

WINTER – 19 EXAMINATION Model Answer

Subject Code:

22307

3.6

1.

Important Instructions to examiners:

Subject Name: Matl & Mfg. Processes

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	O. N.	Answer			
	C				
1		Attempt any FIVE of the following:			
	а	Write two need of advanced material in Automobile Sector.	02		
	Ans	The Advanced Materials in Automobile Sector include:	Any Two		
		[1] Advanced High Strength Steels,	Any 1w0		
		[2] Non-Ferrous Alloys, such as aluminum, magnesium and titanium alloys,	$\overline{02}$		
		[3] Composites, including carbon fiber composites, metal matrix composites and nano-	Marks		
		composites.			
	b	Draw Cooling Curve for Pure Iron and explain.	02		
l	Ans	Cooling Curve for Pure fron:			
		Pouring temp A to B : cooling of liquid B : beginning of solidification	Sketch		
		B - C : plateau (material in form of solid & liquid phases)			
		C to D : cooling of liquid; solidification is complete; T drops			
		Freezing temp			
		Supercooling			
		LIQUID + SOLID SOLID			
		Time (t)			
		Figure: Cooling Curve for Pure Iron			
	С	Classify various Manufacturing Processes.	02		
	Ans	The Four main types of Manufacturing Processes are			
		(1) Casting & Molding,	Any 4		
		(2) Machining,	=02		
		(3) Joining & Shearing and	Marks		
		(4) Forming.			
	d	Explain importance of Tool Life.	02		
	Ans	Tool life is a volume of material removed by a machining tool during its total usage span.	Anv		
	I	Toor me is a vorane of material removed by a materiality toor during its total usage span.			

			1			
		The volume may be in cubic mm or cubic cm at a standard cutting speed.	Two			
		Importance of Tool Life:				
		1. More will be profit in manufacturing processes.	01			
		2. Time saved in frequent tool changing.	Mark			
		3. Low inventory.	Each			
	e	List two important properties of Cutting Fluids.	02			
	Ans	Properties of Cutting Fluid:				
		1. High heat absorption				
		2. Good lubricating qualities to produce low coefficient of friction				
		3. Low viscosity to permit free flow of liquid	=			
		4. Non-corrosive to the work or the machine	01			
		5. High flash point so as the eliminate the hazards of fire	Mark			
		6. Odorless, so as not to produce any bad smell	Each			
		7. Harmless to the skin of operator				
		8. Transparency so that the cutting action of the tool may be observed				
	t	Write four operations performed on Lathe /machine.	02			
	Ans	Operations Performed on Lathe Machine are:	Any 4=			
		1. Facing, 2. Plain turning, 3. Step turning, 4. Taper turning, 5. Drilling, 6. Reaming,	¹ / ₂ Each			
		7. Boring, 8. Undercutting, 9. Threading, 10. Knurling.	,			
	g	Explain Gang Milling Process.	02			
	Ans	Gang Milling Operation:				
		Plain milling				
		Slide and face				
		milling cutter	Skotch			
		Arbor				
			1120110			
		Work				
		VICIN				
		Figure: Gang Milling Operation				
		It involves the use of a combination of more than two cutters mounted on a common	01			
		it involves the use of a combination of more than two cutters, mounted on a common				
1		aroor, for mining a number of flat nonzonial and ventical suffaces of a work piece				
		simultaneously. This method saves much of machining time and is widely used in				
		repetitive work. The cutting speed of a gang of cutters is calculated from the cutter of the				
		largest diameter.				
2		Attempt any THREE of the following:	12			
	a	State various types of Cast Iron and give application of each.	04			
	Ans	There are four basic types of Cast Iron –	T			
		(1) White Cast Iron:	Types			
		Applications: Lifter Bars, Shell Liners in Grinding Mills, Pumps, Balls and Rings of Coal	U2 Marka			
		Pulverisers, etc.	Λην			
		(2) Gray Cast Iron.	Any			
		Applications: Frames for Electric Motors, Machine Tool Structures, Engine Frames,	Relevant			
		Drainage Pipes, Cylinders & Piston & Piston Rings, Fly Wheels etc				
		(3) Ductile Cast Iron.				
		Applications: Automotive Parts, Anchor of Ships, etc.				
		(4) Malleable Cast Iron.	Mark			
		Applications: Pots Pans and utensils, etc.	each			

b	Describe various phase transformations of iron after cooling at various rates using TTT diagram.	04
Ans	TTT is Time-Temperature-Transformation diagram. It shows the microstructures resulting from non-equilibrium cooling which is not possible on Fe-c diagram. It shows various microstructures of steels depending upon cooling rate & also the temperature and time taken for each transformation.	Sketch 04 Marks
C	Figure. 111 Diagram Explain the importance of pattern allowances and state various pattern allowances	04
Ans	 Pattern Allowances are Important Because: Solid contraction can be reduced by providing more allowance on patterns. When a pattern is drawn from a mould, there is always some possibility of injuring the edges of the mould. Rough surfaces of castings that have to be machined are made to dimensions somewhat over those indicated on the finished working drawings. Some castings, because of their size, shape and type of metal, tend to warp or 	Any Two = 02 Marks
	distort during the cooling period. Various Pattern Allowances are: i. Shrinkage allowance ii. Draft allowance iii. Machining allowance iv. Distortion or camber allowance v. Shake allowance / rapping allowance	Any Four = 02 Marks
d	Explain taper turning by using swiveling compound rest.	04
Ans	Taper Turning Method by Swiveling the Compound Rest:	Sketch =
	Figures: Topor Turning Mothod by Swiveling the Compound Bact	02 Marks &

			This method employs the principle of turning taper by rotating the work piece on the lathe	
			axis and feeding the tool at an angle to the axis of rotation of the work piece. The tool	
			mounted on the compound rest is attached on a circular base (Swivel plate), graduated in	Explain
			degree, which may be swiveled and clamped at any desired angle. Once the compound rest	=
			is set at the desired angle half the taper angle, rotation of the compound slide screw will	02
			cause the tool to be fed at the angle and generate a corresponding taper. The movement of	Marks
			tool is controlled by hand.	
ľ	3		Attempt any THREE of the following:	12
		a	Enlist four properties of Magnesium AlloyAZ31 and also give it's applictions.	04
		Ans	Properties of Magnesium AlloyAZ31:	Any
			1) An extremely light metal,	Four=
			2) This alloys are of Excellent Specific Strength,	02
			3) Excellent Sound Damping Capabilities.	Marks
			4) Good Castability.	&
			5) Hot Formability, And	Any Two
			6) Excellent Machinability	= 02
			Applications: Electronics, Aerospace, Transportation Industries & Sports Industries, etc.	Marks
ł		h	Explain the effect of nickel, chromium, silicon, molybdenum addition on the	
		D	properties of steel.	04
ľ		Ans	1) Effect of Nickel as alloving Element:	
		1115	i) Provides toughness, corrosion resistance, and deep hardening.	
			ii) Increases resistance to impact	
			iii) Improves tensile strength	
			2. Effect of Chromium as alloving Element::-	
			i) Improves corrosion resistance, toughness and harden ability	
			ii) Improves resistance to abrasion and wear	Any one
			3) Effect of Silicon as alloving Element:	effect
			i) Increases Hardenability	01
			i) Increases Electrical Resistivity	mark
			4) Effect of Molybdenum as alloving Element.	each
			i) It increases red hardness of steel	
			i) Increases hardness, hardenability	
			iii) Increases wear registance	
			iv) Reduces temper brittleness	
			iv) increases strength	
			V0 Mo-carbides help increase creenresistance at elevated temps	
		C	Describe Carburizing Process with its applications	04
		Ans	Principle of Carburizing: Carburizing is the case bardening process to obtain bard wear	Principle
		A115	resistant and shock resistant case /surface and tough core inside by introducing carbon on	= 0.0
			the steel surface by heating it in contact with solid liquid gaseous carbon containing	– 02 Marks
			substances to a temperature of 870 025°C for several hours by absorption and diffusion	Marks &
			The high carbon steel surface is hardened by quenching from above the lower critical	Annl –
			tomporature	Appi
			Applications of Carburizing: 1) Gears 2) Camebafts 3) Bearings 4) Shafts	02 Mark
ł		d	Classify various types of molding sends and give it's uses	
ļ		u Ana	Lassny various types of motuning sanus and give it s uses.	04
		Ans	1. Special Sallu: Used for acres of bross and bronze costing for non-formous costings of an intricate	
			shape and for beauty steel casting	
			shape and for heavy steel casting.	
			2. Uter same.	
			Uses. It is used only for simple and rough casting. It is used for both ferrous and non-	

		3. Dry sand:	Name			
		Uses: They are suitable for larger castings.				
		4. Loam sand:				
		Uses: This is particularly employed for loam moulding usually for large castings.				
		5. Facing sand:				
		Uses: Facing sand forms the face of the mould.				
		6. Backing sand:				
		Uses: To back up the facing sand and to fill the volume of the box. It is also known as floor				
		sand.	æ			
		7. System sand:	Any			
		Uses: This molding sand is applicable to mechanical heavy castings	One			
		8. Parting sand:	Use			
		Uses: Parting sand is used to keep the green sand from sticking to the pattern and also to	Of			
		allow the sand on the parting surface of the cope and drag to separate without clinging.	Each			
		9. Core sand:	1/2			
		Uses: Sand used for making cores is called core sand, sometimes called, oil sand.	Mark.			
4		Attempt any THREE of the following:	12			
	a	Write four properties of Ceramic Materials and give it's applications in automobile	0.4			
		industry.	04			
	Ans	Properties of Ceramic Material: (Any Two- 1/2 mark each)	01			
		i. Inorganic & non -metallic material.	01 Manha			
		ii. Brittle material.	Marks			
		iii. Insulation to flow of electric current	Eacn			
		iv. Withstand high temperature.	=			
		v. Rock like appearance	02 Marka			
		vi. Hardness	Marks			
		vii. Corrosion resistance				
		Applications in Automobile Industry:				
		1. Low and high voltage insulators.				
		2. High frequency applications.				
		3. Heat resistant applications as pyrometers, burner, burner tips.				
		4. Chemical industry such as crucible, jars and components of chemical reactors.				
		5. In refractories for industrial furnaces.				
		6. In electrical and electronics industries as insulators, semiconductors, dielectric, porcelain				
		alumina, quartz, mica etc.	02 Marks			
		7. In I.C. engines and turbines as armor plates.				
		8. In cutting tools				
	b	Explain induction hardening process and give it's applications.	04			
	Ans	Induction Hardening:				
			Explain			
			=			
		STEEL WORKPIECE CAPACITOR ALTERNATOR	03			
			æ			
			Appl.			
		WATER SPRAY				
			IVIUI'K			
		Figures Induction Hondoning				
		Figure: induction Hardening				

	It involves heating thin surface layer of hardenable steel and cast iron components by means of a high frequency induced current to a temperature within or above the transformation range followed immediately by quenching. OR Steel is heated by high freq. electric induction current and cooled rapidly to convert austenite into martensite. Success is related to selection and design of proper work coil. Suitable for round shaped components Applications: [1] Piston rods, [2] Crankshaft,[3] Spur gear,[4] Camshaft, [5] Cams, [6] Automobile parts				
c And	Differentiate H	lardening and Tempering of Auto	omobile Parts.	04	
Alls	Differentiate f	Hardening	Tempering		
	Definition	Hardening or quenching is the	Tempering is the process of heating a		
	Definition	process of increasing the hardness of a material.	substance to a temperature below its critical range, holding and then cooling.	Any East	
	Process	In hardening process, the metal is heated into austenitic crystal phase and then quickly cooled.	Tempering is done by re-heating the metal alloy to a temperature lower than the critical temperature, holding for some time and cooling.	Four Points = 01 Mark	
	Purpose	Hardening increases the hardness and strength of materials such as metal alloys.	Tempering reduces hardness & strength of steel	Mark Each.	
	Application	hardness of a metal	brittleness of quenched metal or alloy.		
d	Describe Shell Molding Process with applications.				
Ans	(1) Fine Silica si [2] Box is inversion [3] Box is reposive [4] Dump box ri [5] Clean the mitigation [5] Clean the m	Heated pattern box box box box box box box box box box	(5) onto a hot pattern. on to a hot pattern, due to which a layer les drop away.	Desc. or Sketch 02 Marks & Any 2 Appl. = 01 Mark Each	

e	Explain	n any four defec	ts in casting and give remedies of it.
Ans	S. N.	Casting	Remedies
		Defects	
	1	Shifts	By ensuring proper alignment of the pattern or die part.
			moulding boxes, correct mounting of patterns on pattern plates,
			and checking of flasks, locating pins, etc. before use.
	2	Warpage	Is to produce large areas with wavy, corrugated construction, or add sufficient ribs or rib-like shapes, to provide equal cooling rates in all areas; a proper casting design can go a long way in reducing the warpage of the casting
	3	Swell	To avoid swells, the sand should be rammed properly and evenly
	4	Blowholes	To prevent blowholes, the moisture content in sand must be well adjusted, sand of proper grain size should be used, ramming should not be too hard and venting should be adequate.
	5	Drop	The given factors are eliminated to avoid drop.
	6	Porosity	Increase flux proportion, Ensure effective degassing, Reduce moisture and increase permeability
	7	Shrinkage	Ensure proper directional solidification by modifying risering and chilling
	8	Misruns and	Adjust proper pouring temperature. Modify design, Modify
		cold shuts	gating system.
	9	Inclusions	Improve or modify gating and pouring, Use a superior sand, Provide harder ramming, Use proper flux
	10	Hot Tears	Improve collapsibility, Modify design, Provide soft ramming
	11	Cuts and Washes	Improve collapsibility, Modify design, Provided soft ramming
	12	Metal Penetration	Use sand having finer grain size, Provide harder ramming, Increase the strength of sand, Adjust the proper pouring
			temperature,
	13	Fusion	Improve refractoriness, Modify refractoriness, Use lower pouring temperature, Improve quality of facing sand
	14	Shot metal	Use higher pouring temperature, Reduce sulphur content, Modify gating system.
	15	Rat Tails or Buckles	Reduce mould hardness, Break continuity of large surface by grooving or depressions.
	16	Hard Spots	Suitable change in the metal composition, Modify the casting design
	17	Run outs	Improve moulding technique, Change the defective moulding boxes.
	18	Crushes	Repairs or replace core boxes, Repairs or replace core prints, Proper setting of cores

5		Attempt any TWO of the following:		12			
	a	Differe	Differential clearly between Orthogonal and Oblique Cutting(Minimum SIX points				
		Each)	Each)				
	Ans	Differen	Difference between Orthogonal and Oblique Cutting:				
		S. N.	The sutting adapt of the tool is	Oblique Cutting			
			perpendicular to the cutting velocity	'I' with the normal to the cutting			
			factor	velocity factor			
		2	The cutting edge clears the width of the	The cutting edge may not clear the width of the workpiece on either ends.			
		3	The chip flows over the tool face	The chin flows on the tool face			
			Only two components of the cutting	Only three components of the cutting	Anv		
			forces are acting on the tool	forces are acting on the tool	Six		
		5	Tool is perfectly sharp.	Tool is not perfectly sharp.	Points		
		6	Tool contacts the chip on rake face only.	The toll may not generate a surface parallel to workface.	01 Mark		
		7	The maximum chip thickness occurs at the middle.	The maximum chip thickness may not occur at the middle.	Each		
		8	Only one cutting edge in action.	More than one cutting edges are in action			
		9		Depth of cut			
			Feed	Rake			
			orthogonal	oblique			
	b	Explain	Explain single point cutting tool nomenclature with sketch.				
	Ans	Single I	Single Point Cutting Tool Nomenclature:				
			Face Shank				
			Back Rake	Angle Side Cutting Edge Angle	e		
		Side Rake Angle Side Relief Angle = End Clearance Angle			& Explanat ion Of any Two Element		
			Figure: Nomenclature of Sing	gle Point Cutting Tool.	Of		
1		1. Shank: The main body of the tool is known as shank. It is the backward part of tool					
		which is	s hold by tool post.		01		
		2. Face: The top surface tool on which chips passes after cutting is known as face. It is the			Mark		
		1 norizoni	tal surface adjacent of cutting edges.	ng face. It is the vertical surface adjacent	Each.		
		 3. Flank: Sometime flank is also known as cutting face. It is the vertical surface adjacent to cutting edge. According to cutting edge, there are two flank side flank and end flank. 3. Nose or Cutting Point: The point where both cutting edge meets known as cutting point 					
		or nose.	or nose. It is front of the tool.				

		4. Base: The bottom surface of tool is known as base. It is just opposite surface of face.				
		5. Heel: It is a intersecting line of face and base.				
		6. End Cutting Edge Angle: The angle between end cutting edge or flank to the plane				
		perpendicular to the side of shank is known as end cutting angle.				
		narallel to the side of the shank known as side cutting edge angle				
		8 Back Dake Angle: The angle form to smooth flowing of chine from face, known as much				
		angle. It allows to smooth flow of chips. Back rack angle is the angle between face and the				
		nlane perpendicular to the end cutting edge				
		9. Side Rack Angle: The angle between the face and plane perpendicular to the side				
		cutting edge is known as side rack angle. It allows chips to flow smoothly when material				
		cut by side cutting edge.				
		10. End Relief Angle: It is also known as clearance angle. It is the angle which avoids tool				
		wear. It avoid the rubbing of flank with work piece. End cutting angle made by end flank				
		to the plane perpendicular to base.				
		11. Side Relief Angle: It is the angle made by the side flank to the plane perpendicular to				
		the base. It avoid rubbing of side flank with work piece.				
		12. Nose Radius: The intersecting area of both cutting edges is known as nose of the tool.				
	С	Classify various types of Milling Machines. List major parts of Universal Milling	06			
	•	Machine.				
	Ans	Classification of Milling Machine:-				
		a Diain or Horizontal Milling Machine				
		h Hand Milling Machine	Classific			
		C. Vertical Milling Machine				
		d Universal Milling Machine				
		e. Omniversal Milling Machine				
		2) Manufacturing or Fixed Bed Type Milling Machine				
		a. Simplex Milling Machine				
		b. Duplex Milling Machine				
		c. Triplex Milling Machine				
		3) Planer Type Milling Machine	Any			
		4) Special Purpose Milling Machine	Four			
		a. Cam Milling Machine	Parts			
		b. Planetary Milling Machine	1/2			
		c. Profile Milling Machine	mark			
		a. Dualicating Milling Machine	each			
		Agior Parts of Universal Milling Machine				
		[1]Base [2]Column [3]Knee [4]Saddle [5]Table [6]Overhanging arm [7]Spindle [8]Arbor				
6		Attempt any TWO of the following:	12			
0	а	Explain the importance of various machining parameters in improving tool life.	06			
	Ans	Various Machining Parameters in Improving Tool Life are:				
		1. Hardness and machinability of the metal to be machined.				
		2. Quality of heat treatment if it is steel tool.	Any			
		3. Whether machining is to be done with or without the use of coolant	SIX Damana et e			
		4. Rigidity of the tool and the work.	r aramete			
		5. Shape of the tool.	15 01			
		6. Depth of cut.	Mark			
		7. Feed to be given to the tool.	Each			
		8. Cutting Speed.				

b	Describe the construction and working of bench drilling machine with block diagram.	06
Ans	Major Parts of Bench Drilling Machine :	Sketch
	STEP CONE ELT	02
	DRILL FEED HANDLE SPINDLE DRILL TABLE TABLE TABLE	Marks
	COLUMN	
	BASE	
	Figure: Bench Drilling Machine	<i>a</i> .
	i Base: It supports the column which in turn support the table and head etc.	Construc
	ii. Spindle: It is made up of allow steel. It rotate as well as moves up and down in a sleeve	110N 02
	Iii. Drill Chuck: It is held at the end of the drill spindle and in turns it holds the drill bit or	Marks
	tool.	
	iv. Head : it contains the electric motor ,V pulley & v-belt which transmit rotary motion to	
	drill spindle at number of speeds	
	v. Adjustable Table: It is supported on the column of the drilling machine and can be	Working
	vi Column: It is vertical round or how section, which rests on the base and supports the	02 Marka
	head and the table.	<i>wiai</i> KS
С	Explain keyway milling process with standard milling cutters.	06
Ans	Keyway Milling Operation:	
		Sketch
		03
	¥{	Marks
		æ
		u
	Job	
	Figure: Keyway Milling	
	This milling process produce keyway slot. The cutter use if thin size. This operation suited	Process
	for long keyways. The position of the cutter is shown in figure. Standard keyways are cut	03
	on shafts by using side milling cutters or end mills. The cutter is exactly at the center line of the work piece and then the out is taken. We druff here is readyed by using a sub-	Marks
	of the work piece and then the cut is taken. woodruff key is produced by using a woodruff key slot cutter	
		i