

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648

Page **1** of **22**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-19 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648

Page **2** of **22**

Q No.	Answer	Marking
		scheme
1 a	Attempt any 3	12
1a-i	Fick's law of diffusion	2
	Fick's law states that the flux of a diffusing component A in z direction in a	
	binary mixture of A and B is proportional to the molar concentration gradient.	
	$J_A = -D_{AB} dC_A / dZ$	2
	Where J_{A} - molar flux of A in z direction	2
	C _A – concentration of A	
	dC_A/dZ – concentration gradient in z direction	
	D _{AB} – proportionality constant, diffusion coefficient	
	Z – distance in the direction of diffusion	
1a-ii	1. Volatility: It is the ratio of partial pressure of A to the mole fraction of	2
	A in the liquid phase.	
	Volatility of $A = p_A / x_A$	
	2. Relative volatility: It is the ratio of volatility of more volatile	2
	component to the volatility of less volatile component.	
	Relative volatility $(\alpha_{AB}) = p_A x_B / x_A p_B$	
	It is the measure of the separability by distillation.	
1a-iii	Mixer settler:	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-19 EXAMINATION Model Answer

Subject code 17648 Subject Title: Mass Transfer Operation Page 4 of 22 Y 18 T stone G 3 Templishus AT Т, 16-1-01 1. Seema) Ti Ton 7. beinzens 20 917 OV. Benurar 7. 9 Builing point diastam. Consider the process of boiling a binary mixture consisting of benzene (mvc) and toluene. The composition of the mixture is plotted on x-axis in terms of mvc and temperature of the mixture is plotted on y-axis. The mixture represented by point A is at a temperature of T1 and contains 50% 3 benzene. When we heat the mixture it will boil at a temperature T2, vapours will contain more of mvc. The vapoursat C is in equilibrium with liquid at B and thus BC is known as the tie line. If we reheat the condensate obtained at this stage, it will boil at T3 and the vapours issuing will contain more of mvc, thus enrichment of benzene takes place.

In the process of boiling, the mixture boils over a temperature range, so the term used is bubble point. The liquid represented by any point on the lower curve is at its bubble point and the lower curve is called bubble point temperature curve.

When a mixture of vapours is cooled, at a point condensation starts. The first drop of liquid will have composition represented by point K.While cooling the vapour becomes richer in mvc than liquid. The condensation starts at any point on the upper curve. The upper curve is the dew point temperature curve.

WINTER-19 EXAMINATION **Model Answer**

ect Title:	Mass Transfer Operation	Subject code	17648	Page 5 of 22
1b-ii	Basis: 100 kg solution			-
	$F = 100 \text{ kg}$ $x_F = 0.48$			1
	Molecular weight of $Na_2S_2O_3 = 158$			
	Molecular weight of $Na_2S_2O_3 .5 H_2O = 24$	18		1
	Material balance for water is $52 = C.(90/2)$	248) + L		1
	Or $L = 52-0.363C$			1
	Material balance for solute is			
	48 = C (158/248) + (52-0.363C) (X')			1
	Note: Since the value of X' is not given,	student can assume	any value of	<i>TX</i> 1
	and solve for C.			
2	Attempt any 4			16
2-a	Different methods of attaining super sa	turation:		1 mark
	i) By cooling a concentrated, hot solution	trough indirect heat ex	change.	each for
	ii) By evaporating a part of solvent/ by ev	aporating a solution.		any 4
	iii) By adiabatic evaporation and cooling.			
	iv) By adding a new substance which it	reduces the solubility	of the origi	nal
	solute, i.e. by salting.			
	v) By chemical reaction with a third subst	ance		
2-b	Fluidised bed dryer:			4

ect Title:	Mass Transfer Operation	Subject code	17648	Page 6 of 22
	Wet feed Wet feed Fluidised bed Hot air In Cooling air	Air out Cyclone Fines		
2-c	Different mass transfer theories:			1 mark
	1. Whitman's two film theory			each
	2. Higbie's penetration theory			
	3. Danckwert's surface renewal theo	ry		
	4. Toor and Marchello's film penetra	ation theory		
2-d	Spray Column:			4

ject Title:	Mass Transfer Operation	Subject code	17648	Page 8 of 22
	distillate and W kmoles of residual liquid	in still which are obta	ained at the e	end
	of operation. Let $y_{\rm D}$ and $x_{\rm W}$ be the mol fr	of A in distillate and	bottom resid	ual
	liquid.			2
	Let L be kmoles of liquid in the still at any	time during the cours	se of distillat	ion
	and let x be mol fr of A in liquid.Let very s	small amount dD kmo	ol of distillate	e of
	composition y in equilibrium with the lic	quid is vaporized. Th	en composit	ion
	and quantity of liquid decreases to (x-dx) a	nd L to (L-dL) respec	tively.	
	Overall material balance is L=L-dL+dD			
	Or dL = dD			
	Material balance for component A is Lx=(I	L-dL)(x-dx)+ydD		2
	Lx = Lx - Ldx - xdL + dLdx + ydD			
	dLdx=0			
	0 = -Ldx - xdL + ydL			
	But dD=dL			
	i.e. 0=-Ldx-xdL+ydL			2
	Ldx=(y-x)dL			
	dL/L=dx/(y-x)			
	Integrating the equation between the limits $F = xF$	L=F, x= x_F , L=W x= x	ζw	
	$\int \frac{F}{dL/L} = \int \frac{dx}{(y-x)}$			
	W xW			
	$X_{\rm F}$			2
	$Ln(F/W) = \int dx/(y-x)$			2
	X_W			
	This is Rayleigh's equation			
3-b	Feed containing 40 mole % benzene			
	xF = mole fraction of benzene in feed			

WINTER-19 EXAMINATION **Model Answer**

bject Title:	Mass Transfer Operation	Subject code	17648	Page 9 of 22
	= mole % benzene /100			1
	xF = 40/100 = 0.4			
	given 50 mole % of the feed is vaporized.	. Therefore,		
	f = molal fraction of feed that is vaporized	l. Therefore,		1
	f = molal fraction of feed that is vaporized	1		
	50/100 = 0.5			
	Slope of operating line for flash distillatio	$n = -\frac{(1-f)}{f}$		1
	$Slope = \frac{-(1-0.5)}{0.5} = -1.0$			
	Draw the equilibrium curve with the help	of data given.		1
	The point of intersection of the operating	line and the diagonal is	$S(x_F, x_F)$	
	Mark that point on the diagonal and draw	operating line through	it with slope	=
	-1.0 which will cut the equilibrium curve a	at point say P. through	P read the	2
	equilibrium liquid phase and vapor phase	compositions from the	x-axis and y	r_
	axis respectively.			
	Equilibrium : liquid phase composition	= 0.3 mole fraction o	f benzene	2
	Equilibrium : vapour phase composition	on = 0.5 mole fraction	of benzene	
3-c	Basis: Feed containing 40% benzene and	60% toluene		
	X_F = mole fraction of benzene in the feed			
	= 40/100 = 0.4			
	Similarly $X_D = 90/100=0.9$			
	Xw= 10/100=0.1			2
	Relative volatility $\alpha = 2.4$			
	With the help of relative volatility, gene	rate x-y data For gene	erating x-y da	ata
	assume			
	$X=0,0.1,0.2,\ldots,1$ and find the correspon	nding values of y from	the relation	
	$Y = \alpha x/(1 + (\alpha - 1)x)$			

ect Title: I	Mass Tr	ansfer	Operati	on				Subj	ect cod	e	17648	3	Page	10 of 22
	X y	0 0	.1 .21	.2 .38	.3 .51	.4 .62	.5 .71	.6 .78	.7 .85	.8 .91	.9 .95	1 1		2
		U	al and	•	•		U		diago	nal til	1 (0.1,0) 1) 7	on a	1
	diago	nal be	U	diago		•		,	U		it num			2
		-	ph the tages re			•	-		ling rel	ooiler	n =6			1
4 a	Atten	npt ang	y 3											12
4a-i	Differentiate between distillation and extraction							1 mark						
	Points Distillation					Extraction					each			
	Purity of product			Give		most	pure	ure Doesn't give pure product		e				
	Operating cost Cost is Low.						Cost is high.							
	Phases involved Phases involved liquid and vapor						l are	Phase liquie		ivolved	are	e		
	Tem	peratu	re condi	itions	Need cooli High requi	ng tem	eating provi	and isions. re is	and o Take	coolin	need h g provi ce at e	sions		
4a-ii	Anal	ogy bet	tween r	nass a	nd hea	t tran	sfer op	oeratio	ns					4
	1)	Gene	eral mo	lecula	r tran	sport e	equatio	on						
	Rate of transfer process=Driving force/ resistance													
	2)	Mole	ecular o	liffusi	on equ	ations								
		For h	eat trar	nsfer F	ourier'	s equat	tion is	q/A=-k	d/dz(Γ)				

ect Title: N	Mass Transfer Operation	Subject code	17648	Page 11 of 22
	For Mass diffusion Fick's equ	nation is $J_A = -D_{AB} dC_A/dZ$		
	3) Turbulent diffusion equatio	ns :		
	Heat transfer $q/A=(k+\epsilon_H) d$	/dz(T)		
	Mass transfer $J_A = -(D_{AB} + \varepsilon_D)$	dC_A/dZ		
4a-iii	Derive $Y = \alpha . x / [1 + x(\alpha - 1)]$			
	Relative volatility (α) is the ratio of v	olatility of more volatile co	omponent to the	nat 1
	of less volatile component			
	$\alpha = p_A.x_B / x_A. p_B$			
	But $P.y_A = p_A$ and $P.y_B = p_B$			
	Therefore $\boldsymbol{\alpha} = \mathbf{P} \cdot \mathbf{y}_{A} \cdot \mathbf{x}_{B} / \mathbf{x}_{A} \cdot \mathbf{P} \mathbf{y}_{B}$			
	$=(y_{A}/y_{B}) / (x_{A}/x_{B})$			1
	Thus relative volatility is the ratio of	of concentration ratio of A	to B in vapo	our
	phase to that in liquid phase.			
	$\mathbf{A} = \mathbf{y}_{\mathrm{A}} \cdot \mathbf{x}_{\mathrm{B}} / \mathbf{x}_{\mathrm{A}} \cdot \mathbf{y}_{\mathrm{B}}$			
	But $y_B = 1 - y_A$ and $x_B = 1 - x_A$			
	Therefore $\boldsymbol{\alpha} = \mathbf{y}_{A}.(1-\mathbf{x}_{A}) / \mathbf{x}_{A}.(1-\mathbf{y}_{A})$			
	$\alpha x_{A.} (1-y_A) = y_{A.} (1-x_A)$			1
	$\boldsymbol{\alpha} \ \mathbf{x}_{\mathrm{A.}} - \boldsymbol{\alpha} \ \mathbf{x}_{\mathrm{A}} \ \mathbf{y}_{\mathrm{A}}) = \mathbf{y}_{\mathrm{A.}}(1 - \mathbf{x}_{\mathrm{A}})$			
	$\boldsymbol{\alpha} \ \mathbf{x}_{\mathrm{A}} = \mathbf{y}_{\mathrm{A}} + \mathbf{y}_{\mathrm{A}} \mathbf{x}_{\mathrm{A}}(\boldsymbol{\alpha} - 1)$			
	$= y_{A}[1 + x_{A}(\boldsymbol{\alpha} - 1)]$			
	$\mathbf{y}_{\mathbf{A}} = \boldsymbol{\alpha} \mathbf{x}_{\mathbf{A}} / [1 + \mathbf{x}_{\mathbf{A}}(\boldsymbol{\alpha} - 1)]$			1
	or y = α x / [1+ x(α -1)]			
4a-iv	Selection criteria for solvent in gas	absorption : (any 4)		1 mark
	While selecting a particular solvent f	for absorption operation, th	ne following	each
	properties of the solvent are consider	ed.		
	1) Gas solubility : the solubility of	solute gas in a solvent shou	ıld be high . tł	ne
	solvent selected should have a hi	gh solubility for the solute	to be absorbed	d

t Title:	Mass Transfer Operation	Subject code	17648	Page 12 of 22
	 Volatility : As the gas leaving an absorption the solvent, there will be a loss of the operation, hence to minimize the solvent volatile. Corrosive nature : the solvent should materials of construction so that the cequipment will not be too expensive. Viscosity : the solvent should have a rates, low pumping cost and better he viscous. Cost and availability : the solvent should solvent should have a solvent should be too expensive. 	solvent with the gas leavent loss, the solvent sh not be corrosive toward construction material for low viscosity for rapid at transfer. The solvent	aving the united the united to a less of the second	it on
	6) Miscellaneous : the solvent should be	e non-toxic, non-flamma	able, non-	
	foaming, and chemically stable from	a handling and storage	point of viev	v.
4 b	Attempt any 1			6
	Hydrodynamics / pressure drop charace In a packed column there are two flows fl Liquid fed at the top of column flows dow in the packings, the same time gas mixtur by using a blower or a compressor. To ma must be less than that at the bottom. In pa available for liquid down flow & gas up f function of both phase flow rates & is imp The variation of pressure drop with g as shown in fig.	owing in counter current owing in counter current own the column through the e is forced up through the aintain flow of gas, pre- cked column as same co low, the gas pressure due portant in design of pac	nt direction. the void space he void space essure at the t hannels are rop is a ked column.	ees top 2
		Flooding Poi	nt Y	

ct Title: N	Aass Transfer Operation	Subject code	17648	Page 13 of 22
	$Log \Delta P$ Dry Pa	acking		
		Loading point X		1
	Log Vg			
	In case of dry packing, the relationship be	etween pr.drop and gas	velocity is	
	represented by a straight line indicating th	hat pressure drop is proj	portional to	
	$G^{1.8-2}$. For wet packing, the relationship is	s indicated by straight li	ne, but for a	1
	given velocity, pressure drop will be more	e than that for dry pack	ing.	
	With the liquid flow down the tower at lo	w and moderate gas vel	locities, pr.di	rop
	is proportional to 1.8 th power of gas veloc	city. Up to point X the a	mount of	
	liquid held up in packing is constant. At p	point X the gas flow beg	gins to imped	le 1
	the down flow of liquid and local accumu	lation of liquid appears	here and the	ere
	in packings.			
	As the gas velocity increases further liqui	d hold up progressively	v increases du	ıe
	to which free area for gas flow becomes s	smaller and pressure dro	op rises much	1
	more quickly. At gas flow rates beyond Y	, pr.drop rises very stee	eply. At poin	t
	Y, entrainment of liquid by gas leaving th	ne top of tower increase	s and tower i	s 1
	then said to be flooded. The gas velocity of	corresponding to the flo	ooding	
	conditions is called as flooding velocity.			
4.b ii	Rotary drum Dryer:			
	A rotary vacuum filter consists of a large	rotating drum covered	by a cloth. T	The
	drum is suspended on an axial over a trou	igh containing liquid/sc	olids slurry w	vith
	approximately 50-80% of the screen area	immersed in the slurry.		
	Working: As the drum rotates into and	out of the trough, the s	slurry is suck	ked

t Title:	Mass Transfer Operation	Subject code	17648	Page 14 of 22
	on the surface of the cloth and rotated of cake. When the cake is rotating out, it is is dry because the vacuum drum is contin- water out of it. At the final step of the solids products and the drum rotates cont Moisture out Vapor hood	but of the liquid/solids dewatered in the dying nuously sucking the cak e separation, the cake i	suspension a zone. The ca e and taking s discharged	s a ake 3 the as
5 5-a	Attempt any4 Basis: 100 kmoles/hr Methanol – water s	olution		16
	$X_{\rm F} = 0.36, X_{\rm D} = 0.965, X_{\rm W} = 0.1$ Let D kmoles/hr distillate and W kmoles	/ hr residue		1
	Overall balance is 100= D+W(1)			1
	Balance for methanol is			
	$F.X_F = D.X_D + W.X_W$			

WINTER-19 EXAMINATION **Model Answer**

	0.36*100 = 0.965 D + 0.1 W(2)]
	Solving the above equations	
	Distillate (D)= 30.05 kmoles/hr	
	Residue(W) =69.95 kmoles/hr	
5-b	Bubble cap tray:	4
	Jos flow Rises tray Bubble cap.	
5-c	Types of gas absorption:	
	1. Physical absorption: It is a purely physical phenomenon.	-
	Example: Absorption of ammonia from ammonia- air mixture by water	-
	2. Absorption accompanied by a chemical reaction.	
	Example: Absorption of NO ₂ in water to produce nitric acid.	
5-d	Values of q lines for various feed conditions:	
	q = 0 (saturated vapour)	
	q = 1 (saturated liquid)	
	0 < q < 1 (mix of liquid and vapour)	
	q > 1 (subcooled liquid)	
	q < 0 (superheated vapour)	

i itte:	Mass Transfer OperationSubject code17648	Page 17 of 22			
	3. Process conditions				
	4. Type of packing				
6	Attempt any 2	10			
6-a	Initial moisture content $X_1=0.35/(10.35)=0.5385$				
	Final moisture content $X_2=0.1/(1-0.1)=0.111$				
	Equilibrium moisture content $X^* = 0.04/(1-0.04) = 0.0417$				
	Critical moisture content $X_c=0.14/(1-0.14)=0.1628$				
	$t = W'/ARc \{ (X_1-X_c) + (X_c - X^*) ln[(X_c - X^*)/(X_2 - X^*)] \}$				
	$5 = W'/ARc \{ (0.5385-0.1628) + (0.1628 - 0.0417) ln[(0.1628 - 0.0417)/(0.111 - 0.0417)] $	_			
	0.0417)]}				
	W'/Arc=11.28				
	For second case $X2 = 0.06/(1-0.06)=0.0638$				
	t= 11.28 { $(0.5385-0.1628) + (0.1628 - 0.0417)\ln[(0.1628-0.0417)/(0.0638 - 0.0417)]$	-			
	0.0417)]}				
	t = 6.56 hr.				
6-b	Time of drying under constant drying conditions:				
	Consider that the wet solids are to be dried by passing the hot air over them				
	under constant drying conditions. The time of drying required to dry the				
	material from initial moisture to the final moisture content of solids, is the sum				
	of the time required during the falling rate period.				
	Constant rate period :				
	Let X1 be the initial moisture content of the wet solids and X_2 be the final				
	moisture content of the wet solids during the constant rate period. Let X_C be the	e			
	critical moisture content of the wet solids.				
	The rate of drying is given by				
1	$\mathbf{R} = -\frac{\mathbf{W}'}{\mathbf{A}} \times \frac{\mathbf{dX}}{\mathbf{dt}} \qquad $				

ect Title: Mass Transfer Operation	Subject code	17648	Page 18 of 22
$R = R_C = rate c$	luring constant rate	period	
$\mathbf{R}_{\mathbf{C}} = -\frac{\mathbf{W}'}{\mathbf{A}} \times \frac{\mathbf{dX}}{\mathbf{dt}}$		(2)	
Where			
W' = mass of dry s	solids in kg		
A = area of dryin	ng surface in m ²		
$R_{\rm C}$ = rate in kg/(n	n ² .h)		
t = time in hours	s (h)		
Rearranging Equation (2), we get, Type equ	lation here.		1
$dt = \frac{W'}{ABC} dX$		(3)	
Integrating Equation (3) between the limit	s :		
$t = 0, X = X_1$			
and $t = t$, $X = X_{2}$, we get	t		
$\int_0^t dt = -\frac{W}{A.RC} \int_{X1}^{X2} dX$		-(4)	
			1
$t = -\frac{W'}{ABC} [X_2 - X_2]$	K ₁]	(5)	
$t = \frac{W'}{ABC} [X_1 - X]$		(6)	
equation (6) gives the time required for dryi		X_1 to X_2 in t	he
constant rate period.	-	. 2	
If the material is to be dried to the moisture	content of X_C , then	he time	
required during the entire constant rate period			
$t_{\rm C} = \frac{W'}{ABC} [X_1 -$		(7	') 1
Falling rate period :		× ×	

ect Title: N	Mass Transfer Operation	Subject code	17648	Page 20 of 22
	Integrating Equation (11) between the limits	:		
	$\mathbf{X} = \mathbf{X}_1$			
	$X = X_2 [X_1, X_2 <$	X _C], we get		
				1
	$\int_{X1}^{X2} \frac{dX}{[X-X^*]} = \frac{RCA}{[XC-X^*]W'} \int_0^t$	t	(12)	
	$t = \frac{[XC - X^*]W'}{1}$	$1\frac{X1-X^*}{X2-X^*}$	(13)
	RC A	X2-X*	(15	/
	Equation (13) gives the time of dying during t	he falling rate peri	od to dry the	
	material from X_1 to X_2 .	0 1	2	
	If the material is to be dried from the critical r	noisture content X	_C to the final	
	moisture content X_2 ($X_2 < X_C$), then the time is	required for drying	during the	
	entire falling rate period is given by t _f as :			
				1
	$t_{f} = \frac{[XC-X^{*}]W'}{RCA} \ln \frac{XC-X}{X2-X}$	<u>X*</u>	(14)	
	[As X ₁ becomes X _C]			
	$t_f = drying$ time during entire falling rat	te period.		
	Total time of drying = $t_C + t_f$			
	$t = \frac{W'}{A.RC} [(X_1 - X_C) + (X_C - X_C)]$	$(x^*) \ln \frac{XC - X^*}{X2 - X^*}$	(15)	
6-c	Oslo Cooler crystallizer:			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Title: Mass Transfer Operation	Subject code	17648	Page 22 of 22		
	fed back to the bottom of the crystallizing chamber through a central pipe (P).				
	Usually, nucleation takes place in the bed of crystals in the crystallising chamber. The nuclei formed circulate with mother liquor and once they go				
sufficiently large, they will be retained in	sufficiently large, they will be retained in the fluidised bed. Once the crystals				
	grow to a required size, they are removed as product from the bottom of the				
crystallising chamber through a valve 'V fludised bed by the circulation velocity.	as these cannot be reta	ined in the			