MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Plant Utilities

Subject code

22311

Page **1** of **20**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Plant Utilities

Subject code

22311

Page **2** of **20**

Q No.		Answer	Marking
			scheme
	1	Attempt any five	10
1	a	Uses of industrial water: (any 4)	¹∕₂ mark
		1. In chemical reaction	each
		2. Utility(cooling agent)	
		3. Steam production	
		4. Cleaning	
		5. In cooling tower	
1	b	Hard water: Contains dissolved salts of calcium and magnesium. It does not	1
		produce lather with soap solution.	
		Soft water: Does not contain dissolved salts of calcium and magnesium. It	1
		produces lather or foam with soap	
1	c	Enthalpy of dry saturated steam.	1
		It is the quantity of heat required to raise the temperature of 1 kg of water from	
		the freezing point to the boiling point and then convert it into dry saturated	
		steam at that temperature and pressure.	
		Unit: kJ/kg	1
1	d	Different thermic fluids (any 4)	¹∕₂ mark
		1. Dowtherm A	each
		2. Dowtherm E	
		3. Therminol FR	
		4. Oil mobiltherm 600	
		5. Oil Mobiltherm light	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Plant Utilities

Subject code

22311

Page **3** of **20**

		6. Hydrotherm 750-200	
1	e	Uses of air in industry: (any 4)	¹∕₂ mark
		i) To clean work shop ,generators and machine.	each
		ii) For cooling of furnace.	
		iii) Compressed air used in oxidation of acetaldehyde to acetic acid in	
		liquid phase reactor.	
		iv) Oxidation of nitrogen oxide to nitrogen dioxide in nitric acid plant.	
		v) To exhaust the fumes of HCl gas, by exhaust blower.	
		vi) fan air used in solid fuel boiler.	
1	f	Coefficient of Performance.:	2
		Working performance of any machine is usually expressed by output/input	
		ratio known as efficiency. In refrigeration it is denoted by C.O.P. (β).	
		COP= refrigeration effect/ work input to produced R.E.	
		$\beta = RE/W$	
1	g	1	
		Temperature recorded by ordinary thermometer is called dry bulb	
		temperature.	
		(ii)Wet bulb temperature:	1
		It is the temperature indicated by thermometer whose bulb is covered with	
		cotton or muslin wire wetted with moisture	
2		Attempt any three	12
2	a	Reactions take place in lime soda process: (any 4)	1 mark each
		$2\text{HCl} + \text{Ca}(\text{OH})_2 \rightarrow \text{Ca}\text{Cl}_2 + 2\text{H}_2\text{O}$	
		$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Plant Utilities

Subject code

22311

Page **4** of **20**

		$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$	
		$Mg(HCO_3)_2 + 2 Ca(OH)_2 \rightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$	
		$MgCl_2 + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaCl_2$	
		$MgSO_4 + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaSO_4$	
		$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$	
		$CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 + Na_2SO_4$	
2	b	Classifications of boilers(any 4)	1 mark each
		1.Use	
		a. stationary	
		b. mobile	
		2. Tube contents	
		a. fire tube boiler	
		b. water tube boiler	
		3. Tube shape and position	
		a. Tube shape (Form) –i. Straight	
		ii. Bent	
		iii. sinuous	
		b. Inclination(position) –	
		i. horizontal	
		ii. Inclined	
		iii. Vertical	
		4. furnace position	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Plant Utilities Subject code 22311			
			Page 5 of 20
	a. Externally fired boiler		
	b. Internally fired boiler		
	5. Circulation		
	a. natural circulation		
	b. forced circulation		
	6. Heat source		
	a. Fuel		
	b. hot wastergaes		
	c. electrical energy		
	d. nuclear energy		
2	c Working of Super heater:		4
	Superheater header mounted against	the tube sheet in the smoke box. The	
	steam is then passed through a numb	per of superheater elements—long pi	pes
	which are placed inside special, wide	ened fire tubes, called flues. Hot	
	combustion gases from the locomoti	ve's fire pass through these flues just	like
	they do the fire tubes, and as well as	heating the water they also heat the	steam
	inside the super heater elements they	flow over. The super heater elemen	t
	doubles back on itself so that the heat	ated steam can return; most do this tw	vice at
	the fire end and once at the smoke be	ox end, so that the steam travels a dis	stance
	of four times the header's length whi	le being heated. The superheated ste	am, at
	the end of its journey through the ele	ements, passes into a separate	
	compartment of the super heater heat	der and then to the cylinders as norm	nal.

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Plant Utilities

Subject code

22311

Page **6** of **20**

2	d	Psychrometric process and their representation on psychrometric chart:	1 mark each
		(any 4)	
		1. Sensible heating or cooling	
		h_2 h_1 h_1 h_2 h_1 h_2 h_1 h_2 h_1 h_2 h_1 h_1 h_2 h_1	
		DBT	
		2. Cooling and dehumidification:	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

WINTER-19 EXAMINATION **Model Answer**

Subject title: Plant Utilities

Subject code

22311

Page **10** of **20**

3	b	Rate of softening of water in ion exchange n	nethod is high because, cation	4	
		exchange beds and anions exchange beds are	e used this process, which remove		
		all the hardness causing substances. It also re			
		is useful for acidic as well as alkaline water.			
3	c	Differentiate between fire tube boiler and water tube boiler: (any4)			
		Fire tube boiler	Water tube boiler		
		In Fire-tube boilers hot flue gases pass	In Water-tube boilers water		
		through tubes and water surrounds them.	passes through tubes and hot		
			flue gasses surround them.		
		These are operated at low pressures up to	The working pressure is high		
		20 bar	enough, up to 250 bar in super		
			critical <u>boilers</u> .		
		The rate of steam generation and quality	The rate of steam generation		
		of steam are very low, therefore, not	and quality of steam are better		
		suitable for power generation.	and suitable for power		
			generation.		
		It requires more floor area for a given	It requires less floor area for a		
		output. Load fluctuations cannot be handled.	given output		
		Load fluctuations cannot be nandled.	Load fluctuations can be easily handled.		
		In Fire-tube boilers hot flue gases pass	In Water-tube boilers water		
		through tubes and water surrounds them.	passes through tubes and hot flue gasses surround them.		
3	d	Cyclone separator:	nue gubbes surround them.		

WINTER-19 EXAMINATION <u>Model Answer</u>

Subject title: Plant Utilities

Subject code

22311

		Gas Inlet Vortex Finder Separation Space (cyclone Body) Dust Outlet Working: Cyclone separators work much like a <u>centrifuge</u> , but with a	2
		continuous feed of dirty air. In a cyclone separator, dirty flue gas is fed into a	
		chamber. The inside of the chamber creates a spiral vortex. This spiral	2
		formation and the separation is shown in Figure. The lighter components of	
		this gas have less inertia, so it is easier for them to be influenced by the vortex	
		and travel up it. Contrarily, larger components of particulate matter have more	
		inertia and are not as easily influenced by the vortex.	
		Since these larger particles have difficulty following the high-speed spiral	
		motion of the gas and the vortex, the particles hit the inside walls of the	
		container and drop down into a collection hopper. These chambers are shaped	
		like an upside-down cone to promote the collection of these particles at the	
		bottom of the container. The cleaned flue gas escapes out the top of the	
		chamber.	
4	1	Attempt any three	12
4	a	Methods of scale and sludge removal:	1 mark each

Subject title: Plant Utilities

Subject code

22311

Page **12** of **20**

	With the help of scrapper, knife ,blades or piece of wood or by wire brushing,	for any 4
	if the scale is loosely adhering.	
	By giving thermal shocks.	
	By heating the boiler and then suddenly cooling with cold water.	
	By dissolving them in some chemicals.	
	By frequent blow-down operation.	
4 k		2 marks for diagram and 2 marks for working
	are fitted to in front of boiler. WLI shows the water level in in the boiler drum	
	and warns to operator it by chance the water level goes below a fixed mark, so	
	that corrosive action may be taken in time to avoid accident.	

WINTER-19 EXAMINATION **Model Answer**

Subject title: Plant Utilities

Subject code

22311

Page **13** of **20**

4	c	Boiler act:			
		Duties of chief inspector:			
		Maintain records of registered boilers.	2		
		Examine boiler inspection reports produced by inspectors.			
		Decide whether to issue the certificate for the operation of boiler or not.			
		Supervise and control the work of inspectors.			
		Registration of boiler:			
		Boilers have to be registered before they can be used.			
		The owner of the boiler shall give an application for the same.	2		
		The inspector shall examine the boiler and find maximum pressure at which			
		the boiler may be operated.			
4	d	Instrument air:			
		Air is passed through a filter to remove suspended impurities. The filtered air			
		issupplied to the compressor. Discharge from the compressor will be at a	2		
		pressure of 100 to 150 psi, which is stored in a storage tank. When required it			
		is passed through a regulator and then through an after cooler to remove the			
		heat. It is then passed through a stone filter to remove traces of oil if present.			
		Filtered air is passed through dehydrator to remove the moisture. Silica gel,			
		activated alumina, calcium chloride, glycol etc are used for removing the			
		moisture. A second pressure regulator is sometimes added to provide a			
		constant reduced pressure in the supply line.			

WINTER-19 EXAMINATION **Model Answer**

Subject title: Plant Utilities Subject code 22311		
	Pa	age 14 of 20
	Inlet filter Inlet filter Compressor Compressor Storage tank Regulator Atter Regulator Drain Outlet Outlet	2
4 e	Advantages of multistage compression: 1. Reduction in power required to drive compressor 2. Better mechanical balance and uniform torque. 3. Reduced leakage loss swing to reduce pressure difference in either side of piston and valves. 4. Less difficulty in lubrication 5. Lighter cylinders	1 mark each for any 4
5	Attempt any two	12
5 a	Vapour compression refrigeration cycle:	
	The vapor-compression uses a circulating liquid refrigerant as the medium which absorbs and removes heat from the space to be cooled and subsequently rejects that heat elsewhere. Figure shows a typical, single-stage vapor- compression system. All such systems have four components: compressor,	

Subject title: Plant Utilities

Subject code

22311

Page	15	of	20
1 460		0.	

	condenser, thermal expansion valve, and an evaporator. Circulating refrigerant	
	enters the compressor and is compressed to a higher pressure, resulting in a	
	higher temperature as well. The hot, compressed vapor is then in the	
	thermodynamic state known as a superheated vapor and it is at a temperature	
	and pressure at which it can be condensed with either cooling water or cooling	
	air. That hot vapor is routed through a condenser where it is cooled and	
	condensed into a liquid by flowing through a coil or tubes with cold water or	
	cold air flowing across the coil or tubes. This is where the circulating	4
	refrigerant rejects heat from the system and the rejected heat is carried away	
	by either the water or the air	
	The condensed liquid refrigerant next routed through an expansion valve	
	where it undergoes an abrupt reduction in pressure.	
	The cold mixture is then routed through the coil or tubes in the evaporator. A	
	fan circulates the warm air in the enclosed space across the coil or tubes	
	carrying the cold refrigerant liquid and vapor mixture. That warm	
	air evaporates the liquid part of the cold refrigerant mixture. At the same time,	
	the circulating air is cooled and thus lowers the temperature of the enclosed	
	space to the desired temperature. The evaporator is where the circulating	
	refrigerant absorbs and removes heat which is subsequently rejected in the	
	condenser and transferred elsewhere by the water or air used in the condenser.	
	To complete the refrigeration cycle, the refrigerant vapor from the evaporator	
L	is again a saturated vapor and is routed back into the compressor.	

Subject title: Plant Utilities		Subject code 22311 Page 17 of 20	
	T 4 3 5 5	1 2 1-2 Compression of Vopour 2-3 Vapour Superheat Vemoved in Condenser 3-4 Vapour Converted to liquid in Condenser 4-5 Liquid flashes into liquid tVapour 5-1 Liquid + Vapour Converted to Vapour evaporator	
5 b	Selection criteria for refrigerant (a	ny six): 1 mark each	
	 maintained in the evaporator reduce the material cost and into the system. 2. Corrosiveness and flamma components. It should be nonflammable) 3. Space limitations: It should size of the compressor. 4. Temperature required in the point and low freezing point. 	pressure ratio. The pressure required to be and condenser should be low enough to must be positive to avoid leakage of air bility: Non corrosive to mechanical safe to operate(including non-toxic, have low specific volume to reduce the evaporator: It should have low boiling e high miscibility with lubricating oil and	

bject	t title	: Plant Utilities	Subject code	22311		
					Pag	e 18 of 20
		6. It should not have any bad eff	fect on the stored r	naterial or fo	od when	
		any leak develops in the system	1.			
		7. It should have low thermal c	conductivity to rec	luce the area	of heat	
		transfer in the evaporator and c	condensers.			
		8. It should have high critical p	pressure and tempe	erature to avo	oid large	
		power requirement.				
		9. It must have low specific heat a	and high latent hea	t.		
		10. It should have moderate densit	y in liquid form, a	relatively high	n density	
		in gaseous form.				
5	c	$DBT = 30^{\circ}C$				
		$WBT = 22^{0}C$				
		(i) Dew point temperature = $18^{\circ}C$				
		(ii) Relative humidity = 50%				
6		Attempt any TWO of the following				1
6	a	From steam table, corresponding to a p	pressure of 10 bar,			
		$h_f = 762.6 \text{ kJ/ kg}$				
		$h_{fg}=2013.6\ kJ/\ kg$				
		(i) When steam is dry and	saturated			
		Enthalpy of 1 kg of ste	$am = h_f + h_{fg} = 27$	76.2 kJ /kg		
		Enthalpy of 5 kg of ste	am = 2776.2 *5 =	= 13881kJ		
		(ii) When steam is 80% dry	7			
		Enthalpy of 1 kg of ste	$am = h_f + x h_{fg} =$	762.6 + 0.8	* 2013.6	
		=				
			= 2373.48	kJ /kg		
1		Enthalpy of 5kg of steam = 5* 2373.48 = 11867.4 kJ				

Subject title: Plant Utilities

Subject code 22311

6	b	Induced draft cooling tower:		
		Diagram:		
		Nogglee ++++++++++++++++++++++++++++++++++		
		Construction and working: Cooling towers are employed to cool utility cooling water by direct contact		
		with air. The parts of a cooling tower are		
		Water spray nozzle: water is sprayed in the cooling tower at the top with the		
		help of nozzles. The spray helps to atomize the water in small droplets which		
		results in increase in surface area of water and hence faster cooling.		
		Mist eliminator: They are placed just above the spray nozzle to reduce the loss	4	
		of water and thus protect the fan blades from corrosion in the case of induced		
		draft tower.		
		Cold water basin: It is the basin below the cooling tower where the cooled		
		water accumulates and from where it is send to various heat exchange units.		

Subject title: Plant Utilities

Subject code

22311

Page **20** of **20**

			-
		Fill or packing: They are provided in the cooling tower to increase the surface	
		area for heat transfer and evaporation. They create obstacles in the path of	
		water and air flow due to which thorough mixing of air and water takes place	
		which results in attaining adiabatic equilibrium.	
		Fan: Fan is mounted at the top portion of the cooling tower.	
		Hot water is sprayed into the cooling tower through the spray nozzle. As	
		it passes through the fills through mixing of water and air takes place and heat	
		is removed from the water. The fan mounted at the top pulls the hot air	
		through the fills and cooled water gets collected in the cold water basin.	
6	c	(i) $T_1 = 30 + 273 = 303K$	
		$T_2 = -10 + 273 = 263K$	
		C.O.P. = $T_2/(T_1 - T_2) = 263 / (303 - 263) = 6.575$	2
		(ii) Ton of refrigeration : It is defined as the quantity of heat required	
		to be removed from 1Ton water at 0°C to get ice at 0°C in one day	2
		(iii) Industrial applications of refrigeration (any four):	
		1. Comfort air conditioning of auditorium, hospital, offices, residences	¹∕₂ mark
		etc.	each
		2. Manufacture and preservation of medicine	
		3. Preservation of blood and human tissues	
		4. Storage and transportation of food stuff such as meat, fruit, fruit juice,	
		vegetables etc.	
		5. Ice cooling of concrete for dam.	
	1		