MAHARASHTI (Autonomous)

WINTER – 19 EXAMINATION

Subject Name: Control system

Subject Code

17538

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.

Model Answer

- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Answer		Marking Scheme
Q.1	(A)	Attempt any THREE			12-Total Marks 4M
	a)	Compare open loop an	d closed loop systems.	closed loop systems.	
	Ans:				4M
		Basis For Comparison	Open Loop System	Closed Loop System	
		Definition	The system whose	In closed loop, the output	
			control action is free	depends on the control	
			from the output is	action of the system.	
			known as the open		
			loop control system.		
		Feedback	Non-feedback	Feedback System	
		loop	System		
		Construction	Simple	Complex	
		Reliability	Non-reliable	Reliable	
		Accuracy	Inaccurate	Accurate because of feedback.	
		Stability	Stable	Less Stable	
		Response	Fast	Slow	
		Linearity	Non-linear	Linear	
		Error correction	Not possible	possible	
		Bandwidth	Small	large	
		Examples	Traffic light, automatic washing machine, immersion rod, TV remote etc.	Air conditioner, temperature control system, speed and pressure control system,	
				refrigerator, toaster.	

BOARD OF TECHNICAL EDUCATION

tified)

	Block Diagram	
b)	Define poles and zeros with respect to control system. Explain with example.	4M
Ans:	Poles-The value of 'S', which make the transfer function infinite after substitution in the denominator of a T.F. are called poles of that T.F.Zeros-The values of 'S' which make the T.F. zero after substituting in the numerator are called as 'zeros' of that T.F.Example: Assume transfer function of a system- 	4M
c)	Hence zero of this T.F. is S=-2. State the advantages and disadvantages of Routh's stability criterion.	4M
Ans:	 Advantages of Routh's array: i. Simple criterion that enables to determine the number of closed loop poles which lie in right half of S-plane without factorizing the characteristic equation. ii. Without actually solving characteristic equation, it tells whether or not there are positive poles in a polynomial equation iii. By seeing the sign changes in the first column, it can be analysed whether system is stable or not. iv. It tells the number of poles present on imaginary axis i.e. it tells about critical stability. Disadvantages of Routh''s array: i. Cannot find out the value of poles. ii. It is not a sufficient condition for stability. 	4M
d)	iii.Lengthy procedureDefine 'Electrical Zero position of Synchro' and give its applications.	4M

b)	Draw and explain electronic PID controller using OP- Amp. List its two advatages.	6M
	$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)*H(s)}$	
	Transfer Function:	
	$C(s) \frac{[1+G(s)H(s)]}{G(s)} = R(s)$	
	$C(s) \left\{ \frac{1}{G(s) + H(s)} \right\} = R(s)$	
	$\frac{C(s)}{G(s)} = R(s) - C(s) H(s)$	
	E(s) = R(s) - B(s) (for negative feedback) [.I.] Substitute for E(s) & B(s) in [.I.]	
	$B(s) = C(s) \times H(s)$	
	$\mathbf{C}(\mathbf{s}) = \mathbf{E}(\mathbf{s}) \ge \mathbf{G}(\mathbf{s})$	
	$E(s) = \frac{C(s)}{G(s)}$	
	$G(s) = \frac{C(s)}{E(s)}$	
	Derivation:	
	H(s)	
	$\begin{array}{c c} R(s) \\ \hline \\ $	
	Block diagram: (for negative feedback system)	Derivation-4N
Ans:	Transfer Function is defined as the ratio of Laplace transform of Output to that of Laplace transform of input under the assumption that all initial conditions are zero.	Defination-2N
	system.	
a)	Define tranfer function. Derive the equation of tranfer function for closed loop	6M
	Attempt any <u>ONE</u> :	6-Total Marks
	 As an error detector As a Position transducer 	
	Application:	2M
	voltage generated across the terminals of the rotor of control transformer is zero. This position is called as Electrical zero position of control transformer.	
Ans:	When the rotor positions of the two synchro are perpendicular to each other, the	2M

	Ans:	Diagram	Diagram-2M
		Explanation:	Explanation-
		PID is combination of 3 control action- proportional + integral + derivative. The proportional corrects instances of error, the integral corrects accumulation of error, and the derivative takes the corrective action in anticipation. The effect of the derivative is to counteract the overshoot caused by P and I. When	2M
		 the error is large, the P and I will push the controller output. This controller response makes error change quickly, which in turn causes the derivative to more aggressively counteract the P and the I. Advantages of PID controller: 1. Offset error is eliminated. 2. Settling time is less. 3. Provides a fast response 	Advantage-2M
Q.2		Attempt any <u>TWO</u> :	16-Total Marks
	a)	Reduce the block diagram using reduction rule. Obtain C(S) /R(S).	8M
	Ans	$R(s) \xrightarrow{(G_{1})} \xrightarrow{(G_{1})} \xrightarrow{(G_{2})} (G$	6M(1M each formula applied)

c)	Range of valuer of k, O <k<235.102 -="" 2m.<br="">Describe working of variable reluctance type stepper motor with suitable diagram and write applications of stepper motor.</k<235.102>	Range-2M 8M
	Range of valuer of K, O <k<235.102 -="" 2m.<="" th=""><th>-</th></k<235.102>	-
	Range of values of K,	
	235.102 > K	
	3291.43 > 14K	
	From S', 3291.43-14K>0	
	From S°, K>0	
	SI 3291-43-14K	
	5 ² 51.42 K	
	S ⁴ 1 56 K S ³ 14 64 0	
	$S^4 + 14S^3 + 56S^2 + 64S + K = 0 - 1M$	4 M ,
	$S^{4} + 12s^{3} + 32s^{2} + 2s^{3} + 24s^{2} + 64s + k = 0$	Rouths aaray
	$(s^{2} + 2s)(s^{2} + 12s + 32) + k = 0$ $(s^{2} + 2s)(s^{2} + 12s + 32) + k = 0$	
	(-2) + 0.5 + (-2 + 9.5 + 4.5 + 3.2) + K = 0	
	k = k + k + k = 0	
	$1 + \frac{K}{S(S+2)(S+4)(S+8)} = 0 - 1M$	
A115	characteristic equation $1 + b_1(S) + (S) = 0$	equation-2M
Ans	range of 'K' for the system to be stable. Using Routh's criteria.	Characteristi
b)	A system has G(S) H(S) = $\frac{K}{S(S+2)(S+4)(S+8)}$ where K is positive. Determine the	8 M
	V	
	$\frac{C(S)}{R(S)} = \frac{G_1 G_2 (G_2 + G_4)}{(1 + G_1 G_2 + I_1) (1 + G_2 + G_2) + G_1 G_2 (G_1 + G_4) H_3}$	
	$C(s) = G_1G_2(G_2+G_4)$	
	(1+G1G2 H) (Hug H2) + G1G2(121) (1)	
	$\frac{R(5)}{(1+G_1G_2H_1)(HG_3H_2)+G_1G_2(G_2+G_4)H_2} \xrightarrow{\text{QS}}$	
	$(1+G_1G_2H_1)(1+G_3H_2)+G_1G_2+G_4)H_3$	
	$\frac{G_1 G_3 (G_2 + G_4)}{(1 + G_1 G_2 + H_1) (1 + G_3 + L_2) + G_1 G_2 + G_4) H_3}$	
	$1 + \frac{G_1 G_2 (G_2 + G_{4+})}{(1 + G_1 G_2 H_1)(1 + G_2 H_2)}$	
	$= \frac{\frac{G_1 G_2 (G_2 + G_4)}{(1 + G_1 G_2 H_1) (1 + G_3 H_2)}}{1 + \frac{G_1 G_2 (G_2 + G_4)}{(1 + G_1 G_2 H_1) (1 + G_2 H_2)}}$	answer
	$G_1G_2(G_2+G_4)$	2M- Final
	H3	
	$\mathbf{R}(\mathbf{S}) \longrightarrow \left(\begin{array}{c} G_1 G_3 (G_{2,+} G_{4,-}) \\ (1+G_1 G_{2,-} H_1) (1+G_2 H_2) \end{array}\right) \longrightarrow \mathbf{C}(\mathbf{S})$	

a)	Find the transfer function of network given in figure. $ \begin{array}{c} $	4M
Q.3	Attempt any <u>FOUR</u> :	16-Total Marks
	 Stator winding winding Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches. Working: Wohen any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases in specific sequence, the motor is made to complete one revolution. Application of stepper motor- In floppy Disc driver Computer printer In automation systems Robotics 	Explaination- 3M Application of stepper motor(any four)-2M

BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHTI (Autonomous) (ISO/IEC - 2700

	Sol Transfer function of given network is i = 1 for $i = 1$ for $i = 1$ for $i = 1E_i(E) i(E) E_i(E) E_i(S) R \in E_i(S)Applying KVL we can writteE_i(E) = L \frac{d_i(E)}{dt} + \frac{1}{c} \int i(E) dt + i(E) R (1)$	2 Marks for KVL equations
	Applying KVL we can write $E_{i}(L) = L \frac{d_{i}(L)}{dL} + \frac{1}{c} \int i(L) dL + i(L) R \qquad (1)$ $E_{o}(L) = R i(L) \qquad (2)$ $Taking (aplace of settation (1) and (2)$ $E_{i}(S) = SL I(S) + \frac{1}{Sc} I(S) + RI(S) \qquad (3)$ $E_{o}(S) = R I(S)$ $E_{i}(S) = I(S) \left[SL + \frac{1}{Sc} + R \right]$ $= I(S) \left[\frac{S^{2}LC + 1 + SCR}{Sc} \right]$ $\frac{E_{o}(S)}{E_{i}(S)} = \frac{R I(S)}{I(S)} \frac{S^{2}LC + 1 + SCR}{Sc} \right]$ $\frac{E_{o}(S)}{E_{i}(S)} = \frac{SCR}{S^{2}LC + SCR + 1}$	2 Marks for solving Transfer function
b)	Draw labelled time response of 2 nd order control system and define rise time and settling time.	4M
Ans:	Time response of 2 nd order control system	2 Marks for
	Peak overshoot M_p Tolerance band $\pm 2\%$ In steady state, output remains within $\pm 2\%$ error band 10 % 10 % Tolerance band $\pm 2\%$ In steady state, output remains within $\pm 2\%$ error band Tolerance band $\pm 2\%$ Tremains within $\pm 2\%$ error to the steady state, output remains within $\pm 2\%$ error band	
	Definition:	
	Rise Time : Time required for the response to rise from 10% to 90% of the final value for overdamped systems and 0% to 100% of the final value for underdamped systems.	1 Marks for each definition
	Settling time: Time required for the response to decrease and stay within specified percentage of its final value and within tolerance band (usually 2%).	

Ans:	The stability by Routh's chiterion $5^{4} + 65^{3} + 265^{2} + 565 + 80 = 0$ $5^{4} 1 26 80$ $5^{3} 6 56 0$	3 Marks for solving Routh criterion
	5^{2} 16.66 80 5^{1} 27.21 0 5^{0} 80	1Marks for conclusion
	As there is no sign change, system is stable.	
d)	Explain the procedure to draw Bode plot.	4M
Ans:	Procedure to draw Bode plot:	4 Marks for
	 Express given G(s) H(s) into time constant form and sinusoidal TF Find out the factors in it Draw a line of 20 Log K dB Draw a line of appropriate slope representing poles and zeros at the origin, passing through intersection point ω=1 and 0dB Shift this intersection point on 20 Log K line and draw parallel line to the line draw in step 3 this is addition of constant K and no. poles or zeros at the origin. Change the slope of this line at various corner frequencies by appropriate value and draw line with resultant slope. Continue this line till it intersects next corner frequency line. Change the slope and continue. Prepare the phase table and obtain the table of ω and resultant phase angle Φ_R by actual calculation. Plot these points and draw the smooth curve obtaining 	proper Procedure
	the necessary phase angle plot.	
e)	(i) Define : (1) Offset, (2) Proportional band, (3) Neutral zone.	4M
Ans:	 (ii) List control actions. i) Offset: The proportional controller produces a permanent residual 	
	 error in the controlled variable, when a change in load occurs. This is referred to as offset. ii) Proportional Band: Proportional band is defined as the amount of change in the input error required to drive the loop output from 0 to 100%. In a controller the manipulating variable is proportional to the control deviation within the proportional band. The gain of the controller can be matched to the process by altering the proportional band. If the proportional band is set to zero, the controller action is ineffective. iii) Neutral Zone: In all the practical implementation of the ON-OFF controller, there is an overlap, as the error increases through zero or decreases through zero. Such an overlap creates a span of error in which there is no change in the controller output. This span is called 	3 Marks for definition
	neutral zone, dead zone or dead band. ii) Control actions	1 Marks for
	1. Discontinues Mode ON-OFF controller	control action
	2. Continuous Mode	

MAHARASHTI (Autonomous)		BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 2700	And the second second	:tified)

		i)Proportional (P)controller	
		ii)Derivative (D)controller	
		iii)Integral (I)controller	
		3. Composite controllers	
		i)Proportional +Integral (PI)controller	
		ii)Proportional +Derivative (PD)controller	
		iii)Proportional +Integral +Derivative (PID)controller	
Q.4	(A)	Attempt any THREE:	12 Total Marks
		T.F second order system is given by	
	(a)	$\frac{C(S)}{R(S)} = \frac{64}{S^{2+}5S+64}$, find T _S and M _P for unit step input.	4M
	Ans:	$\frac{C(s)}{R(s)} = \frac{64}{s^2 + 55 + 64}$	1 Marks for
		R(S) 5+55+64	finding ξ value
		T.F of Second order system is $\frac{\omega_n^2}{S^2 + 2\varepsilon_0 \omega_n S + \omega_n^2} \Rightarrow \frac{64}{S^2 + 5S + 64}$	
		$\frac{\cos^2}{5+55+64}$	
		5+2 G Won 5+ Wm = 8 rad/sec	
		$3^{2}+2\epsilon_{3}\omega_{n}s+\omega_{n}^{2}$ $5^{2}+53+64$ $\therefore \omega_{n}^{2}=64$, $\omega_{n}=\sqrt{64}=8$ rad/sec	1 Marks for T _s
		$\Rightarrow 2 E_3 \omega_n = 5$	
		$E_3 = \frac{5}{2\omega_n} = \frac{5}{2 \times 8} = 0.312$	2 Marks for M _p
		$T_3 = \frac{4}{\epsilon_3 \omega_n} = \frac{4}{0.312 \times 8} = \frac{1.60 \text{ sec}}{1.60 \text{ sec}}$	
		$M_{p} = e^{-\epsilon_{3}T} / \sqrt{1 - \epsilon_{3}^{2}} \times 100$ = $e^{-0.312T} / \sqrt{1 - 0.312^{2}} \times 100$	
		= e ×100	
		- 0. 180 / 0. 130	
		= e	
		= e Mp = 0.356 ×100 = 35.64 ·/.	
L	1	1	<u> </u>

1		•	e location of poles	for stable, unstab	le, critically stable	e 4M
Ans	system. Stability : A linear time invariant system is set to be stable if following conditions					
	are sat	•	2		e	Stability
	i.	When the system	is excited by a boun	ded input the outp	ut is also bounded	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		and controllable.				
	ii.	In the absence of	input output must te	end to zero irrespec	tive of the initial	
		conditions.				
	Sr. No.	loop poles	Locations of closed loop poles in s-plane	Step response	Stability condition	
	1.	Real, negative i.e. in L.H.S. of s-plane	$+ \frac{H}{-a_2} - \frac{H}{a_1} = 0$	c(t)	Absolutely stable	
	2	Complex conjugate with negative real part i.e. in L.H.S. of s-plane			Absolutely stable	
	3.	Real, positive i.e. in R.H.S. of s-plane (Any one closed loop pole in right half irrespective of number of poles in left half of s-plane)		o(t)t Engenerital but t	Unstable	
	4	Complex conjugate with positive real part i.e. in R.H.S. of s-plane			Unstable	
	5.	Non repeated pair on imaginary axis without any pole in R.H.S. of s-plane	χ ^{jω} χ ^{jω} γ-jω ₂		Marginally or critically stable	
			οτ *im2 *im2 *im1 *im1 *im2 *im2 *im2 *im2		Marginally or critically stable.	
	6.	Repealed pair on	two non repeated pairs on imaginary axis.	Sustained oscillations with two frequency components ω_1 and ω_2		
		imaginary axis without any pole in R.H.S. of s-plane	σ − − − − − − − − − − − − − − − − − − −	Ouchations of	Unstable	
				accessing and more		
		Any relevant diag nary axis may be c	ram of s-plane with onsidered.		both plane and	
(c)	imagi	nary axis may be c	-	1 root location in l	-	location of poles
(c) Ans	imagin Descri	nary axis may be c ibe the principle of	onsidered.	n root location in l ller with its one a	-	location of poles il. 4M 2 Marks fo
	imagin Descrition ON-O	nary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi	onsidered. ON – OFF contro vo position controlle roller is a type of co mum or minimum	n root location in l ller with its one a er ontroller in which value depending	pplication in detain	il. 4M 2 Marks fo Principle
	imagin Descrit ON-O 1)	nary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples	onsidered. ON – OFF control vo position controller roller is a type of co mum or minimum greater or less than and cheapest mode	Iler with its one a Iler with its one a er ontroller in which value depending the set point. e of action, hence	pplication in detain a controller output g upon whether t	is he
	imagin Descrit ON-O 1) 2)	nary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples industrial and dom	onsidered. ON – OFF control vo position controller roller is a type of co mum or minimum greater or less than and cheapest mode estic control system	Iler with its one a Iler with its one a er ontroller in which value depending the set point. e of action, hence	pplication in detain a controller output g upon whether t	is he
	imagin Descrit ON-O 1) 2)	nary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples industrial and dom The controller out	onsidered. CON – OFF control vo position controlle roller is a type of co mum or minimum greater or less than and cheapest mode estic control system put is given by	Iler with its one a Iler with its one a er ontroller in which value depending the set point. e of action, hence	pplication in detain a controller output g upon whether t	is he location of poles
	imagin Descrit ON-O 1) 2)	hary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples industrial and dom The controller out %P = 0%,	onsidered. $T ON - OFF control of the position controlled roller is a type of controller mum or minimum greater or less than and cheapest mode mustic control system put is given by e_p < 0$	Iler with its one a Iler with its one a er ontroller in which value depending the set point. e of action, hence	pplication in detain a controller output g upon whether t	location of poles il. 4M 2 Marks for Principle in
	imagin Descrit ON-O 1) 2)	nary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples industrial and dom The controller out %P = 0%, %P = 100%,	onsidered. TON - OFF control wo position controller troller is a type of common or minimum greater or less than and cheapest mode mustic control system put is given by $e_p < 0$ $e_p > 0$	Iler with its one agent ontroller in which value depending the set point. e of action, hence as.	pplication in detain a controller output g upon whether t e commonly used	location of poles il. 4M 2 Marks for Principle in 2 Marks for Principle
	imagin Descrit ON-O 1) 2)	nary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples industrial and dom The controller out %P = 0%, %P = 100%, Where e_p is input of	onsidered. CON – OFF control vo position controller roller is a type of control mum or minimum greater or less than and cheapest mode mustic control system put is given by $e_p < 0$ $e_p > 0$ error, p is controller	Iler with its one agent ontroller in which value depending the set point. e of action, hence as.	pplication in detain a controller output g upon whether t e commonly used	location of poles il. 4M 2 Marks for Principle in 2 Marks for any one
	imagin Descrit ON-O 1) 2)	hary axis may be c ibe the principle of FF controller (or) tw The ON-OFF cont changed to maxi measured value is It is the simples industrial and dom The controller out %P = 0%, %P = 100%, Where e _p is input of and b = measured	onsidered. CON – OFF control vo position controller roller is a type of control mum or minimum greater or less than and cheapest mode mustic control system put is given by $e_p < 0$ $e_p > 0$ error, p is controller	Iler with its one a Iler with its one a ontroller in which value depending the set point. e of action, hence hs. output and $e = r - $	pplication in detail a controller output g upon whether t e commonly used b where r = set point	il. location of poles il. 4M 2 Marks for Principle in 2 Marks for any one relevant

MAHARASHTE (Autonomous)

(ISO/IEC - 2700

controller is OFF and output is minimum.

Application (any relevant application related to ON-OFF controller carry 2 marks)

Air Conditioner

In air conditioning system, when the temperature falls below a certain reference level, the error is positive the output is maximum i.e. 100 % controller output will stop the air supply to the air conditioner.

When the temperature rises above the certain reference level, the error will be negative i.e. output is zero . Now the controller output will start the electric supply to air conditioner.

Electric Iron:

In automatic electric iron, a resistive heating element is used to generate heat. A thermostat is used as controller to control the temperature. The reference input is the desired temperature setting on the thermostat. The controlled output is the actual temperature of the electric iron. When the output temperature is less than the thermostat reference setting, the thermostat is actuated which, in turn, switches on the heating element. As a result, the temperature increases, and when it exceeds the thermostat setting (desired value of temperature) by a small amount, the heating element is turned off. The temperature then starts decreasing. When it falls below the thermostat setting by a small amount, the heating element is once again switched on. The heating cycle is thus repeated.

The sole plate of the iron of which the temperature is to be controlled is the Process. The actuator is the heating element and the thermostat acts as the error detector and controller. Disturbance to the system is the heat loss due to radiation.

Diagram of Electric Iron as On-Off Controller:

MAHARASHTI (Autonomous) (ISO/IEC - 2700	BOARD OF TECHNICAL EDUCATION :tified)	
	DC Motor control systems potentiometers can be used as position feedback as	Description
	shown in figure. This type of arrangement allows comparison of two remotely	
	located shaft positions. The output voltage is taken across the variable terminals of	
	the two potentiometers.	
	Output of this differential potentiometer is $=K_s[\theta r(t) - \theta_L(t)]$	
	This is then is fed to DC Amplifier, which is further amplifying the armature current	
	of the DC Motor. The motor, in turn moves and with it the shaft connected to the	
	load potentiometer in such a way as to make the output voltage zero. That is the	
	output (Load) potentiometer shaft moves in accordance with the shaft of the input	
	(reference) potentiometer.	
		1

e

(B)

(a)

Ans

dc motor D.C. amplifier e_a М Ref input θ,

2 Marks for sketch

Attempt any ONE:	6M
A unity feedback system has $G(S) = \frac{10(S+1)}{S(S+2)(S+5)}$. Calculate the error coefficients K_p , K_v , K_a and steady state error, where $r(t) = 3+10t$.	6M
Since unity feed back system $H(s) = 1$ Error coefficients are. K_P , K_V , K_A . :: $G(s) = \frac{10(s+1)}{5(s+2)(s+5)}$ $G(s) = \frac{16((1+s))}{5((1+0.55))(1+0.25)}$:. $G(s) = (1+s)$ 5((1+0.55)(1+0.25)	3Marks for error coefficients
$K_{p} = \lim_{\substack{g \neq 0 \\ g \neq 0}} G(g) H(g)$ $= \lim_{\substack{g \neq 0 \\ g \neq 0}} \frac{(1+g)}{g(1+o(g))(1+o(g))} = \infty$ $K_{V} = \lim_{\substack{g \neq 0 \\ g \neq 0}} g G(g) H(g)$ $= \lim_{\substack{g \neq 0 \\ g \neq 0}} \frac{g}{f(1+g)(1+o(g))} = 1$	3Marks for

$$K_{a} = \lim_{\substack{g \to 0 \\ g \to 0}} s^{2} G(g) H(g)$$

=
$$\lim_{\substack{g \to 0 \\ g \to 0}} s^{2} (1+s) = 0$$

 $g(1+s)(1+s)(1+s)(1+s) = 0$
steady state error

MAHARASHTI (Autonomous) (ISO/IEC - 2700

 	Steady state error	
	Steady state error $e_{ss} = \lim_{s \to 0} \frac{S R(s)}{1 + G(s) H(s)}$	
	$Onput \Re(t) = 3 + 10t$	
	$(R(S) = \frac{3}{3} + \frac{10}{3^2}$	
	$e_{sg} = e_{sg_1} + e_{sg_2}$	
	$e_{3S_{1}} = \lim_{S \to 0} \frac{\# * \frac{3}{\#}}{1 + \frac{(1+S)}{5(1+0.55)(1+0.25)}} \times 1$	
	$=$ $\frac{3}{1+\alpha}$ $=$ 0	
	$e_{33_{2}} = \lim_{3 \to 0} \frac{\frac{1}{5} \times \frac{10}{57}}{\frac{1}{5(1+0.55)(1+0.25)} \times 1} = \frac{\lim_{s \to 0} \frac{10}{5(1+0.55)(1+0.25)}}{\frac{1}{5(1+0.55)(1+0.25)}}$	
	$= \frac{(1)\pi}{5+5} \frac{10}{5+5(1+5)}$ $= \frac{10}{5(1+0.55)(1+0.25)}$	
	$=\frac{10}{0+1}=10$	
	$e_{3S} = e_{3S_1} + e_{3S_2}$ $e_{3S} = 0 + 10 = 10$	
	$e_{3S} = 0 + 10 = 10$	
	Draw Bode plot for a control system having unity feedback and open loop	M
(b)	transfer function as $G(S) = \frac{80}{S(S+2)(S+20)}$.	6M
Ans	Step 1 : Convert the $G(s)H(s)$ in time constant form	2Marks for
	Since $H(s) = 1$ 80	calculating Magnitude
	$G(s)H(s) = \frac{80}{s(s+2)(s+20)}$	Magnitude Plot
	2	
	$=\frac{2}{s(1+\frac{s}{2})(1+\frac{s}{20})}$	
	$S(1 + \frac{1}{2})(1 + \frac{1}{20})$ Magnitude Plot (Factors)	2Marks for
		calculating
	1) $K = 2$, $ M = 20 \log K = 6.02 dB$ It is a straight line of magnitude 6 dB parallel to X axis (0 dB slope).	phase Plot
	2) Pole at origin 1/s : It is a straight line of magnitude +20 dB at origin and a constant slope -20 dB/decade cutting X axis at $\omega = 1$	
	3) $\frac{1}{1+\frac{s}{2}}$	
	0 dB magnitude upto corner frequency $\omega_{c1} = 2$ rad/sec and line of slope is -20 dB/decade from $\omega_{c1} = 2$ rad/sec.	
	4) $\frac{1}{1+\frac{s}{20}}$	
	0 dB magnitude upto corner frequency $\omega_{c2} = 20$ rad/sec. From $\omega_{c2} = 20$ rad/sec straight line of slope is -20 dB/decade.	2Marks for graph Plotting
	Resultant Magnitude	
	Resultant at origin = add magnitudes of all individual plots at origin	
	= 6+20+0+0=26 dB	

MAHARASHTI (Autonomous) (ISO/IEC - 2700

(a)	Name the standard test inputs. Draw then and given their Laplace transform.			4M		
Ans:	The Standard tes 1.Unit Step Inpu 2.Unit Ramp Inp 3.Unit Parabolic	it out Input				4M
	4.Unit Impulse I	nput est Signal	Graphical	Laplace	1	
		Cat Signal	representation	representation		
	U	nit Step Input		$\frac{1}{s}$	-	
	U	init Ramp Input	$r_{(1)}^{(1)}$ \rightarrow Slope = A	$\frac{1}{s^2}$	-	
	U	init Parabolic Input	r(t) f $r(t)f$ $r(t)f$ $r(t)r($	$\frac{1}{s^3}$	-	
	υ	init Impulse	$\begin{array}{c} r(0) \\ \uparrow \\ \downarrow \\ \downarrow$	1	-	
(b)			that system with $S(S^2 + S+1) (S+4)$ -	following charact +K = 0.	eristics	4M
Ans:		The characte	eristics equation	is given by,		
		$s(s^2 + s + 1)$	(s+4) + K = 0			
		$(s^3 + s^2 + s)$	(s+4) + K = 0			
		i.e. $s^4 + 5. s^3$	$+5. s^{2}+4. s+1$	K = 0		

 r		
	The routh's array for above characteristics equation is formed as follows	
	$\overline{\mathrm{S}^4 \qquad 1 \qquad 5 \qquad \mathrm{K}}$	
	s^{3} 5 4 0	
	S^2 4.2 K 0	
	$S^1 = \frac{16.8-5K}{4.2}$	
	s ^o K	
	For stability all elements of 1 st column should be positive.	
	i.e. $\frac{16.8-5K}{4.2} > 0$ for S ¹ row	
	i.e. K $< \frac{16.8}{5}$	
	i.e. 0 < K < 3.36	
	This is range of K for stable system.	
(c)	Define the following frequency response specification.	4M
	(i) Response peak (ii) Bandwidth	
Ans:	(iii) Cut off frequency(iv) Gain margini) Response peak : It is defined as the maximum value of magnitude ofM(jw)	1M for each
Alls.	is denoted by Mr.	correct
	(ii) Bandwidth : It is defined as the range of the frequencies over which the system	definition
	will respond satisfactorily. It is also defined as range of the frequency over	uciliation
	magnitude of closed loop response does not drop by more than 3db from its zero frequency	
	value. (22) Cost of frequencies $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1$	
	(iii) Cut off frequency: Frequency at which the magnitude of closed loop response in 3db down from its zero frequency value is called as cut off frequency.	
	(iv) Gain margin : The margin in gain allowable by which gain can be increased till	
	system reaches on the verge of instability is called as Gain Margin	
(d)	Draw the transient response of second order system for different values of ξ	4M
	(zeta).	
Ans:	Transient response of second order system for different values of ζ (zeta) :	4M
	$\xi = 0.4$	
	Underdamped	
	C ₈₈	
	ξ = 0.8	
	0	
	ξ<1	
		<u> </u>

BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

1)	Draw and describe the block diagram of process control system.

Block diagram of process control system consists of following blocks:-

Disturbance Manipulated Actuating Reference Controlled Variable Variable (Output) Signal Input (Setpoint) Control Plant Elements Feedback Signal Feedback Elements **1.Plant or Process :** Plant or process is an important element of process control system in which variable of process is to be controlled. The Process means some manufacturing sequence. It has one variable or multivariable output. 2.Feedback element or Sensor : The feedback element or sensor is the device which converts the output variable into

another suitable variable which can acceptable by error detector. **3.Error detector :** The error detector compares between actual signal and reference input i.e. set

The error detector compares between actual signal and reference input i.e. set point .The error detector is subtract summing points whose output is an error signal to controller for comparison and for the corrective action.

$\mathbf{E}(\mathbf{t}) = \mathbf{r}(\mathbf{t}) \mathbf{b}(\mathbf{t})$

4.Automatic controller : The controller detects the actuating error signal, which is usually at a very low power level, and amplifies it to a sufficiently high level i.e. means automatic controller comprises an error detector and amplifier.
5.Actuator or control element : The actuator is nothing but pneumatic or valve, a hydraulic motor or an electric motor, which produces an input to the plant according to the control signal getting

		from controller.	
Q6.		Attempt any FOUR:	16M
		For the given transfer function	
	(a)	$\frac{C(S)}{R(S)} = \frac{10(S+8)}{S(S+4)(S^2+6S+25)}$	4M
		Find: Poles, Zero, Characteristics equation pole-zero plot on S-plane.	

2M for

diagram

2M for explan

ation

MAHARASHTI (Autonomous) (ISO/IEC - 2700

 Ans:	1) $\frac{c(s)}{R(s)} = \frac{10(s+3)}{s(s+4)(s^2+6s+2s)}$ a) Poles: We can get poles from equations in the denominator. i) $s^2+6s+25=0$ for the quadratic equation $ax^2+bx+c=0$	
	poles are $-\frac{6\pm \sqrt{6^2 + 4\pi^2}}{2\pi} = -\frac{6\pm \sqrt{6^2 + 4\pi^2}}{2 \cdot 1} =$ i.e. $-\frac{6\pm \sqrt{-6\pm 2}}{2} = -\frac{6\pm 8i}{2} = -3\pm 4i$ ii) $5\pm 4=0$ so, $5=-4$ iii) 5 ± 0 Therefore poles are $0, -4, -3\pm 4i$ $8-3-4i$	
	b) Zenos: We can get zenos from equation in the numerator So, for S+8 equation we can get nots by comparing it with zero i. S+8 = 0 i. S = -8 i.e. nots of the equation are -8. c) Characteristic Equation :- S(S+4) (S ² +6S+2S) = 0 S[S ³ +6S ² +2SS+4S ² +24S+100] = 0 i. S ⁴ +10S ³ +49S ² +100S = 0	Poles, Zero, Characteristics equation pole- zero plot 1M each
	d) Pole-zero plot:- $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
 (b)	Define marginal stability. Draw the neat sketch to represent its location of poles	4M
Ans:	on S-plane. Marginal Stability: A linear time invariant system is said to be critically or marginally stable if for a bounded input its output oscillates with constant frequency and amplitude For such systems, one or more pair of non-repeated roots is located on the j axis. The location of roots of Marginally stable system is shown in fig b	(2M for definition)

(c)		ional and integral contro e of O/P (ii) Response to	error	(2M for sketch) 4M	
Ans:				1M for eac	
		Proportional controller	Integral controller	point	
	Nature of	Controller output is	Rate of change of		
	O/P	proportional to error	controller output is		
			proportional to error		
	Response to	Responds to	Responds to size of		
	error	direction of error	error		
	O/P equation	Pout=KpEp+P ₀	$P(t) = K_i \int_0^t e(t)dt + P(0)$		
	Application	Proportional controller	Liquid Flow Control, Steam		
		can be used for	Pressure Control		
		temperature control of			
		any material or fluid			
(d)	Define steady sta steady state error	-	e of a system. Give the expression for	· 4M	
Ans:	Steady state response: Response of the system after the transients die out is called as steady state response.				
	Transient response: The response which shows how the system settles down to the				
	final steady state is called transient response. It is due to the energy storage elements				
	present in the system.				
	Equation for Steady state error : $e_{ss} = \lim_{s \to 0} \frac{S R(s)}{1 + G(s)H(s)}$			2M for equation	

Ans:	Stepper Motor	DC Servomotor	Any 4 points-
	No control winding	Control winding is present.	4M
	Number of steps can be	It gives continuous rotation.	
	precisely controlled.		
	It is brushless.	It has brushes.	
	Due to absence of brushes, no	Maintenance is required	
	wear and tear and hence less		
	maintenance		
	Load and no load condition does	These conditions affect the	
	not affect the running current of	running current	
	stepper motor		
	Speed(stepping rate) is governed	Speed is controlled by supply	
	by frequency of switching	voltage.	