MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code:

17537

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Answers		Marking Scheme
1	(A)	Attempt any T	HREE of the following:		12- Total Marks
	(a)	Differentiate k	between stereo amplifier and mono am	plifier. (4 Points)	4M
	Ans:		Mono	Stereo	1M Each Point
		Stands for	Monaural or monophonic sound	Stereophonic sound	
		Key feature	Audio signals are routed through a single channel	Audio signals are routed through 2 or more channels to simulate depth/direction perception, like in the real world.	
		Recording	Easy to record, requires only basic equipment	Requires technical knowledge and skill to record, apart from equipment. It's important know the relative position of the objects and events.	

WINTER-19 EXAMINATION

Model Answer

Subject Name: Audio Video Engineering

Subject Code:

17537

LONG CO

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

Model Answer

	 read in dB. In this case, the dynamic range of the display is usually restricted to 10 to 16 dB and the precision of the reading is rather poor. In the case of intermittent noise, the user must constantly adjust the amplifier to adapt the output signal to the dynamic range of the display. When a log converter is used, the display scale is linear in dB and its dynamic range is usually much greater. This type of display has the advantage of providing the same precision at any level and permitting a much better appreciation of the range of fluctuations of the noise to be measured. In this regard, digital displays are less useful. 				
	Vin High 'z' input circuit Range selector switch Logarithmic amplifier differential amplifier				
	Figure: Block diagram of dB meter				
	Working:				
	 The RF signal to be measured is connected to the input of high impedance input circuit through a RF connector, whose input impedance is 75 Ω. The range selector switch selects the band and range of its frequencies to be tuned. The logarithmic amplifier is connected to the differential amplified whose signal output deflects the dB scale in the dB meter. To obtain logarithmic characteristics, the meter use a diode in feedback loop of an op-amp. dB is the unit for losses and gains. 				
(c)	Define following terms with respect to TV system.	4M			
	(1) Compatibility (2) Viewing distance				
	(3)Aspect ratio (4) Hue				
Ans:	(1) Compatibility: The colour television signal must produce a normal black and white picture on a monochrome receiver without any modification of the receiver circuitry.	1M ea Definit n.			
	(2) Viewing distance: The viewing distance from the screen of the TV receiver should not be so large that the eye cannot resolve details of the picture. The distance should also not be so small that picture elements become separately visible. The above conditions are met when the vertical picture size subtends an angle of approximately 15° at the eye. The distance also depends on habit, varies from person to person, and				

Subject Name: Audio Video Engineering

Subject Code: 17537

Model Answer

	lies between 3 to 8 times the picture heights. Most people prefer a distance close to five times the picture height.	
	(3) Aspect ratio: The aspect ratio of an image describes the proportional relationship between its width and its height. The frame adopted in all television systems is rectangular with width/height ratio, i.e., aspect ratio = 4/3.	
	(4) Hue: This is the predominant spectral colour of received light which means it is the actual colour seen by the eye. Red, Green, Blue, Yellow, Magenta, represent different in the visible spectrum.	
(d)	Describe the function of Remote control transmitter and receiver unit used in CD player.	4M
Ans:	Function of remote control transmitter and receiver unit used in CD player:	2M
		remo contr
	Transmitter:	trans ter ai
	Play: To play the track, song etc.	2M
	Reset: to set the settings to default.	recei
	Manual Search Keys: To search the track or file from the CD	
	Automatic Music Search Keys: Select music.	
	Repeat Program Button: To repeat the program	
	Clear: to clear the Playlist	
	Music select: Select the Music from List of song.	
	Receiver:	
	Top Load player: To insert CD	
	On/ Off: To power ON/ OFF	

Subject Name: Audio Video Engineering

WINTER-19 EXAMINATION

Subject Code: 17537

Subject Name: Audio Video Engineering

Model Answer

Subject Name: Audio Video Engineering

WINTER-19 EXAMINATION

Subject Code: 17537

			<u>Model A</u>	Inswer		
Ans:		0.252 0.12	0.45λ Directors riven element (Dipole)	Antenna Antenna Back lobe	Radiation pattern Front lobe	2M Diagrar , 2M Explana ion
	Figure	: a) Const	ruction details of Ya	gi uda antenna (b) Radia		
	resonant freque dipole element.	ncy is lov	ver than the freque	.55λ. Reflector acts as a ncy of the signal being in the same of	received by the active	
	radio wave is mo of dipole. It colle	oving. The ects the m	director rod is shor	ter than the dipole by at ngths. So the number of	out 10% of the length	
	\Parallel wire.			rom directors and fed t	o TV receiver through	
b)	List the frequen	cies of TV	channel allocation	for band I & 6 and III.		4M
Ans:		Ch No.	Frequency range	Picture carrier Frequency (MHz)	Sound carrier Frequency (MHz)	2M for Band I 2M for Band II
	BAND I	1	41–47 (not used)			
	(41-68 MHz)	2	47–54	48.25	53.75	

48.25

53.75

47–54

Subject Name: Audio Video Engineering

Subject Code: 17537

		3	54–61	55.25	60.75	
		4	61–68	62.25	67.75	
		5	174–181	175.25	180.75	
		6	181–188	182.25	187.75	
		7	188–195	189.25	194.75	
	BAND III	8	195–202	196.25	201.75	
	(174-230 MHz)	9	202–209	203.25	208.75	
		10	209–216	210.25	215.75	
		11	216–223	217.25	222.75	
		12	223–230	224.25	229.75	
c)	Explain separation	on U and	V signals in colour T	V with neat diagram.		4№

Subject Name: Audio Video Engineering

ei 17537

Model Answer

.0488 0)

دلألأد

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

_		 The signal after passing through the delay line appears across 'A' winding of the transformer T2. Chroma signal is also fed directly at the center tap of transformer T2 through the potentiometer R2. As T2 is center tapped with equal no. of turns in 'A' & 'B', the voltage induced by the signal from delay line will be equal in amplitude but out of phase in winding A & B. Thus direct & delayed Chroma signals are applied in the same phase in one winding & out of phase in the other winding. This results in separation of U & V signals as explained in fig. given below. 	
	d)	List different drive motors used in CD player. Write function of any one motor.	4M
	Ans:	 The drive motors in CD players are used for various purposes such as for loading and unloading CD from tray, for rotating CD, for rotating laser beam etc. The motor circuit consists of transistor or IC components within the drive components are controlled by a PLL and servo processor. <u>Different types of motors used in CD players are:</u> Tray loading or carriage motor, Slide sled feed motor and Spindle, disc, turn table motor. There are three basic motors used in the CD player.CD players with auto CD changer or the table top changer may have up to five different motors or some portable or combination CD and cassette player may have only two motors but three motors used In CD players are most common. The tray or loading motor moves the CD tray in and out for loading and unloading the CD when the open/close switch is pressed. A disc, spindle or turntable motor rotates the CD at a variable speed. The disc motor rotates faster at the beginning and slows down as the laser assembly moves toward the outer edge of the CD. The slide, feed or sled motor moves the optical pickup unit from the center to the outer edge of the disc on sliding rods. Some players have a pick-up motor that travels in a radial or semicircle fashion. 	1m Listing 3M function of motor(1 M each, every motor)
	e)	State working principle of LCD TV with neat dia.	4M
-	Ans:	 The main principle behind liquid crystal molecules is that when an electric current is applied to them, they tend to untwist. This causes a change in the light angle passing through them. This causes a change in the angle of the top polarizing filter with respect to it. So little light is allowed to pass through that particular area of LCD. Thus that area becomes darker comparing to others. Because the light source is a bulb at the back of the screen, rather than light-emitting 	2M Diagram , 2M Explanat ion

Subject Name: Audio Video Engineering

Subject Code: 17537

Model Answer

	phosphors at the front of the screen, this technology is referred to as 'transmissive'.		
	Figure: Construction of LCD		
	LCD Screen On		
	• If an electrical current is applied to the liquid crystal, it will untwist, effectively blocking out the light. Different strengths of current result in more or less of the light being blocked, so different shades of light become possible.		
	LCD Screen Off		
	• If this principle is multiplied many times you get a basic LCD screen. Early applications used a 'passive matrix' display, where a grid of conductors lies alongside the LCD pixels.		
	• This allows individual pixels to be switched on and off, but also introduced blurring to the image because some electrical current would find its way into neighboring pixels.		
f)	Draw two way cross – overs n/w & its response curve.	4M	
Ans:	 When a multiway loudspeaker system is used to get flat frequency response for the entire range of audio frequencies, it is essential to have a crossover network to divide the incoming signal into separate frequency ranges for each speaker. In absence of crossover network, the speaker will suffer overheating & the output will be distorted when full power at frequencies outside their range is fed to them. The efficiency will 	2M Diagram , 2M explanat	

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code:

17537

Model Answer

be much reduced in absence of crossover network. ion Crossover network make use of the fact that The capacitive reactance decreases with increase in frequency [Xc = $1/(2\pi fC)$], The inductive reactance increases with increase in frequency [XL = $2\pi fL$]. A basic crossover network is shown in fig. below; the circuit consists of a low-pass LC filter across the woofer & a high pass LC filter across the tweeter. The LPF permits only low audio frequencies (16Hz - 1 kHz) to go to the woofer. The series reactance of L & shunt reactance of C for high audio frequencies prevents these frequencies from going to the woofer. The HPF consisting of series C & shunt L that allows the high audio frequencies to • pass to tweeter & blocks the low frequencies. The response of typical crossover network is shown below. 0 dB Woofe 3 dB From Output 1000 Hz 2000 4000 8000 16000 Hz Fig. Response curve of basic crossover network Fig. Basic crossover network Figure: Two way crossover network A commercial three way crossover network is shown below the circuit consists of a low-pass L filter in series with the woofer & a high pass C filter is in series with the tweeter. The LPF permits only low audio frequencies (16Hz – 500 Hz) to go to the woofer. The mid-range frequencies are obtained either by connecting two inductors in shunt, or by connecting series L & C before the mid-range squawker. The fig. shows the three way crossover network & its response over the audio range. For the three way crossover network frequency coverage for the crossover point is given below:

Subject Name: Audio Video Engineering

WINTER-19 EXAMINATION

Subject Code: 17537

Model Answer

No.	Q. N.		Scheme
3		Attempt any FOUR of the following :	16- Total Marks

Subject Name: Audio Video Engineering

Subject Code: 17537

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

	• The detector recovers the original baseband signal, consisting of CVS & audio signal. These modulated signals are fed to the normal domestic TV receiver, which after due processing reproduces picture and sound.	
(b)	Describe NHK MUSF system for HDTV.	4M
Ans:	 MUSE stands for Multiple Sub-Nyquist Sampling Encoding and is an HDTV bandwidth compression scheme developed by NHK. It uses fundamental concepts for performance exchange in the spatio – temporal (transitory transformation) domain along with motion compensation to reduce the transmission bandwidth down to near about 10 MHz. The processed HDTV signal can be then transmitted using a single BDS channel. Temporal Interpolation In MUSE the luminance and colour information are sent by time multiplexed components (TMC) The colour information is sent sequentially with a time compression of four. The TMC signal is bandwidth reduced means of 3 – dimensional offset subsampling pattern over a four – field sequence. The stationary areas of the picture are reconstructed by temporal interpolation of samples from four fields. For a moving picture area the final picture is reconstructed by spatial interpolation using samples from a single field. Hence moving portions of the picture are reproduced with one-quarter the spatial resolution of the stationary areas. The spatial frequency response for both stationary and moving areas of the picture is shown in figure below. Audio transmission is done by 4 – phase DPSK which is multiplexed with the processed video signal in the vertical blanking interval after frequency modulation of the transmission carrier by the video signal. 	Diagram : 2M Explanat ion :2M

Subject Name: Audio Video Engineering

WINTER-19 EXAMINATION

Subject Code:

17537

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

(d)	Draw and explain CD pick – up assembly in CD player.
	control should be used only when sound level is low.
	LOUDNESS CONTROL. It boost audio by +12dB at 50Hz & +3dB at 10 KHz. The loudness
	quite small. The control which provides desired boosting at bass & at treble is called
	of bass at low levels. Boosting at treble may be only nominal because loss at high notes is
	reproduction. It is, therefore necessary that there should be substantial boosting
	Sometimes music is at low level of volume. At low levels there is considerable loss in bass in
	Loudness Control:
	It is provided to tailor bass & treble as per personal taste of listener.
	Bass & Treble Control:
	called guasi-stereo switch.
	channels & their speakers for monophonic source of signal. This is done by a switch
	When any one channel signal is made to go into both the channels, one can use both
	Quasi Stereo Switch:
	balance control also, but once set, the balance control is not disturbed.
	is advanced further to reduce gain of the left channel. Although blending can be done by
	potentiometer is set at zero resistance for balanced output. For disturbing the balance, this
	done by misbalancing the two channels. It is shown in fig. above; blend control
	The stereo effect is diluted by this control when there is too much left-right effect. Diluting is
	Blend Control:
	adjusted for increasing or decreasing the volume of the channels. R2 & R3 are ganged.
	the outer shaft, the overall gain or volume of the amplifier. A typical master gain control circuit is shown above. R1 is adjusted for balancing two channels & then R2 & R3 are
	This is achieved by using dual concentric shafts, the inner shaft adjusts the balance control &
	A master gain control is used for adjusting overall volume without disturbing the balance.
	Master Gain Control:

Subject Code:

ei 17537

Subject Name: Audio Video Engineering

Subject Name: Audio Video Engineering

Subject Code: 17537

	 Parameters CCIR B standard 1. Number of scanning lines/frame 625 2. Field (vertical) frequency 50Hz 3. Line(horizontal) frequency 15625Hz 4. Aspect ratio(width/height) 4:3 5. Horizontal trace time 52µs 6. Horizontal retrace time 12µs 	eight)
(e) Ans:	List any eight CCIR-B standards for colour TV.	4M 4M (an
	photodiode array is sent to an amplifier to amplify the data signals picked-up from the disc. Finally, the output from the amplifieris processed to produce the audio signal stored on the disc surface	
	7) These photo-diodes induce voltage according to the reflected beam falling on it. Focus error and tracking error voltage generated by this photo-diode array is applied to the tracking and focusing coil to control the objective lens and data signal generated by this	
	6) This laser beam is reflected back by the flat area and the pits on the disc surface. This reflected beam is applied to a group of photodiodes through objectives lens, collimator lens and some prism arrangement.	
	5) The objective lens is controlled by the tracking and focusing coil to keep the beam focused on the CD and to keep the condensed beam at the center of the track.	
	3) A photo diode array to obtain data, focus and tracking signal from the reflected laser beam. • Focus and tracking coils to focus the beam to the CD surface and to move the assembly to proper track across the disc surface. Optical arrangement in a single-beam radial tracking pick-up assembly: 4)In the optical pick-up unit, the laser diode emits laser beam from a small point into an elliptical or conical distribution. This beam is passed through various prism and lens to form a very small diameter light beam on the disc surface at the center of the track.	
	2)Lens and prism arrangement to direct the laser beam to the CD surface and to direct the reflected laser beam towards photodiode array.	
	OR 1)A low power laser diode to illuminate the CD tracks.	
	signal generated by this photo-diode array is sent to an amplifier to amplify the data signals picked-up from the disc. Finally, the output from the amplifier is processed to produce the audio signal stored on the disc surface.	

دلألأد

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

 7. Total scanning line lost in vertical retrace 64µs
8. Front porch 1.5μs
9. Back porch 5.8µs
10. Horizontal sync pulse 4.7µs
11. Colour sub carrier frequency 4.43MHz
12. Colour system Phase Alteration by Line – Delay (PAL-D)
13. U signal(weighted B-Y) U=0.493 (B-Y)
14. V signal(weighted R-Y) V=0.877(R-Y)
15. Total vertical blanking duration 1280μs or 1.280ms
16. Vertical sync pulse 160μs
17. Pre and post equalizing pulse 5 pulse each
18. Sync pulse top 100%
19. Blanking/pedestal level 75%
20. Black level 72-75%
21. White level 10-12.5%
22. Width of video signal 5MHz
23. Chroma signal bandwidth -1.3MHz to +1.57MHz
24. Video IF 38.9MHz
25. Audio IF 33.4MHz
26. Inter carrier frequency 5.5MHz
27. Audio modulation Frequency Modulation(FM) Video modulation Amplitude Modulation (AM) Total channel width in VHF 7MHz
28. Total channel width in UHF 8MHz

Q. No.	Sub Q. N.	Answers		Marking Scheme
4.	(A)	Attempt any THREE of the following:		12- Total Marks
	a)	Compare additive colour mixing and subtracti	ve colour mixing. (any 4 points)	4M
	Ans:	Additive colour mixing	subtractive colour mixing	4M (any fur
		1. Additive mixing of three primary colours red, green and blue with proper		pints)

Subject Name: Audio Video Engineering

Subject Code: 17537

	proportions can create any colour	characteristics colour wavelengths	
	2. Different colours are created by mixing pure colours hence used in TV.	2. Different colourscreated by subtracting parts from white so not suitable for TV	
	3. For example, Red + Blue = Magneta Red + Green = Yellow Green + Blue = Cyan	3. For example, Red + Blue = Magneta Red + Green = Yellow Green + Blue = Cyan	
	4. Additives primaries are Red, Green, Blue	4. Subtractive primaries are Magneta, Yellow, Cyan.	
b)	List merits and demerits of negative amplitud	de modulation in TV.	4M
•			
Ans:	Merits of Negative Modulation:		Merits: 2M
	1) Effect of noise interference on picture signa	I:	Demerits
	- When the noise gets added in the form of pu amplitude. In of Negative Modulation, noise pu black spot which is less noticeable against gray	ulse goes towards black level and produces	:2M
	2) Saving of power at transmitter side:		
	- In of Negative Modulation picture having high carrier which saves the transmitting power.	h brightness level produces less modulation of	
	3) Reference level for AGC circuit in receiver:		
	- AGC circuits in receiver measures peak level of the gain of IF and RF amplifier.	of modulated signal and accordingly adjusts	
	- In Negative Modulation, peak level is at 100% in of Positive Modulation, peak level is not stal circuit.	6 which is sync level and it is stable. Whereas ble. Hence Negative Modulation is used in AGC	
	Demerits of Negative Modulation		
	1) Effect of noise interference on synchronizat	ion:	
	 In Negative Modulation, sync pulses are at bl noise arises, then it also comes in black level w horizontal stabilizing circuits must be used. 		

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

Model Answer

Subject Name: Audio Video Engineering

Subject Code:

17537

Model Answer

Subject Name: Audio Video Engineering

Subject Code: 17537

	Various channels such as scientific, geographic, sports news, entertainment etc. are provided by CATV	Such channels are not provided in CCTV.	
	CATV service provider can broadcast live programs from studios, some events etc. on their local TV channels	Such facilities are not available	
	Applications: CATV"s are used in homes, malls, shops for entertainment and value added services and in corporate and business environment for internet services	Applications: It is used for surveillance in college campus, industry, traffic control, crowd control and also used for medical care and safety.	
(B)	Attempt any ONE of the following :		6M
(a)	State the need of ENT in colour TV & explain i	ts generation with neat circuit diagram.	6M
Ans:	Section 3 Section 2 Section 1 Section 1 Section 1 Section 1 Section 2 Section 1 Section 2 Section 1 Section 2 Section 1 Section 2 Section 2 Section 3	Focus potential	Need : 2M Explanat ion : 2M Circuit Diagram :2M
			1

.0488 0)

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

(b)	Draw labeled composite video signal for one line.	61
	total potential equal to (8.33KV+8.33KV+8.33KV≈25 KV) and forms the EHT supply source.	
	that voltage induced in each layer form the fly back transformer is 8.33KV. This makes the	
	windings and form an integral part of the transformer. The three windings are so designed	
	The diode shown connected in series between the layers are physically embedded in the	
	appearing across all of them.	
	total output voltage appearing at the output terminal is the sum of all the voltages	
	inter-layer capacitances to the same voltage. Since capacitances are effectively in series, the	
	the start of the next the AC voltages induced in each layer can be made to charge up all the	
	physically does not exist. If a diode is connected between the end of one layer of winding and	
	between each of them. It is indicated in the diagram by dotted because this capacitor	
	flyback derived input pulse get applied to the primary winding. Because of the close proximity of individual layers and interlayer capacitance exists	
	The same magnitude of voltage will therefore be induced in each section every time the	
	identical to the other and has the same number of turns.	
	windings are shown wound round on the ferroxide core of the L.O.T. Each winding is	
	principle of "DIODE-SPLIT ADDITION" is shown in figure. The three layers of secondary	
	In colour TV to generate EHT up to 25 KV the diode split addition technique is used. The	
	using the principle of auto transformer action V=L di/dt	

Subject Code:

» | 17537

Subject Name: Audio Video Engineering

Subject Name: Audio Video Engineering

Subject Code:

e: 17537

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following :	16- Total Marks
Q. No.	Sub Q. N.	Answers	Marking Scheme
	a)	Draw block dia of colour TV transmitter.	8M
	Ans:	Video Carrier Antenna Ckt & LPF U Signal U Signal 	8M Diagram

Subject Name: Audio Video Engineering

Subject Code:

17537

Subject Name: Audio Video Engineering

Subject Code:

e: 17537

Model Answer

Page 29/

دلألأد

MAHARASHT

(Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Audio Video Engineering

Subject Code: 17537

c)	List different picture tubes used in colour TV. Explain any one in detail.
	terminated with 75 Ω resistor is called terminator.
	line should be properly terminated. For this, the end of each 75 Ω distribution cable is
	Terminal resistance: The improperly terminated lines develops standing waves, each branch
	cable. Its impedance is matched with impedance of TV receiver.
	fed from respective tapping on the branch line. The feeder is off twin feeder type or coaxial
	TV receivers: The modulated ratio frequency carrier is fed to each individual TV receiver. It is
	VHF output and UHF output.
	The matching transformer is mounted at the antenna terminal of the receiver. It will have a
	may be obtained with 300 Ω output or 75 Ω tap with a matching transformer is preferred.
	interference. The taps look like ac outlets. They are mounted normally in the wall. Wall taps
	provides isolation from other receiver on the same trance. This prevents mutual
	subscriber taps can be transformer coupled capacitive coupled or resistive pads. The tap
	carry television signal. The output of splitter is delivered to subscriber through tap-offs. The
	Subscriber taps: Each branch line serves several homes. Coaxial distribution branch lines
	and impedance matching.
	trunk lines. A splitter is a resistive- inductive device. It provides trunk line isolation
	the main branch lines. The output from distribution amplifier is fed to splitters trough coaxial
	Coupler or splitter: Coupler or splitter is a coupling device which splits the signal to feed to
	occur in the distribution cables. It provides acceptable signal to every receiver in the system.
	distribution amplifier. It is used to boost the signal to compensate the loss which would
	amplifier to keep SNR high at the antenna. The other is a high gain amplifier called as
	Amplifiers: There are two types of amplifiers. One is preamplifier which is low noise
	The standing waves results in ghost images.
	linear mixer. It provides suitable impedance matches to prevent standing waves produced.
	Hybrid: Antenna outputs feed in to a 4 way hybrid. A hybrid is a signal combining signal
	cable. It is a matching transformer.
	impedance of 300 Ω . Balun is used to match balance antenna with an unbalanced coaxial
	Balun: MATV system is having impedance of 75 Ω . Most of the antennas are having
	directive and properly oriented.
	number of antennas is dependent on available telecast and their direction. Each antenna is
	Master or common antenna: One or more antennas are usually located on one roof top. The
	hotels, schools and apartment building.
	system is implemented in the areas where signal strength is less. It is generally used in large
	one or more antennas to every television receiver connected to the system. This type of
	Master antenna TV system is used to deliver a strong signal (over 1mv). It is delivered from
	The block diagram of a basic MATV system is shown in Fig.
	Explanation:

Subject Name: Audio Video Engineering

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

^{...} 17537

Model Answer

(v) Each phosphor dot corresponds to one of the three primary colours.

Subject Name: Audio Video Engineering

Subject Code: 17537

(vi) The triads are repeated and depends on the size of picture tube, are deposited on the glass face plate (3,33,000 triads)
(vii)A thin perforated metal sheet known as shadow mark is located 1 cm behind the tube screen.
(viii) The mask has one hole for every phosphor dot triad on the screen.
(ix) The various hole are so oriented that electrons of three beams on passing through any one hole will hit only the corresponding color phosphor dots on the screen.
(x) The ratio of the electrons passing through the holes to those reaching shadow mark is only 20%
(xi) The remaining 80% of the total beam current , energy is dissipated as heat loss in shadow mask.

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any FOUR of the following :	16- Total Marks
Q. No.	Sub Q. N.	Answers	Marking Scheme
	a)	State need of VSB in TV transmission. Draw its frequency response.	4M
	Ans:	 Need of VSB in TV transmission:- (i)The low video frequencies contain the most important information of the picture and any effort to completely suppress the LSB would result in phase distortion at these frequencies. This distortion will be seen by the eye as "smear" in reproduced picture. (ii)Therefore as a compromise, only a part of the lower sideband, is suppresses, and the radiated signal then consists of a full upper side band and a carrier signal and vestige (remaining part) of the partially suppresses lower sideband. (iii) This pattern of transmission of the modulated signal is known as Vestigial Sideband transmission(VSB). (iv) In 625 line system, frequencies up to 0.75MHz in the lower sideband are dully 	3M need 1M frequen cy respons e

Subject Name: Audio Video Engineering

Subject Code:

17537

Subject Name: Audio Video Engineering

Subject Code:

Subject Name: Audio Video Engineering

WINTER-19 EXAMINATION

Subject Code:

e: 17537

Model Answer

Subject Name: Audio Video Engineering

17537

Model Answer

Subject Name: Audio Video Engineering

Subject Code: 17537

e)	Explain the details of	Horizontal sync, Pulse u	used in TV system.		4M
Ans:	Explanation:-				2M Diagrar
		iod of 64 μ s, the line bla	• • •	•	-
	synchronizing pulse is inserted. The pulses corresponding to the differentiated leading edges of the sync pulses are actually used to synchronize the horizontal scanning oscillator. This is				2M Explan
		ntervals are shown betw		•	ion
	•	od is divided into three s	, , , ,	•	
		l iii) the back porch'. ⁻		-	
		nd their location and ef	fect on the raster is illus	strated as shown in fig	
	below _				
	Details of Horizontal Scanning				
		Period	Time (µs)		
		Total line (H)	64		
		Horz blanking	12 ± .8		
		Horz sync pulse	4.7 ± 0.2		
		Front porch	$1.5 \pm .8$		
		Back porch	5.8 ± .3		
		Visible line time	52		

Subject Name: Audio Video Engineering

WINTER-19 EXAMINATION

Subject Code:

Subject Name: Audio Video Engineering

Subject Code: 17537