MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 Certified)

WINTER -2019 EXAMINATION

Subject code: 22301

Model Answer

Important Instructions to the Examiners:

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que No	Question and Model Answers	Marks
1.	Attempt any <u>FIVE</u> of the following:	10
a)	State two advantages of plane table surveying	
Ans:	1.it is most rapid method of surveying.	
	2. it is suitable for magnetic areas.	1M
	3. The map can be prepared easily , and does not require greater skill.	each
	4.Irregular objects can be represented accurately.	(any
	5. There is no possibility of overlooking any important object.	two)
	6. It is less costly.	,
	7 The check lines detects the errors of measurement and plotting on field itself.	
b)	Define Swinging & Transiting	
Ans:	Swinging: It is the process of turning the telescope in horizontal plane about its vertical axis.	1M
	Transiting ; It is the process of turning the telescope through 180° in a vertical plane about its horizontal axis	each
c)	Define Latitude and Departure.	
Ans:	Latitude : The projection of survey line parallel to meridian is called latitude.	
	OR Projection of survey line parallel to N-S direction is called latitude.	1M
	Departure: The projection of survey line perpendicular to meridian is called departure.	each
	OR Projection of survey line parallel to E-W direction is called departure.	
111		

d)	State the function of Anallatic lens	
Ans:	The function of anallatic lens is to make additive constant zero i.e.(f+d)=0 It simplifies the calculation.	2M
e)	Define degree of curve.	
Ans:	The angle subtended at the centre of the circle by a chord of standard length of 30m is known as degree of curve.	2M
f)	List two uses of EDM.	
Ans:	 It is useful for measuring the distances that are difficult to access. It is useful in topographical survey. Measurement of base line in triangulation survey can be carried out speedily and accurately. Measurement of distances in difficult work sites such as construction of gravity dams. It is useful in fixing alignment of road, railways, canals etc. 	1M each (any two)
g)	Name two software for GPS.	
Ans:	Softwares for GPS 1).GPSWOX 2) iGO 3) HERE 4)Navigon 5)Navman 6)EasyGPS 7) Caliper	2M for any two
2.	Attempt any <u>THREE</u> of the following	12
a)	Describe any one method of orientation of plane table surveying	
Ans:	Orientation by back sighting method: This method is accurate and is always preferred. Procedure: 1.Suppose A and B are two stations. The plane table is set up over A. The table is leveled by spirit level and centerd over station A so that point 'a' is just over station A. The north line is marked on the right hand top corner of the sheet by trough compass. 2. With alidade touching a, the ranging rod at B is bisected and a ray is drawn. The distance AB is measured and plotted to any suitable scale .so, the point b represents Station B. 3. The table is shifted and set up over B. It is leveled and centered so that 'b' is just over B. Now the alidade is placed along the line ba, and the ranging rod at A is bisected by turning the table clockwise or anticlockwise . At this time the centering may be disturbed, and should be adjusted immediately if required. When the centering ,leveling and bisection of ranging rod at A are perfect ,then the orientation is said to be perfect.	2M exp 2M fig.

Draw a simple circular curve and show the following on it (i) Forward Tangent (ii) Long Chord (iii) Deflection angle (iv) Apex distance	1M sketch 2M
A B C	
0. S1 S2 S2 S1 C1	
0. S1 S2 S2 S1 C1	
0. S ₁ S ₂ S ₃ S ₁ S ₂ S ₃ S ₃	1M
02	
$D_1/S_1 = D_2/S_2=D_3/S_3=f/i=Constant$ Where f=focal length of objective and i =stadia intercept	
the lengths of the bases also called staff intercepts.	3M
In fig. Oa_1a_2 , Ob_1b_2 , Oc_1c_2 are all isosceles triangles where D_1 , D_2 , D_3 are the distances of bases from the apices (distances of staff stations from instrumnt stations) and S_1 , S_2 S_3 are	Expla nation
and length of base is always constant.	
Principle of tacheometry is based on principle of similar triangle in which	
	1M
movement of the image relatively to the cross hairs when the observer moves eye up and down. This effect is known as parallax. The parallax can be removed by the sharp	
The object of focusing the glass is to bring the image of the object formed by the object glass exactly in the plane of cross hairs. If not done accurately, there will be an apparent	
cross hairs are seen sharp and black. D) Focusing of object glass :	
front of the object glass, and move the eye piece circumferentially or in or out until the	1M
The object of focusing the eye piece is to make the cross hairs on diaphragm distinct and	
central provided it is in correct adjustment. The vertical axis is thus made truly vertical.	
4) Repeat the process until finally the plate bubble is exactly centered in both the positions.	
3) Turn the instrument through 90^0 so that the bubble line will be at right angle to its previous position. Now, move only the third foot screw either in or out till the bubble is brought to the centre of its run.	
using thumb and forefingers, move the foot screws either towards each other or away	1M
1) Turn the theodolite about its vertical axis until the plate level is parallel to any pair of leveling screws.	
	leveling screws. 2) Bring the bubble to the centre of its run by turning both foot screws uniformly. By using thumb and forefingers, move the foot screws either towards each other or away from other. 3) Turn the instrument through 90 ⁰ so that the bubble line will be at right angle to its previous position. Now, move only the third foot screw either in or out till the bubble is brought to the centre of its run. 4) Repeat the process until finally the plate bubble is exactly centered in both the positions. 5) Now rotate the theodolite about the vertical axis through 360^{0} . The bubble will remain central provided it is in correct adjustment. The vertical axis is thus made truly vertical. C) Focusing the eye piece : The object of focusing the eye piece is to make the cross hairs on diaphragm distinct and clear. To do this, direct the telescope towards the sky or hold a sheet of white paper in front of the object glass, and move the eye piece circumferentially or in or out until the cross hairs are seen sharp and black. D) Focusing of object glass : The object of focusing the glass is to bring the image of the object formed by the object glass exactly in the plane of cross hairs. If not done accurately, three will be an apparent movement of the image relatively to the cross hairs when the observer moves eye up and down. This effect is known as parallax. The parallax can be removed by the sharp focusing until the image appears sharp and clear. Explain the principle of techeometry with the help of a neat sketch. Principle of tacheometry is based on principle of similar triangle in which corresponding sides & altitudes are proportional The ratio of distance of base from apex and length of base is always constant. In fig. Oa ₁ a ₂ , Ob ₁ b ₂ , Oc ₁ c ₂ are all isosceles triangles where D ₁ , D ₂ , D ₃ are the distances of bases from the apices (distances of staff stations from instrumnt stations) and S ₁ , S ₂ . S ₃ are the lengths of the bases also called staff intercepts. A

	B T T T T T T T T T T T T T	sketch 2M for notati on)
Q.3	Attempt any <u>THREE</u> of the following:	12M
a)	Describe the procedure of measurement of horizontal angle by repetition method.	
Ans:	Procedure: Suppose the angle AOB is to be measured by the repetition process. The theodolite is set over O. The instrument is centered and levelled properly. Vernier A is set at 0⁰ and vernier is at 180⁰ The lower plate is loosened. By turning the telescope the ranging rod at A is perfectly bisected with the help of lower clamp and tangent screw. Here the initial reading of vernier A is 0⁰ The upper clamp is loosened and telescope is turned clockwise to perfectly bisect ranging rod at B by using upper clamp and tangent screw. Suppose the reading on vernier A is 30⁰ The lower clamp is loosened and telescope turned to exactly bisect the ranging rod at A by lower plate clamp and tangent screw. Here the initial reading is 30⁰ for second observation. The upper plate is loosened and the telescope is turned to exactly bisect the ranging rod at B by using upper clamp and tangent screw. Let the reading on vernier A is 60⁰ The upper plate is loosened and the telescope is turned to exactly bisect the ranging rod at B by using upper clamp and tangent screw. Let the reading on vernier A is 60⁰ The upper plate is not be clamp and tangent screw. Let the reading on vernier A is 60⁰ The procedure is repeated for one more time. The face of the instrument is changed and the previous procedure is followed. The mean of the two angles obtained from two faces gives the actual angle AOB. 	3M Pro.
	0	1M Fig.

lock-on to satellites within 1-2 min of powering up.

B. Antenna setup.

All tribrachs used on a project should be calibrated and adjusted prior to beginning each project. Dual use of both optical plummets and standard plumb bobs is strongly recommended since centering errors represent a major error source in all survey work, not just GPS surveying.

C. Height of instrument measurements.

Height of instrument (HI) refers to the correct measurement of the distance of the GPS antenna above the reference monument over which it has been placed. HI measurements will be made both before and after each observation session. The HI will be made from the monument to a standard reference point on the antenna .These standard reference point for each antenna will be established prior to the beginning of the observation so all observers will be measuring to the same point. All HI measurements will be made in meters. HI measurements shall be determined to the nearest millimeter in metric units. It should be noted whether the HI is vertical or diagonal.

D. Field GPS observation recording procedures.

Field recording books, log sheet, or log forms will be completed for each station and/or session. Any acceptable recording media may be used. For archiving purpose, standard bound field survey books are preferred. However, USACE Commands may require specific recording sheet/forms to be used in lieu of a survey book. The amount of record keeping detail will be project-dependent. Low-order topographic mapping points need not have as much descriptive information as would have for permanently marked primary control points. The following typical data may be included on these field log records:

1) Project, construction contract, observer(s) name(s), and/or contractor firm and contract number.

2) Station designation.

3) Station file number.

4) Date, weather conditions, etc.

5) Time, start/stop session (local and UTC).

6) Receiver, antenna, data recording unit, and tribrach make, model, and serial numbers.

7) Antenna height: vertical or diagonal measure in inches (or feet) and meters.

8) Space vehicle designations (satellite number).

9) Sketch of station location.

10) Approximate geodetic location and elevation.

	11) Pro	blems encoun	tered.						
	E. Field	l processing a	and verifica	tion.					
	It is str	ongly recomm	nended that	GPS data pi	ocess	ing and verific	cation be performed	l in the	
	field where applicable. This is to identify any problem that may exist which can be								
	correcte	ed before retur	rning from th	ne field.					
	Note: A	bove procedu	re is general	procedure.	Actual	co-ordinate m	easurement procedu	ure will	
		be as	s per make al	nd model of	GPS. (Give credit ac	cordingly.		
Q.4	Attemp	ot any <u>THRE</u>	<u>E</u> of the foll	owing:					12M
a)	Compa parame		and interse	ection metl	nods (of plane tabl	e surveying on an	ny two	
Ans:		Radiati	on method			Interse	ction method		
		equires the pl gle station.	lane table to	o occupy a			equires setting the of two stations.	table	
		entation table	is not require	ed.	2. O	-	ssential and can be	done	
	tabl con	conduct the le is kept at a nmanding a f surveyed.	a convenient	t station A	3. Ty tl	wo station A a	a full view of the		2M each (any two)
	stat froi mea	his method, ra ion to the ob m the statio asured and p le along respe	jects, and the on to the lotted to ar	ne distance object are	is		stance of base lene istance of object fror easured	-	two)
	scale along respective rays.5 This method is suitable when points to be plotted are within accessible from single station.5 This method is suitable for locating inaccessible points by the intersection of the rays drawn from two instruments stations.						ection		
b)	Followi	ing are the le	ngths and b	earings of a	a close	ed traverse A	BCDA.		
			Line	Longth	(m)	Rooring	1		
				Length		Bearing 30 ⁰	_		
			AB	258.		30 140 ⁰	-		
			BC	321.		210 ⁰	-		
			CD	180.0	U		-		
	.		DA	?		?			
Ans:		ate the length sed traverse ΣI		g ot the Lir	ne DA				
	Line	Length(m)	Bearing	Reduced		Latitude	Departure		
		Longui(III)	Doaring	Bearing (6))	$= l^* \cos \theta$	$= l^* \sin \theta$		
					'				

	AB	258.0	30)0	N 30 ⁰	E	+223.43	+129.00		
	BC	321.0	14	0^{0}	$S 40^{0}$	E	-245.90	+206.33		
	CD	180.0	21	0^{0}	$S 30^{\circ}$	W	-155.88	-90.00		1M
	DA	?	?)	θ		L	D		
						ŀ				
	$\Sigma L = 0$									
	Therefo	re, +223.43	8-245.90-	155.88	3 + L = 0					
	L = 178	.35								¹∕₂M
	$\Sigma D = 0$									
	Therefo	re, +129+2	06.33-90	+D = 0)					
	D = -24	45.33								
	$tan\theta = D$	/L= 245.33/	178.35							¹∕₂M
	$\theta = 53^{\circ}$	59'0 .95"								
	Since lat	titude is +v	e and Dep	arture	is –ve ,	hence line	DA lies in NW	Quadrant		
	Bearing	g of line DA	$= N 53^0 5$	9'0 .95	"W					
	Length o	of line DA =	=√((L) ² +($(D)^2$)						1M
		=	=√((178.	$(35)^2 + (2)^2$	245.33	$)^{2})$				
	Length	of line DA	= 303.30	m.						
										1M
										TIVI
c)		-				_		osed traverse.	Find the	
	indeper	ndent co-o	rdinates	of the	points	of travers	е.			
				Side	La	titude	Departure			
				AB	+2	225.5	+120.5			
				BC	-2	245.0	+210.0			
				CD	-1	150.5	-110.5			
				DA	+	170.0	-220.0			
Ans:	For inde	ependent co	ordinates	5:	<u> </u>					
							Indepande	ent co-ordinates		
		Line	Station	Lat	itude	Departur	e Northing			
		AB	А	+2	25.5	+120.5	1000	1000		¹ ∕₂ M
		BC	В		45.0	+210.0	assumed	assumed 1120.5		each cal.
		DC	D	-23	73.0	F210.0	1223.3	1120.3		for

1		CD	C	-150.5	-110.5 98	12	30.5	Ν
								&
		DA	D	+170.0	-220.0 83	30 12	20.0	E
		Check AB	А		10	00 10	00.0	
	Assume		ordinate of A=	=1000				
		thing of B	=225.5					
			of B =1225.5					
		-	f C =245.0					
			of C =980.5 f D =150.5					
		•	of D = 830					
		thing of A						
		-	of A =1000 (check ok)				
			ordinate of A=					
	Add eas	ting of B=	120.5					
			of B=1120.5					
		ting of C=						
			of C=1330.5					
		vesting of	D=110.5 of D=1220					
		vesting of						
		-	of A=1000 (cł	neck ok)				
			•	,	E co-ordinates of	A.Final chec	k sould tall	ly with
			_	assumed	co-ordinates.			-
d)	Followi	ng observ	vation were	taken to deter	mine the consta	nts of tacho	meter.	,
			Staff	Horizantal distance	vertical angl	Hair R	eadings	
		Station	Station		ver tieur ungi	e		
		Station	Station	(m)	ver tieur ungi	Lower	Upper	
		Station A	Station B		6 ⁰ 30'		Upper 1.420	
	_	A	В	(m) 51.430	6 ⁰ 30'	Lower 0.900	1.420	
		A A	B C	(m)		Lower		
		A	B C	(m) 51.430	6 ⁰ 30'	Lower 0.900	1.420	
Ans:	Determ	A A ine the co	B C onstants.	(m) 51.430	6 ⁰ 30'	Lower 0.900	1.420	
Ans:	Determ	A A ine the co tal Distan	B C onstants.	(m) 51.430	6 ⁰ 30'	Lower 0.900	1.420	
Ans:	Determ Horizon X= f/i S	A A ine the co tal Distan $\cos^2 \theta + ($	B C onstants. (f+c) cos θ	(m) 51.430 18.065	6 ⁰ 30' 2 ⁰ 20'	Lower 0.900	1.420	
Ans:	Determ Horizon X= f/i S 51.430 =	A A ine the contract of the c	$\frac{B}{C}$ onstants. ice (f+c) cos θ 0-0.900) cos	(m) 51.430 18.065 $^{2} 6^{0}30' + (f+c)$	6 ⁰ 30' 2 ⁰ 20'	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 =	A A ine the co tal Distan $\cos^2 \theta + ($ = f/i (1.42) = 0.520 f/i	B C onstants. ice $(f+c) \cos \theta$ $0-0.900) \cos \theta$ $i + 0.994(f+c)$	(m) 51.430 18.065 $^{2} 6^{0}30' + (f+c)$	6 ⁰ 30' 2 ⁰ 20'	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 = X= f/i S	A A ine the contract of the formula $\cos^2 \theta + (1.42) = 0.520$ f/m $\cos^2 \theta + (1.42) = 0.520$ f/m	BConstants.ice $(f+c) \cos \theta$ $(0-0.900) \cos \theta$ $i + 0.994(f+c)$ $(f+c) \cos \theta$	(m) 51.430 18.065 $^{2} 6^{0}30' + (f+c)$	6 ⁰ 30' 2 ⁰ 20'	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 = X= f/i S 18.065=	A A ine the co tal Distan $\cos^2 \theta + ($ = f/i (1.42) = 0.520 f/i $\cos^2 \theta + ($ = f/i (1.32)	B C onstants. ice $(f+c) \cos \theta$ $0-0.900) \cos \theta$ $i + 0.994(f+c)$ $(f+c) \cos \theta$ $0-1.140) \cos \theta$	(m) 51.430 18.065 $2^{2} 6^{0} 30' + (f+c)$ $3^{2} 2^{0} 20' + (f+c)$	6 ⁰ 30' 2 ⁰ 20' cos 6 ⁰ 30' Equati	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 = X= f/i S 18.065=	A A ine the co tal Distan $\cos^2 \theta + ($ = f/i (1.42) = 0.520 f/i $\cos^2 \theta + ($ = f/i (1.32)	B C onstants. ice $(f+c) \cos \theta$ $0-0.900) \cos \theta$ $i + 0.994(f+c)$ $(f+c) \cos \theta$ $0-1.140) \cos \theta$	(m) 51.430 18.065 $2^{2} 6^{0} 30' + (f+c)$ $3^{2} 2^{0} 20' + (f+c)$	6 ⁰ 30' 2 ⁰ 20'	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 = X= f/i S 18.065 =	A A ine the co tal Distan $\cos^2 \theta + ($ = f/i (1.42) = 0.520 f/i $\cos^2 \theta + ($ = f/i (1.32) = 0.180 f/i	B C onstants. ice $(f+c) \cos \theta$ $0-0.900) \cos \theta$ $i + 0.994(f+c)$ $(f+c) \cos \theta$ $0-1.140) \cos \theta$ $i + 0.999(f+c)$	(m) 51.430 18.065 $2^{2} 6^{0} 30' + (f+c)$ $3^{2} 2^{0} 20' + (f+c)$	6 ⁰ 30' 2 ⁰ 20' 	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 = X= f/i S 18.065 = 18.065 = Divide H	A A ine the co tal Distan $\cos^2 \theta + ($ = f/i (1.42) = 0.520 f/i $\cos^2 \theta + ($: f/i (1.32) = 0.180 f/i Equation (B C onstants. ice $(f+c) \cos \theta$ $0-0.900) \cos \theta$ $i + 0.994(f+c)$ $(f+c) \cos \theta$ $0-1.140) \cos \theta$ $i + 0.999(f+c)$ (I) by 0.520 a	(m) 51.430 18.065 $2^{2} 6^{0} 30' + (f+c)$ $3^{2} 2^{0} 20' + (f+c)$ and Equation (6 ⁰ 30' 2 ⁰ 20' 	Lower 0.900 1.140	1.420	
Ans:	Determ Horizon X= f/i S 51.430 = 51.430 = X= f/i S 18.065 = 18.065 = Divide H 98.904=	A A ine the co tal Distan $\cos^2 \theta + ($ = f/i (1.42) = 0.520 f/i $\cos^2 \theta + ($ = f/i (1.32) = 0.180 f/i Equation (f/i + 1.91)	B C onstants. ice $(f+c) \cos \theta$ $0-0.900) \cos \theta$ $i + 0.994(f+c)$ $(f+c) \cos \theta$ $0-1.140) \cos \theta$ $i + 0.999(f+c)$ (I) by $0.520 a$	(m) 51.430 18.065 $^{2} 6^{0} 30' + (f+c)$ $) \dots \dots \dots \dots$ s ² 2 ⁰ 20' + (f+c))	6 ⁰ 30' 2 ⁰ 20' 	Lower 0.900 1.140	1.420	

	lines. 7 winter-2019	
a)	The following angles were measured in running a closed traverse ABCDEA. $\angle A = 87^{\circ}50'20'', \ \angle B = 114^{\circ}55'40'', \ \angle C = 94^{\circ}38'50'', \ \angle D = 129^{\circ}40'40'', \ \angle E = 112^{\circ}54'30''.$ If the bearing of line AB is 221°18'40'', calculate bearing of the remaining	
5.	Attempt any <u>TWO</u> of the following:	12M
	$O_{30} = 0.0 \text{ m}$	¹ / ₂ M
	$O_{30} = 177.483 - 177.483$	
	$O_{30} = \sqrt{180^2 - 30^2} - (180 - 2.517)$	¹∕₂M
	$O_{20} = 1.402 \text{ m}$	
	$O_{20} = 178.88 - 177.483$	
	$O_{20} = \sqrt{180^2 - 20^2} - (180 - 2.517)$	¹∕₂M
	$O_{10} = 2.239 \text{ m}$	
	$O_{10} = 179.72 - 177.483$	
	$O_{10} = \sqrt{(180^2 - 10^2)} - (180 - 2.517)$	¹∕₂M
	The ordinates at various distances 10, 20,30 etc are worked out by the formula. $Ox = \sqrt{(R^2 - X^2)} - (R - O_0)$	
	O0 = 2.517 m	1M
	O0 = 180-177.48	
	$O_0 = 180 - \sqrt{(180)^2 - (60/2)^2}$	
	$O_0 = R - \sqrt{(R^2 - (L/2)^2)}$	1M
Ans:	A versed sine or ordinate at center of long chord	
e)	Calculate the ordinates from long chord to set a circular curve at 10 m interval given that the length of long chord is 60 m and radius of the curve is 180 m.	
	 Additive constants (f+c) = 0.400 Multiplying constants f/i = 98.140 Note1: Marking scheme, Eq1=1M, Eq2=1M, Solving equations to correct answers =2M Note2: Students may follow different procedure to solve equations. 	
	f/i= 98.140 Constants of tacheometrer are:	
	$98.904 = f/i + (0.400) \times (1.911)$ 98.904 = f/i + (0.764)	
	(f+c) = 0.400 Put this value in Equation (III)	
	1.456 = 3.639(f+c)	
	100.360 = f/i + 5.550(f+c) -98.904 = -f/i - 1.911(f+c)	

	Ans:								
	Bearing of line AB =	221°18′40″							
	8	<u>114°55′40″</u>			1M				
	<u> </u>	336°14′20″			1111				
		- 180° 0′ 0″							
	Bearing of line BC = $156^{\circ}14'20''$								
	Ũ				1M				
	<u>+ 20</u>	$= 94^{\circ}38'50''$							
		250°53′10″			111				
		<u>- 180° 0′ 0″</u>			1M				
	Bearing of line CD =	= 70°53′10″							
	$+ \angle D =$	<u>129°40′40′′</u>							
		200°33′50″							
		<u>- 180° 0′ 0′′</u>			1M				
	Bearing of line DE =	= 20°33′50″							
	0	112°54′30″							
		133°28′20″							
		+ 180° 0′ 0′′							
	Bearing of line EA =				1M				
		= 87°50′20′′							
	$\pm 2A$	401°18′40″							
		$-180^{\circ}0'0''$	· 61· 4 D		1M				
	=	$= 221^{\circ}18'40'' = $ Bea		0.11					
• `				ce O.K.					
b)		cted consecutive co	o-ordinates for the	following traverse. Appl	У				
	Bowditch Rule.		Ι						
	Line	Length in 'm'	Latitude	Departure					
	AB	335	- 334.91	- 7.80					
	BC	850	- 4.95	+ 849.99					
	CD	408	+ 407.44	- 21.35					
	DA	828	- 72.17	- 824.85					
	Ans:	020	/ =•1 /	021100					
	Line	Length in 'm'	Latitude	Doporturo					
	AB			Departure					
		335	- 334.91	- 7.80					
	BC	850	- 4.95	+ 849.99					
	CD	408	+ 407.44	- 21.35					
	DA	828	- 72.17	-824.85	114				
	Total	2421	- 4.59	- 4.01	1M				
	Total error in Latitude	= -4.59 (Correction	will be +ve)	·					
	Total error in departur		·						
	Perimeter of traverse =	,							
	By Bowditch's rule,								
	Correction in latitude	or departure =							
			1 1 ()	Lenght of the side	1M				
		Total error in latitud	le or departure x { $\frac{1}{Pert}$	imeter of the traverse }					
	Correction in latitu	de	Correction in depar	rture					
			-						
	Line AB = +4.59 x $\frac{3}{24}$	$\frac{35}{35} = +0.64$	Line AB = +4.01 x $\frac{3}{2}$	$\frac{335}{100} = +0.55$					
	24	421	2	421					
		50 . 1 . 1	Line BC = +4.01 x $\frac{\epsilon}{2}$	350 . 1 41	2M				
	Line BC = +4.59 x $\frac{8}{24}$	$\frac{1}{100} = +1.01$	Line BC = +4.01 x $\frac{1}{2}$	$\frac{1}{121} = +1.41$					
	24	421		421					

Line	CD = +4.5	$9 \ge \frac{408}{2421} = +$	0.77	Line C	D = +4.01 x	$\frac{408}{2421} = +0.0$	58		
Line	DA = +4.5	$9 \ge \frac{828}{2421} = +$	1.57	Line D	Line DA = +4.01 x $\frac{828}{2421}$ = + 1.37				
Corrected consecutive coordinates									
Line	Length	Conse	ecutive	Correc	ction in	Correcte	d Consec.		
	(m)	Latitude	Departure	Latitude	Departur e	Latitude	Departure		
AB	335	- 334.91	- 7.80	+ 0.64	+ 0.55	- 334.27	- 7.25		
BC	850	- 4.95	+ 849.99	+ 1.61	+ 1.41	- 3.34	+ 851.40		2N
CD	408	+ 407.44	- 21.35	+ 0.77	+ 0.68	+ 408.21	- 20.67		
DA	828	- 72.17	- 824.85	+ 1.57	+ 1.37	- 70.60	-823.48		
		- 4.59	- 4.01	+ 4.59	+ 4.01	0.00	0.00		
A 41	0.0700 04		4 a ata4 T	ond f. II				tion II	
	aff. The constant	onstant of t f Verti).		ken on a ver Remarks	tically	
held st Statie	aff. The co on Staf Statio	onstant of t f Vertion ang	he instrume cal le	nt was 100 Hair R). eading	R	lemarks	tically	
held st Static	aff. The co on Stat Station BM	onstant of t f Vertion angl [– 4°(he instrume cal le 0'	nt was 100 Hair R 1.050, 1.1). eading 05, 1.160	- R		tically	
held st Station P P	aff. The co on Stati Static BM Q	$\begin{array}{c c} \hline \text{onstant of t} \\ \hline \text{f} & \text{Vertion} \\ \hline \text{on} & \text{angl} \\ \hline \hline 1 & -4^\circ (1 - 4 + 10^\circ) \\ \hline \end{array}$	he instrume cal le 0'	nt was 100 Hair R <u>1.050, 1.1</u> 0.950, 1.0). eading 05, 1.160 55, 1.160	R	Remarks L of BM = 200 m	tically	
held st Statio P P The in Ans: Given	aff. The colspan="2">colspan="2">The colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspa	onstant of tfVertiononangl I $-4^{\circ}(1-4)^{\circ}($	he instrume cal le 0' ?0' vith anallati latic lens) = 10°0' = 1.055 m	nt was 100 Hair R <u>1.050, 1.1</u> 0.950, 1.0). eading 05, 1.160 55, 1.160	R	Remarks L of BM = 200 m	tically	
held st Station P The in Ans: Given Given	aff. The colspan="2">colspan="2">The colspan="2StationStationBMQstrumentGof (f/i) = 1(f+d) = $\theta 1 = 4$ $h_1 = 1.1$ B.M. Fntercept at	onstant of tfVertiononangle (-4°) $+10^{\circ}$ was fitted v $00,$ 0 (for anallel $(0' \theta 2)$ 05 m, h_2 $RL = 200.00$ $BM = S_1 =$	he instrume cal le 0' ?0' vith anallati latic lens) = 10°0' = 1.055 m	nt was 100 Hair R 1.050, 1.1 0.950, 1.0 c lens. Det). eading 05, 1.160 55, 1.160 ermine dist	R	Remarks L of BM = 200 m	tically	11
held st Static P P The in Ans: Given Given Staff in	aff. The colspan="2">colspan="2">The colspan="2">Station StationStationStationStationStationBoxQstrumentQstrument $(f/i) = 1$ $(f+d) =$ $\theta 1 = 4$ $h_1 = 1.1$ B.M. For the second sec	onstant of tfVertiononangle I $-4^{\circ}($ $+10^{\circ}$ was fitted v00,0 (for anall $0'$ $\theta 2$ 05 m, h_2 $RL = 200.00$ BM = $S_1 =$ $B = S_2 = 1$ $S_1 x (sin 2\theta)$ $x 0.11 x sin$	he instrume cal le 0' 0' 0' vith anallati latic lens) = 10°0' = 1.055 m) m = 1.160 - 1.0	<u>nt was 100</u> Hair R <u>1.050, 1.1</u> <u>0.950, 1.0</u> c lens. Det 50 = 0.11 m $\theta = 0.21$ m). eading 05, 1.160 55, 1.160 ermine dist	R	Remarks L of BM = 200 m	tically	
held stStaticPThe inAns:GivenGivenStaff inStaff inV1 at F	aff. The constant of the second state of the	onstant of tfVertiononangle (0) $-4^{\circ}($ $+10^{\circ}$ was fitted v00,0 (for anall e^{0} θ' $\theta 2$ 05 m, h2 $BM = S_1 =$ $B = S_2 = 1$ $S_1 x$ (sin 2θ ? $x 0.11 x$ sin 55 mx (sin 2θ ?)0.21 x sin (2000)	he instrume cal le 0' 0' 0' vith anallati latic lens) = 10°0' = 1.055 m) m : 1.160 - 1.0 .160 - 0.950 1)/2 + (f+d)	nt was 100 Hair R 1.050, 1.1 0.950, 1.0 c lens. Det 50 = 0.11 m = 0.21 m sin θ1 + 0 n θ2). eading 05, 1.160 55, 1.160 ermine dist	R	Remarks L of BM = 200 m	tically	1M 1M 1M

	100 0.01 - 21000 + 0	
	$= 100 \text{ x } 0.21 \text{ x } \cos^2 10^\circ 0' + 0$ $\mathbf{PQ} = \mathbf{20.37 m}$	
	RL of instrumental axis = RL of BM + h_1 + V_1 = 200.00 + 1.105 + 0.765 = 201.87 m	1M
	RL of station Q = RL of instrumental axis + V_2 - h_2 = 201.87 + 3.591 - 1.055 RL of station Q = 204.406 m	1M
6.	Attempt any <u>TWO</u> of the following:	
a)	Describe stepwise procedure to prepare the layout of a small building using total station.	
	 Ans: Layout of small building by using total station: On the plan supplied by an architect, number the column serially from left to right and top to bottom starting from top left corner. Work out coordinates of column centre with respect to one plot corner or well defined point, assuming line parallel to any one face of building as meridian. Create an excel document with 4 independent columns one for column number and rest three for N, E & H coordinates. Upload this file to total station by using transfer software provided with instrument. Set the total station at site at a point with respect which the coordinates of column centre are work out. Initiate the total station by proving with the coordinates of station and by orienting the telescope along the reference meridian. Now, activate the setting out programme of the total station. Open the uploaded file & bring in the coordinates. Hold prism pole at tentative position of that column on ground, bisect it & get measured its coordinates. In next reading machine will display the discrepancies in the coordinates of the point & point to be set out. Direct the reflector man accordingly to occupy the new position, bisect him again & get measured its coordinates to know the discrepancy. Repeat the process till you get no discrepancy in the coordinates of point occupied & point to be set out. In this way get marked centres of rest of the columns. 	6M (for compl ete proced ure)
b)	Apply knowledge of total station to prepare a contour map by describing its procedure.	
	Ans: Procedure of preparing contour map using total station-	
	 Preliminary set up – Fix the total station over a station and level it. Press the power button to switch on the instrument. level instrument using electronic vial. Set bisection target as prism. Select MODE B> S function>file management>create (enter a name)>accept. Then press ESC to go to the starting page. 	6M*

	2) Then go to S function> measure> rectangular co-ordinate> station	
	>press enter. Here enter the point number or name, X,Y,Z co-ordnates, instrument	
	height and prism code. Then press accept (Fs)	
	3) Adopt Cross section method for establishing the major grid around the study area.	
	Project suitably spaced cross sections on either side of the centre line of the area.	
	Choose several points at reasonable distances on either side.	
	4) Orient the instrument to the magnetic north, or any other reference direction. Then set	
	zero by double clicking on 0 set (F3).	
	5) Keep the reflecting prism on the first point and turn the total station to the prism, focus	
	it and bisect it exactly using horizontal and vertical clamps. Then select MEAS and the	
	display panel will show the point specification. Now select edit and re-enter the point	
	number or name point code and enter the prism height that we have set.	
	6) Then press MEAS/SAVE (F3) so that the measurement to the first point will	
	automatically be saved and the display panel will show the second point. Then turn the	
	total station to second point and do the same procedure. Repeat the steps to the rest of	
	the stations and get all point details.	
	7) Transfer the data stored in file to computer in the appropriate format.	
	8) Using appropriate application software, contour map will be prepared.	
	bing appropriate approduction software, software, win be prepared.	
	*(Note- Student may write procedure, depending upon the make and	
	model of total station used for practical and software used.	
	<u>Give credits accordingly.)</u>	
c)	Demonstrate the utility of Remote Sensing and GIS applications in Civil Engineering	
	with appropriate examples.	
	Ans-	
	Applications of Remote Sensing in Civil Engineering-	
	1) Silting of storage reservoirs harbors etc. – Remote sensing technique that makes	
	use of satellite imagery gives idea about the silting of reservoir qualitatively and to	
	some extent quantitatively.	
	2) Location of Percolation Tanks – The exact location of percolation tanks can be	21.4
	carried out with the help of remote sensing technique, keeping in view that the site	3M
	required for location of percolation tanks should be on permeable foundations.	(for
	3) Revision of existing topo sheets - The rapid revision and updating of existing topo	
	(graphical) sheets can be carried out speedily with the help of aerial photography	three)
	and satellite imagery.	
	4) Alignment of new highways and rail routes – The location of most economical	
	alternative sites for such works can very well be carried out speedily by making use	
	of aerial photographs and satellite imagery.	
	5) Location of Bridge site: The existing foundation condition along the proposed	
	bridge construction site can be ascertained with the help of aerial photographs and	
	or satellite imagery.	
	6) Location of Dam sites: For gravity, geological investigations of the existing rock in	
	and around the proposed dam site can be carried out by aerial photographs and or	
	satellite imagery. Geological features such folds, faults, dykes, fractures etc. can be	
	determined by the remote sensing technique.	
	7) Tunneling: Remote sensing i.e. aerial photography and or satellite imagery of the	
	area helps in furnishing all such information and thus ensures the safety of tunnel	
	during its construction stages.	
	8) Seepage losses in canals: Monitoring of soil moisture in and around the canal	
	system can be possible by remote sensing technique i.e. by careful study of aerial	
	photographs and satellite imagery of such areas.	
	photographic and catoline infugery of buon arous.	

 Applications of GIS in Civil Engineering- 1) Map making 2) Site selection 	
3) Mineral Exploration4) Land use planning and management	
5) Environmental Impact studies	
6) Natural Hazard mapping or assessment	t
7) Water Resources availability.	