators are<br>highly stable                                |              |  |  |
|            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RC network is used as feedback network.                                      | Crystal is connected in feedback.                                       |              |  |  |
| <b>e</b> ) | Compare the fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed voltage regulators using 78X                                              | X and 79XX.(any four points)                                            | 4M           |  |  |
| Ans:       | (Note: Any other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r relevant point also can be con                                             | sidered.)                                                               | 1M           |  |  |



Sr. point 78xx 79xx No. It produces positive fixed It produces negative 1 DC voltage values, fixed DC voltage values IC 79xx (7905, IC 78xx (7805, 7806, 7808, 7906,7908,7912, 7915) -2 7812, 7815, 7818, 7824)-Negative Voltage Positive Voltage Regulator. Regulator 3 Output current is 1A Output current is 1.5A IC 3 IC 79XX Output Input 78XX Output Input 1 2 Ground 4 Ground OR OR 1-Input 1-Ground 2-Ground 2-Input 3-Output 3-Output Q.5 Attempt any TWO of the following 12 Total Marks Describe the operation of double tuned amplifier with the help of neat circuit **6M (a)** diagram and mention its applications. **Circuit diagram: 2M** Ans: /cc CC R-**Operation:** The signal to be amplified is applied at the input terminal through the coupling ٠  $2\mathbf{M}$ capacitor C<sub>C</sub> The resonant frequency of the tuned circuit  $L_1 C_1$  is made equal to that of tuned • circuit L<sub>2</sub> C<sub>2</sub> Under these conditions the tuned circuit offers avery high impedance to the input • signal. As a result of this, a large output appears across the tuned circuit  $L_1C_1$  which is inductively coupled to the  $L_2C_2$  tuned circuit. 1M each **Applications:**(any two) (i) Radio and T.V broadcasting as tuning circuit.

دلأثاد

MAHARASHTF

(ISO/IEC - 2700

(Autonomous)





**BOARD OF TECHNICAL EDUCATION** 

|     |      | <ol> <li>In public address systems (PA system)</li> <li>In tape recorders and music system</li> <li>In T.V receivers</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|     | (c)  | Draw the neat labelled diagram of miller sweep generator and mention its two applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6M               |
|     | Ans: | Circuit Diagram:<br>$R_{B2}$ $C_{R_{C}}$ $V_{O}$ + Vcc<br>$R_{B2}$ $Q_{2}$ $Q_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4M               |
|     |      | <ul> <li>Applications (Any Two):</li> <li>In Television (TV)</li> <li>In CRO</li> <li>To convert step waveform into ramp waveform.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1M each          |
| Q.6 |      | Attempt any TWO of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12Total<br>Marks |
|     | (a)  | For a BJT ac amplifier, with a midband voltage gain of 200, if the cutoff frequencies are f <sub>1</sub> =20Hz and f <sub>2</sub> =20KHz.Draw the frequency response for amplifier. Draw the frequency response in case of mid gain of 100 and f <sub>1</sub> =500Hz to f <sub>2</sub> =5KHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6M               |
|     | Ans: | <ul> <li>(i) Frequency response for amplifier with mid-band voltage gain of 200, if the cutoff frequencies are f<sub>1</sub>=20Hz and f<sub>2</sub>= 20KHz.</li> <li>Voltage gain A</li> <li>Voltage 200</li> <li>Gain A</li> <li>Quert P</li> <li>Quert P</li></ul> | 3M               |
|     |      | the cutoff frequencies are $f_1$ =500Hz and $f_2$ = 5KHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3M               |

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

