MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 Certified)

WINTER -2019 EXAMINATION

Subject code:

22205

Model Answer

Important Instructions to the Examiners:

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

QU		MARK
Е	ANSWER WITH QUESTION	S
NO		
1	Attempt any FIVE of the following:	10
a)	State the classification of surveying based on nature of field.	
Ans.	a) Land surveying	2
	b) Marine or Navigation surveying	Marks
	c) Astronomical surveying	
b)	State the object of surveying.	
Ans.	1. The object of surveying is to prepare a plan / map to show the relative	
	positions of the objects on the surface of the earth. It shows the natural	1 mark
	features of a country such as rivers, hills, lakes and artificial such as villages,	each
	roads, railways, bridges etc.	
	2. To determine relative heights of different points.	(Any
	3. To determine area of given piece of land.	Two)
	4. To prepare contour maps.	
c)	List any four instruments used for linear measurement	
Ans.	1) Chain	1/2
	2) Tape	mark
	3) Arrows	each
	4) Pegs	(Any
	5) Ranging rod	four)
d)	State any four types of tapes	
Ans.	1) Cloth / Linen Tape	1/2
	2) Metallic Tape	mark
	3) Steel Tape	each
	4) Invar Tape	
	5) Digital Tape	(Any
	6) Synthetic Tape	four)
e)	State the types of benchmarks.	
Ans.	1) Great Trigonometrical Survey benchmark (GTS)	1/2
	2) Permanent Benchmark	1/2 mark
	3) Temporary Benchmark	
	4) Arbitrary Benchmark	each

f)	Define i) Back Sight Reading ii) Height of instrument					
Ans.	i) Back Sight Reading: This is the first staff reading taken in any set up of the	1 mark				
	instrument after leveling has been perfectly done. This reading is always taken on a					
	point of known RL i.e on bench mark or change point					
	ii) <u>Height of instrument</u> : When the levelling instrument is properly levelled, the					
	RL of the line of collimation is known as Height of instrument. This is obtained by	1 mark				
	adding the BS reading to the RL of the BM or CP on which the staff reading was					
	taken.					
g)	Write any two precautions to be taken while using planimeter.					
Ans.	1. Set the anchor point inside or outside the figure depending on size of figure. If the					
	area is very large, it can be divided into number of sections.					
	2. The value of C (constant) is added only when the anchor point is inside the figure.	1 mark				
	3. N is considered positive when zero of the dial passes the index mark in clockwise	each				
	direction					
	4. N is considered negative when zero of the dial passes the index mark in	(Any				
	anticlockwise direction	two)				
	5 Tracing is always done in clockwise direction.					
	OR					
	Precautions to be taken for Digital Planimeter:					
	1. Set the scale as per given drawing to the planimeter.					
	2. Tracing point is moved preciously over the boundary of figure.					
	3. Operating manual shall be referred before operating different functions					
2)	Attempt any THREE of the following	12				
a)	A road actually 1420m long was found 1414m when measured by a defective					
	chain 30m chain. How much correction does the chain need?					
Ans.	Given: L=30m True length=1420m, Measured length =1414m					
	Solution:					
	True Length = (L'/L) * Measured Length					
	1420 = (L'/30) * 1414	2 mark				
	L'= (1420 * 30) / 1414					
	L'= 30.12 m.					
	Now L' is greater than L. So, the chain is too long .					
	Amount of correction (e) = $30 - 30.12 = -0.12$ m.	2 mark				

d)	Following are the observed fore bea	ring of the line. Find their back bearings. i)					
	40 ⁰ 30' ii) N38 ⁰ 30'W iii) 169 ⁰ 30' iv) N25 ⁰ 30'E					
Ans.	i) FB = $40^{\circ} 30'$		1 mark				
	$BB=FB+180^{0} = 40^{0} 30'+180^{0} = 220^{0} 30'$						
	ii) $FB = N 38^0 30' W$		1 mark				
	$BB = S \ 38^0 \ 30'E$						
	iii) $FB = 169^0 30$		1 mark				
	$BB = FB + 180^0 = 169^0 30 +$	$180^{\circ} = 349^{\circ} 30'$					
	iv) $FB = N 25^{\circ} 30'E$		1 mark				
	$BB = S 25^{\circ} 30'W$						
Q.3	Attempt any <u>THREE</u> of the followin	g:	12				
a)	Differentiate between WCB & RB						
Ans.	Whole circle bearing (WCB)	Reduced Bearing (RB)					
	1. The horizontal angle made by a	1. The horizontal angle made by a line					
	line with the magnetic north in	with the magnetic north or south					
	the clockwise direction is the	(whichever is closer from the line)					
	whole circle bearing of the line.	in the eastward or westward					
		direction is the Quadrantal Bearing					
		or Reduced Bearing of the line					
	2. Only the magnetic north line is	2. Both magnetic north and south lines	1 Mark				
	considered as reference line in	are considered as reference line	each				
	whole circle bearing system.	in quadrantal bearing system.					
	3. The clockwise angle from the	3. Both clockwise and anticlockwise	(Any				
	reference line is only taken	angle from the reference lines are	Four)				
		taken.					
	4. The value of the whole circle	4. The value of the reduced bearing					
	bearing varies from 0° to 360°	varies from 0° to 90°					
	5. Example: 26°, 121°, 245°, 350°	5. Example: N26°E, S59°E, S65°W,					
	etc.	N10°W etc.					
	6. Fig.	6. Fig.					
	Whole Circle Bearing(W.C.B)	Reduced Bearing(R.B)					

b)	Convert the Following WCB to RB. Give Quadrant of the line.	
	(i) $60^{\circ} 30'$ (ii) 298° (iii) $128^{\circ} 30'$ (iv) $269^{\circ} 30'$	
Ans.	i) 60° 30'	
	RB = WCB	1 Mark
	R.B. = N 60° 30' E	
	ii) 298° 00'	
	$RB = 360^{\circ}$ - WCB	1 Mark
	$RB = 360^{\circ} - 298^{\circ} 00'$	
	R.B. = N $62^0 00$, W	
	ii) 128° 30'	
	$RB = 180^{\circ}$ - WCB	1 Mark
	$RB = 180^{\circ} - 128^{\circ} 30'$	
	R.B. = S 51^0 30' E	
	iv) 269° 30'	
	$RB = WCB - 180^{0}$	1 Mark
	$RB = 269^{\circ} 30' - 180^{\circ}$	
	R.B. = S 89^{0} 30' W	
c)	State the functions of any four component parts of prismatic compass.	
Ans.	Component parts of prismatic compass are as follows:	
	1. Break pin - It is used to stop the oscillations of aluminum ring.	
	2. Lifting pin – It lifts the magnetic needle when sight vane is folded.	
	3. Sight vane – It is used to sight/bisect object.	
	4. Graduated ring / Aluminum ring – It is used to observe the angle OR to show	1 Mark
	the graduations	each
	5. Adjustable Mirror – to bisect the object when it is too high or too low from the	
	line of collimation.	(Any
	6. Sun Glasses – Used to bisect the luminous object to reduce strain on eyes.	Four)
	7. Magnetic needle- To direct magnetic north.	
	8. Pivot- To support the magnetic needle.	
	9. Reflecting prism-observer can see the graduation erect and magnified.	
	10. Metal cover- It is provided over the glass lid and sighting vane when the	
	compass is not in use to protect the compass from dirt, dust etc.	
1		

d)	The following be	earing wer	e taken in a	closed compas	s traverse survey.	
	Determine the cor	rect bearin	g. Find station a	ffected by local	attraction.	
		Line	FB	BB		
		AB	48 ⁰ 25'	230 ⁰		
		BC	177 ⁰ 45'	356 ⁰		
		CD	104 ⁰ 15'	284 ⁰ 55'		
		DE	165 ⁰ 15'	345 ⁰ 15'		
		EA	259 ⁰ 30'	79 ⁰		
Ans.	All the bearings an	e observed	and difference	of their FB and	BB are determined	
	below.					
		Line	Difference	Error		
		AB	181°35'	1 ⁰ 35'		
		BC	178 ⁰ 15'	1 ⁰ 45'		1 Marl
		CD	180 ⁰ 40'	$0^{0}40'$		
		DE	180 ⁰ 0'	000,		
		EA	180 ⁰ 30'	0°30'		
	corrected.	free from to	ocal attraction and	u bearing observ	ed from D and E are	
	For line EA:					
	Observed FB of li	ne EA= 25	59 ⁰ 30' is correct	ed, as station E	E is free from local	
	attraction.					
	Corrected BB of li	ne EA= 259	$^{0}30$ '- $180^{0} = 79^{0}3$	30'		1⁄2
	But observed BB of	of line EA 7	9 ⁰ 00'			Mark
	Observed BB < Co	orrected BB				
	Error is negative an		1			
	$Error = 79^{\circ}00' - 7'$		0'			
	Correction at A=+	0°30'				
	For line AB:					
	Observed FB of lin					17
	Apply correction of	$(+0^{0}30')$ at A	A			1/2

Correcte	d FB of line AB	$=48^{\circ}25'+0$	$^{0}30'=48^{0}55'$		Mar
Correcte	d BB of line AB	$=48^{0}55'+1$	80 ⁰ 00'=228	⁰ 55'	
Observe	d BB > Correcte	d BB			
Error is j	positive and corr	ection is neg	gative		
Error =	230 ⁰ 00'- 228 ⁰ 5:	5'= +1 ⁰ 05'			
Correctio	on at B= - $1^{0}05'$				
For line	BC:				
Observe	d FB of line BC=	= 177 ⁰ 45'			
Apply co	prrection of $-1^{0}0$	5' at B			
Correcte	d FB of line BC	$= 177^{0}45'$ -	$1^005 = 176^0$	40'	1/2
Correcte	d BB of line BC	$= 176^{\circ}40' +$	$180^{\circ}00'=35$	6 ⁰ 40'	Mai
Observe	d BB < Correcte	d BB			
Error is a	negative and cor	rection is po	ositive		
Error =	356 ⁰ 00'- 356 ⁰ 40	$0' = -0^0 40'$			
Correctio	on at C=+0 ⁰ 40'				
For line		â			
	d FB of line CD:				
	prrection of $+0^{0}4$				
	d FB of line CD				1/2
Correcte	d BB of line CD	$= 104^{\circ}55'+$	$180^{\circ}00'=28$	4 ⁰ 55'	Mai
Check:		1 20 40 7 7	, , , , ,		
	•		which tall	es with corrected bearing, si	nce the
station L	• free from local	1		n. I	1
Line	Contract	Corr	rected	Remark	
	Correction	FB	BB		
AB	- 1 ⁰ 05' at B	48 ⁰ 55'	228 ⁰ 55'	station D and E are free	
BC	$+0^{0}40'$ at C	176 ⁰ 40'	356 ⁰ 40'	from local attraction	
	1				
CD	$0^{0}0'$ at D	104 ⁰ 55'	284 ⁰ 55'		1Ma

EA

 $+0^{0}30'$ at A

79⁰30'

259⁰30'

Q.4	Attempt any <u>Three</u> of the following:		12
a)	Distinguish between closed traverse a	nd open traverse.	
Ans.	Closed traverse Survey	Open traverse Survey	
	1. In Closed traverse survey the	1. In open traverse survey bearing of	
	bearing of first line and included	all survey lines are measured.	
	angles are measured.		
	2. When the finishing point of	2. When starting point of survey	
	survey coincides with the starting	does not coincide with last point	
	point of the survey, it is known as	of the survey, it is known as open	
	closed traverse.	traverse.	
	3. It is suitable for the survey of	3. It is used for the survey of	
	boundaries of plots, forests, estate,	roads, rivers, coastal line,	
	etc.	railways. etc.	1 Mark
	4. Fig.	4. Fig.	each
	A POND C E TRAVERSE LEG Fig. 3.7 Closed Traverse	Rg.5.8 Open Traverse	(Any four)
	5.Check:	5. Check:	
	a) Sum of all internal included	a) Length of check line on map =	
	angles = $(2N-4) \times 90^{\circ}$	Length of check line on ground	
	b) Sum of all external angles = (2) (2) (2)	b) Bearing of check line on map =	
	$(2N + 4) \times 90^{\circ}$	Bearing of check line on ground	

	The length depends upon the nature of the work. In case of ordinary work, the	
	length may be 20 or 40 m on each side of the center line. The levels are taken at an	
	interval of 5 m on each side. Additional readings may be taken if the nature of the	
	ground surfaces suddenly changes.	
	Cross Section	
	P	1 Mark
c)	State and explain the temporary adjustments of a dumpy Level.	
Ans.	1. Setting up the level.	
	a. The level fixed on tripod.	
	b. The legs of tripod stand are well spread so that the level will remain stable on	
	tripod.	
	c. Bring all the three foot screws in the centre of their run so that they can be turned	
	clockwise or anticlockwise as required, for levelling purpose	1 Mark
	d. Adjust the height of the instrument so that the observer can comfortably see	
	through the telescope and note the readings.	
	e. Fix two legs of tripod and adjust third leg in such a way that the levelling head	
	will become as horizontal as possible by eye judgment.	
	2. Levelling up the level.	
	a. The base of the tripod is already leveled with the help of cross bubble.	
	b. To make accurate adjustment of the level, the longitudinal level is adjusted in the	
	centre of its run, with the help of three foot screws.	
	c. Make the bubble parallel to the any selected pair of foot screws. Now; turn both	1 Mark
	the foot screws either inward or outward with the help of foot screws till the bubble	
	appears in the center.	
	d . Turn the telescope through 90° as shown in fig. below and now with the help of	
	third screw bring the bubble of levelling tube in the center.	

	Foot screw	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	3. Focusing the Eye piece.	
	a. Hold a sheet of white paper in front of the objective glass 4 to 6 cm away from	
	objective glass and see through the eye piece.	1 Mark
	b. Turn the eye piece inwards or outwards in the socket so that the cross hair on the	
	diaphragm appears sharp and clear.	
	4. Focusing the Object glass.	
	a . Direct the telescope towards any object, say a levelling staff in the field which is	
	kept at a distance. See through eyepiece whether the staff is visible, distinct or not.	1 Mark
	b. If not, then turn the focusing screw till the image is distinct and clear. The cross	
	hair on the diaphragm should also be seen clearly.	
d)	Explain Fly levelling and also state its purpose.	
Ans.	Procedure:	
	1. Set up the level at a point from where BM is visible and perform temporary	
	adjustments.	
	2. Position of the level should be approximately midway between the BS and FS stations.	
	3. Rotate the telescope towards the leveling staff on BM, observe and record the	
	staff readings in the BS columns of the level book.	
	4. Take a FS on the point towards working site. This point would be change point	2
	(CP).	Marks
	5. Shift the instrument to new position. First reading from the new instrument position is the BS on change point.	
	6. Continue the procedure till the readings on the suitable station at working site is recorded.	
	7. Return back by shortest route to the B.M and take the last reading on B. M8. Find the elevations of the points by HI or rise and fall method. Last reading taken	
1		

	on B. M	I should h	ave same	R. L of B	B. M.				
		ST IO	YLEVELLIN P	0 091	A	RTING POBP = CHANCL2= POST	3E POINT	EVEL	1 Mark
	Purposes								
	1. Carryin		to the rea	uirad our	vov sito				1
	•	0	-		•	C			1 Mark
	2. At the e		•		C	•	•		(Any
	3. To con	nect the E	B.M at any	/ intermed	liate point	of the alig	gnment.		two)
5.	Attempt a	any <u>TWO</u>	of the fo	llowing:					12
	2.650, 1.8	50, 0.965 of A was	on B. 500 m, m			ŕ		.550, 3.650, Isual checks.	
Ans:									
	Station	BS	IS	FS	Rise	Fall	RL	Remark	
	A 1	3.820	3.125		0.695		500.000 500.695	Point A	
	2		2.350		0.775		500.075		*
	3		1.580		0.770		502.240		Please
	4	3.500		0.830			502.990	CP1	see the
	5		2.830		0.670		503.660		markir
	6		2.010		0.820		504.480		g
	7	2.650	1.400	0.550	0.610		505.090	CDO	scheme
	<u>8</u> 9	3.650	2.650	0.550	0.850		505.940 506.940	CP2	given at the
	10		1.850		0.800		507.740		end of
	В			0.965	0.885		508.625	Point B	answei
		∑ BS = 10.970		$\sum FS =$ 2.345	Σ Rise = 8.625	$\sum \text{Fall} = 00$			
	Arithmetic (<i>Marking s</i> calculation	sckeme: Co	orrect entry	v of reading	gs - 1 Marl			8.625 2 Marks, RL	
b) 13 2	A to B at 3.679, 0.6	a 30 m in	terval. 0.	578, 0.93 0.		2.450, 3.00	0	ce taken from 1.181, 1.888, 2 2 2 0	

Station	Chainage	B.S	I.S	F.S	H.I	RL	Remark	
А	00	0.578			100.578	100.000	Point A	
1	30		0.933			99.645		
2	60		1.768			98.810		*
3	90		2.450			98.128		
4	120	0.567		3.005	98.140	97.573	CP1	see
5	150		1.181			96.959		mar
6	180		1.888			96.252		g
7	210	0.612		3.679	95.073	94.461	CP2	sche
8	240		0.705			94.368		giv at t
В	270			1.810		93.263	Point B	end
		$\sum_{n=1.757}^{n} BS = 1.757$		$\sum_{\mathbf{FS}} \mathbf{FS} = 8.494$				ansv
(Marking	$r = \frac{6.737}{270} = \frac{1}{2}$ scheme: Co ons - 2 M, A	$\frac{OR}{1}$	= <u>1</u> 40.077 =	ings - 1 Ma	7 rk, H.I. ca			
(Marking calculation	$\frac{6.737}{270} = \frac{1}{2}$ $\frac{6.737}{270} = \frac{1}{2}$ $\frac{6.737}{270} = \frac{1}{2}$	$\frac{OR}{1}$ $\frac{1}{270/6.737} = 0$ orrect entri rithmetic of the second s	$= \frac{1}{40.077} =$ Ty of reading the check - 1 enting difference in the check - 1	1 in 40.07 <i>ings - 1 Ma.</i> <i>M, gradiei</i> fferent fe	7 rk, H.I. ca nt Calculat			
(<i>Marking</i> <i>calculati</i> Draw a (i)A	$\frac{6.737}{270} = \frac{1}{2}$ $\frac{6.737}{270} = \frac{1}{2}$ $\frac{1}{2}$ $$	$\frac{OR}{1}$ $\frac{1}{270/6.737} = 0$ $\frac{1}{1}$ $\frac{1}{1}$	$= \frac{1}{40.077} =$ $ry of reading the check - 1$ $ry of reading the check - 1$	1 in 40.07 <i>ings - 1 Ma.</i> <i>M, gradier</i> ifferent fe A hill	7 rk, H.I. cal nt Calculat atures :			
(<i>Marking</i> calculation Draw a (i)A p	$\frac{6.737}{270} = \frac{1}{2}$ $\frac{6.737}{270} = \frac{1}{2}$ $\frac{6.737}{270} = \frac{1}{2}$	$\frac{OR}{1}$ $\frac{1}{270/6.737} = 0$ orrect entrivitation of the second sec	$= \frac{1}{40.077} =$ Ty of reading the check - 1 $= 1$ $= 1$ $= 1$ $= 1$ $= 1$	1 in 40.07 <i>ings - 1 Ma.</i> <i>M, gradier</i> ifferent fe A hill	7 rk, H.I. ca nt Calculat atures : g cliff			

Winter 2019

	HO AB-SADDLE	
b)	Explain the procedure of finding area of irregular figure by polar planimeter. Also	
Ans	draw sketch of polar planimeter. Procedure:	
Ans :	 Set the scale on the tracing arm as per manufacturer's instruction. Select the position of anchor point inside or outside the figure such that tracing point reaches all positions of figure. Mark the starting point on figure. Place tracing point on starting point. Take initial reading. Move tracing point along the boundary of figure clockwise direction and note down number of times zero on dial crosses fixed index mark and also direction of crossing. Continue till tracing point reaches starting point. Take final reading. Area of figure is given by relation: A = M (FR - IR ± 10 N + C) Where A = Area M = Multiplying constant as given by manufacturer IR = Final Reading N = Number of times zero of dial crosses fixed index mark. C = additive constant to be added only when anchor point is inside figure. 	3 Marks
	Use + sign for clockwise and – sign for anticlockwise crossing of zero of dial.	2 Marks for figure 1 Mark for Labelin g

7.825 1.250 umptions - nd time an	3.425 4.370	Outside the fig. Inside the fig.	The zero of disc passed fixed index mark once in clockwise direction Index marks passes twice in reverse direction		
mptions -			-		
-	1) There				
IR = 7. M = 10 A = M (FI A = 100 (3) = 560 So	825, FR = 3 00 Sq. cm, C $R - IR \pm 10$ 3.425 - 7.82 q. cm	B.425, N = 1 (C) C = 0 N + C) $25 + 10 \times 1 + 0$)		2 N 2 N 2 N
	$IR = 7. \\M = 10 \\A = M (FI \\A = 100 (2 \\= 560 Se$	$IR = 7.825, FR = 3$ $M = 100 \text{ Sq. cm, C}$ $A = M (FR - IR \pm 10)$ $A = 100 (3.425 - 7.82)$ $= 560 \text{ Sq. cm}$ $IE- As the first c$	M = 100 Sq. cm, C = 0 $A = M (FR - IR \pm 10 \text{ N} + C)$ $A = 100 (3.425 - 7.825 + 10 \times 1 + 0)$ = 560 Sq. cm TE- As the first condition (i.e.	IR = 7.825, FR = 3.425, N = 1 (Clockwise) M = 100 Sq. cm, C = 0 A = M (FR - IR \pm 10 N + C) A = 100 (3.425 - 7.825 + 10 x 1 + 0) = 560 Sq. cm	IR = 7.825 , FR = 3.425 , N = 1 (Clockwise) M = 100 Sq. cm, C = 0 A = M (FR - IR ± 10 N + C) A = $100 (3.425 - 7.825 + 10 \times 1 + 0)$