

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-2019 EXAMINATION

Subject Name: Applied Mathematics Model Answer Subject Code: 22206

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10
	a)	If $f(x) = x^2 - x + 1$, find $f(0) + f(3)$	02
	Ans	$f(0) = (0)^2 - 0 + 1 = 1$	1/2
		$f(3) = (3)^2 - 3 + 1 = 7$	1
		$\therefore f(0) + f(3) = 1 + 7$	
		= 8	1/2
	b)	Show that $f(x) = \frac{a^x + a^{-x}}{2}$ is an even function	02
	Ans	$f(x) = \frac{a^x + a^{-x}}{2}$	
		$f(x) = \frac{a^x + a^{-x}}{2}$ $\therefore f(-x) = \frac{a^{-x} + a^{-(-x)}}{2}$	1/2
		$a^{-x} + a^x \qquad a^x + a^{-x}$	1/2
		$\therefore f(-x) = \frac{a^{-x} + a^{x}}{2} = \frac{a^{x} + a^{-x}}{2}$	1/2
		$\therefore f(-x) = f(x)$	1/2
		:. function is even	,2
	c)	Find $\frac{dy}{dx}$, if $y = x^5 + 5^x + e^x + \log_2 x$	02
	Ans	$y = x^5 + 5^x + e^x + \log_2 x$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-2019 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Subject Code: 22206

Q.	Sub	Answers	Marking
No.	Q.N.	Allsweis	Scheme
1.	c)	$\therefore y = x^5 + 5^x + e^x + \frac{\log x}{\log 2}$	
		$\therefore \frac{dy}{dx} = 5x^4 + 5^x \log 5 + e^x + \frac{1}{\log 2} \frac{1}{x}$	
		$\therefore \frac{dy}{dx} = 5x^4 + 5^x \log 5 + e^x + \frac{1}{x \log 2}$	2
	d)	Evaluate $\int \frac{1}{1+\cos 2x} dx$	02
	Ans	$\int \frac{1}{1 + \cos 2x} dx$	
		$= \int \frac{1}{2\cos^2 x} dx dx$	1/2
		$=\frac{1}{2}\int \sec^2 x \ dx$	1/2
		$= \frac{1}{2} \tan x + c$	1
	e)	Evaluate $\int x.e^x dx$	02
	Ans	$\int x e^x dx$	
		$=x\left(\int e^{x}dx\right)-\int \left(\int e^{x}dx\frac{d}{dx}(x)\right)dx$	1/2
		$= xe^x - \int e^x \cdot 1 \ dx$	1/2
		$= xe^x - \int e^x dx$ $= xe^x - e^x + c$	1/2
		$= xe^x - e^x + c$, 2
	f)	Find area bounded by the curve $y = x^3$, $x - axis$ and the ordinate $x = 1$ to $x = 3$	02
	Ans	Area $A = \int_{a}^{b} y dx$	
		$=\int_{0}^{3} x^{3} dx$	1/2
		$= \left[\frac{x^4}{4}\right]^3$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-2019 EXAMINATION

Subject Name: Applied Mathematics Model Answer Subject Code: 22206

Subje		Model Answer Subject Code.	22200
Q.	Sub		Marking
No.	Q.N.	Answers	Scheme
1.	f)	$(3^4 1^4)$	1/2
		$=\left(\frac{3^4}{4} - \frac{1^4}{4}\right)$	1/2
			1/2
		= 20	
	g)	If a fair coin is tossed three times, then find the probability of getting exactly two heads.	02
	Ans	$S = \{HHH, HHT, THH, HTH, HTT, THT, TTH, TTT\}$	
	Alls		1/2
		$\therefore n(S) = 8$	72
		$A = \{HHT, THH, HTH\}$	
		$\therefore n(A) = 3$	1/2
		$\therefore P(A) = \frac{n(A)}{n(S)} = \frac{3}{8} = 0.375$	1
		n(S) 8	
			12
2.		Attempt any <u>THREE</u> of the following:	
	a)	Find $\frac{dy}{dx}$ if, $e^x + e^y = e^{x+y}$	04
		COV.	
	Ans	$e^x + e^y = e^{x+y}$	
		$\therefore e^x + e^y \frac{dy}{dx} = e^{x+y} \left(1 + \frac{dy}{dx} \right)$	2
		$\therefore e^{x} + e^{x} = e^{x} = \left(1 + \frac{1}{dx}\right)$	
		dy dy	
		$\therefore e^{x} + e^{y} \frac{dy}{dx} = e^{x+y} + e^{x+y} \frac{dy}{dx}$ $\therefore e^{y} \frac{dy}{dx} - e^{x+y} \frac{dy}{dx} = e^{x+y} - e^{x}$	
		dy dy	
		$\therefore e^{y} \frac{dy}{dx} - e^{x+y} \frac{dy}{dx} = e^{x+y} - e^{x}$	
		ax ax	1
		$\therefore \left(e^{y} - e^{x+y}\right) \frac{dy}{dx} = e^{x+y} - e^{x}$	1
		$\therefore \frac{dy}{dx} = \frac{e^{x+y} - e^x}{e^y - e^{x+y}}$	1
		$\therefore \frac{dy}{dx} = \frac{e^x \left(e^y - 1\right)}{e^y \left(1 - e^x\right)}$	
		$\therefore \frac{1}{dx} = \frac{1}{e^y(1-e^x)}$	
	1. \	π $dv = \pi$	04
	b)	If $x = a\cos^3\theta$, $y = b\sin^3\theta$. Find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$	V-7
	Ans	$x = a\cos^3\theta$	
		x - u cos v	
1	1		<u> </u>

Subje	Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 2		22206
Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	b)	$\therefore \frac{dx}{d\theta} = -3a\cos^2\theta\sin\theta$	1
		$y = b\sin^3\theta$ $\therefore \frac{dy}{d\theta} = 3b\sin^2\theta\cos\theta$	1
		$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3b\sin^2\theta\cos\theta}{-3a\cos^2\theta\sin\theta}$	1
		$\therefore \frac{dy}{dx} = -\frac{b\sin\theta}{a\cos\theta}$	1/2
		$\therefore \frac{dy}{dx} = -\frac{b}{a} \tan \theta$ at $\theta = \frac{\pi}{3}$	
		$\therefore \frac{dy}{dx} = -\frac{b}{a} \tan \frac{\pi}{3}$	1/2
		$\therefore \frac{dy}{dx} = -\frac{\sqrt{3} b}{a}$	
	c)	A telegraph wire hangs in the form of a curve $y = a \cdot \log \left[\sec \left(\frac{x}{a} \right) \right]$ where a is constant.	04
		Show that, radius of curvature at any point is $a \cdot \sec\left(\frac{x}{a}\right)$	
	Ans	$y = a \cdot \log \sec \left(\frac{x}{a}\right)$	
		$\therefore \frac{dy}{dx} = a \frac{1}{\sec\left(\frac{x}{a}\right)} \sec\left(\frac{x}{a}\right) \tan\left(\frac{x}{a}\right) \frac{1}{a}$	1
		$\therefore \frac{dy}{dx} = \tan\left(\frac{x}{a}\right)$	1/2
		$\therefore \frac{d^2 y}{dx^2} = \sec^2\left(\frac{x}{a}\right) \frac{1}{a}$	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subje	ect Nan	ne: Applied Mathematics <u>Model Answer</u> Subject Code:	22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	c)	$\therefore \text{ Radius of curvature } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
		$= \frac{\left[\frac{1 + \tan \left(\frac{-a}{a}\right)\right]}{\sec^2\left(\frac{x}{a}\right)\frac{1}{a}}$	1/2
		$= \frac{a \left[\sec^2\left(\frac{x}{a}\right)\right]^{\frac{3}{2}}}{\sec^2\left(\frac{x}{a}\right)}$	1/2
		$= \frac{a \sec^3\left(\frac{x}{a}\right)}{\sec^2\left(\frac{x}{a}\right)}$	1/2
		$\therefore \text{ Radius of curvature } \rho = a \sec\left(\frac{x}{a}\right)$	1/2
	d)	A beam is supported at the two ends and is uniformly loaded. The bending moment M at a distance x from the end is given by $M = \frac{Wl}{2} \times x - \frac{W}{2} \times x^2$. Find the point at which M is maximum.	04
	Ans	$M = \frac{Wl}{2} \times x - \frac{W}{2} \times x^2$	1
		$\therefore \frac{dM}{dx} = \frac{Wl}{2} - Wx$ $\therefore \frac{d^2M}{dx^2} = -W$	1
		Consider $\frac{dM}{dx} = 0$ $\therefore \frac{Wl}{2} - Wx = 0$	
		$\therefore \frac{Wl}{2} = Wx$ $\therefore x = \frac{l}{2}$	1

Subj	Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 2		22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	d)	at $x = \frac{l}{2}$	
		$\therefore \frac{d^2M}{dx^2} = -W < 0$	
		$\therefore \text{ the point } x = \frac{l}{2}, M \text{ is maximum.}$	1
			. 12
3.	a)	Attempt any <u>THREE</u> of the following: Find the equation of tangent and normal to the curve $y = x^2$ at point $(-1,1)$	
	Ans	$y = x^2$	04
	Alls	$\therefore \frac{dy}{dx} = 2x$	1
		at $\left(-1,1\right)$	
		$\therefore \frac{dy}{dx} = 2(-1) = -2$	1/2
		∴ slope $m = -2$	
		Equation of tangent is	
		y-1 = -2(x+1)	
		$\therefore y - 1 = -2x - 2$	1
		$\therefore 2x + y + 1 = 0$	1/2
		$\therefore \text{ slope of normal} = \frac{-1}{m} = \frac{1}{2}$,-
		Equation of normal is	
		$y-1=\frac{1}{2}(x+1)$	
		$\therefore 2y - 2 = x + 1$	
		$\therefore x - 2y + 3 = 0$	1
			04
	b)	Find $\frac{dy}{dx}$ if, $y = x^{\sin x}$	
	Ans	$y = x^{\sin x}$	
		taking log on both sides,	
		$\therefore \log y = \log x^{\sin x}$	1
		$\therefore \log y = \sin x \log x$	
		diff.w.r.t.x	

Subje	Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 2		22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	b)	$\therefore \frac{1}{y} \frac{dy}{dx} = \sin x \frac{1}{x} + \log x \cos x$	2
		$\therefore \frac{dy}{dx} = y \left(\frac{\sin x}{x} + \cos x \log x \right)$	1/2
		$\therefore \frac{dy}{dx} = x^{\sin x} \left(\frac{\sin x}{x} + \cos x \log x \right)$	1/2
	c)	Find $\frac{dy}{dx}$ if, $y = \tan^{-1} \left(\frac{x}{1 + 12x^2} \right)$	04
	Ans	$y = \tan^{-1}\left(\frac{x}{1+12x^2}\right)$	1
		$\therefore y = \tan^{-1}\left(\frac{4x - 3x}{1 + (4x)(3x)}\right)$	1
		$\therefore y = \tan^{-1}(4x) - \tan^{-1}(3x)$	
		$\therefore \frac{dy}{dx} = \frac{1}{1 + (4x)^2} \frac{d}{dx} (4x) - \frac{1}{1 + (3x)^2} \frac{d}{dx} (3x)$	1
		$\therefore \frac{dy}{dx} = \frac{4}{1+16x^2} - \frac{3}{1+9x^2}$	1
	d)	Evaluate, $\int \frac{\left(\sin^{-1} x\right)^3}{\sqrt{1-x^2}} dx$	04
	Ans	$\int \frac{\left(\sin^{-1}x\right)^3}{\sqrt{1-x^2}} dx$	
		Put $\sin^{-1} x = t$	1
		$\therefore \frac{1}{\sqrt{1-x^2}} dx = dt$	1
		$=\int t^3 dt$	•
		$=\left(\frac{t^4}{4}\right)+c$	1
		$=\frac{1}{4}\left(\sin^{-1}x\right)^4+c$	1
			-

Subje	Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code: 2		22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.		Attempt any <u>THREE</u> of the following:	12
	a)	Evaluate $\int \frac{e^x(x+1)}{\cos^2(xe^x)} dx$	04
	Ans	$\int \frac{e^x(x+1)}{\cos^2(xe^x)} dx$	
		Put $xe^x = t$	1
		$\therefore e^x (x+1) dx = dt$	
		$=\int \frac{1}{\cos^2 t} dt$	1/2
		$= \int \sec^2 t dt$	1
		$= \tan t + c$	1
		$=\tan\left(xe^x\right)+c$	1/2
	b)	Evaluate, $\int \frac{dx}{5 - 4\cos x}$	04
	Ans	$\int \frac{dx}{5 - 4\cos x}$	
		Put $\tan \frac{x}{2} = t$, $dx = \frac{2dt}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$	
		$I = \int \frac{\frac{2dt}{1+t^2}}{5-4\left(\frac{1-t^2}{1+t^2}\right)}$ $= \int \frac{2dt}{5(1+t^2)-4(1-t^2)}$	1
		$= \int \frac{2dt}{5(1+t^2)-4(1-t^2)}$	
		$=2\int \frac{dt}{5+5t^2-4+4t^2}$	1
		$=2\int \frac{dt}{9t^2+1}$	1
		$= 2\int \frac{dt}{9t^2 + 1}$ $= 2\int \frac{dt}{(3t)^2 + (1)^2}$ or $= \frac{2}{9}\int \frac{dt}{t^2 + \left(\frac{1}{3}\right)^2}$	1/2

Subje	Subject Name: Applied Mathematics Model Answer Subject Code: 2		22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	$= 2\frac{1}{1}\tan^{-1}\left(\frac{3t}{1}\right)\frac{1}{3} + c \qquad \text{or} \qquad = \frac{2}{9}\frac{1}{\left(\frac{1}{3}\right)}\tan^{-1}\left(\frac{t}{\frac{1}{3}}\right) + c$	1
		$= \frac{2}{3} \tan^{-1}(3t) + c$ $= \frac{2}{3} \tan^{-1}\left(3 \tan \frac{x}{2}\right) + c$	1/2
	c)	Evaluate $\int \tan^{-1} x dx$	04
	Ans	$\int \tan^{-1} x \ dx$	
		$= \int \tan^{-1} x \cdot 1 dx$	
		$= \tan^{-1} x \int 1 dx - \int \left(\int 1 dx \right) \frac{d}{dx} \left(\tan^{-1} x \right) dx + c$	1
		$= x \tan^{-1} x - \int x \frac{1}{1+x^2} dx + c$	1
		$= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1+x^2} dx + c$	1
		2 113	1
		$= x \tan^{-1} x - \frac{1}{2} \log (1 + x^2) + c$	
	d)	Evaluate, $\int \frac{e^x \cdot dx}{\left(e^x - 1\right)\left(e^x + 1\right)}$	04
	Ans	$\int \frac{e^x \cdot dx}{\left(e^x - 1\right)\left(e^x + 1\right)}$	
		Put $e^x = t$	1
		$\therefore e^x dx = dt$	
		$\therefore \int \frac{1}{(t-1)(t+1)} dt$	
		$\frac{1}{(t-1)(t+1)} = \frac{A}{t-1} + \frac{B}{t+1}$	1/2
		$\therefore 1 = A(t+1) + B(t-1)$	
		Put $t = 1$	

Subje	Subject Name: Applied Mathematics Model Answer Subject Code: 22		22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	d)	$\therefore A = \frac{1}{2}$	1/2
		Put $t = -1$	
		$\therefore B = -\frac{1}{2}$	1/2
		$\therefore \frac{1}{(t-1)(t+1)} = \frac{\frac{1}{2}}{t-1} - \frac{\frac{1}{2}}{t+1}$	
		$\therefore \int \frac{1}{(t-1)(t+1)} dt = \int \left(\frac{\frac{1}{2}}{t-1} - \frac{\frac{1}{2}}{t+1}\right) dt$	
		$= \frac{1}{2} \log(t-1) - \frac{1}{2} \log(t+1) + c$	1
		$= \frac{1}{2} \log(e^{x} - 1) - \frac{1}{2} \log(e^{x} + 1) + c$	1/2
		$\frac{C}{OR}$	
		$\int \frac{e^x \cdot dx}{\left(e^x - 1\right)\left(e^x + 1\right)}$	
		Put $e^x = t$	1
		$\therefore e^x dx = dt$	
		$\therefore \int \frac{1}{(t-1)(t+1)} dt$	
		$=\int \frac{1}{t^2 - 1^2} dt$	1
		$=\frac{1}{2(1)}\log\left(\frac{t-1}{t+1}\right)+c$	1
		$=\frac{1}{2}\log\left(\frac{e^x-1}{e^x+1}\right)+c$	1
	e)	Evaluate, $\int_{0}^{\pi/2} \frac{dx}{1 + \tan x}$	04
	Ans	$\int_{0}^{\pi/2} \frac{dx}{1+\tan x}$	
	1110	$\int_{0}^{J} 1 + \tan x$	

Subje	ect Nan	ne: Applied Mathematics <u>Model Answer</u> Subject Code:	22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e)	$\therefore I = \int_{0}^{\pi/2} \frac{1}{1 + \frac{\sin x}{\cos x}} dx$	
		$\therefore I = \int_0^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx (1)$	1/2
		$\therefore I = \int_{0}^{\pi/2} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} - x\right)} dx$	1
		$\therefore I = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx (2)$	1/2
		add (1) and (2)	
		$\therefore I + I = \int_0^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx + \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$	1/2
		$2I = \int_{0}^{\pi/2} \frac{\cos x + \sin x}{\cos x + \sin x} dx$	
		$2I = \int_{0}^{\pi/2} 1 dx$ $2I = \left[x\right]_{0}^{\pi/2}$ $2I = \frac{\pi}{2} - 0$	1/2
		$2I = \left[x\right]_0^{\pi/2}$	/2
		$2I = \frac{\pi}{2} - 0$	
		$\therefore I = \frac{\pi}{4}$	1/2
_		Attempt any TWO of the following	12
5.	a)	Attempt any <u>TWO</u> of the following: Find area bounded by the curve $y^2 = 4x$ and $x^2 = 4y$	06
	Ans	$y^2 = 4x \qquad(1)$	
		$x^2 = 4y$	
		$\therefore y = \frac{x^2}{4}$	
		$\frac{4}{1}$	
		$\therefore \operatorname{eq}^{\operatorname{n}}.(1) \Longrightarrow \left(\frac{x^2}{4}\right)^2 = 4x$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code:		22206
Sub Q.N.	Answers	Marking Scheme
a)	$\frac{x^4}{16} = 4x$ $\therefore x^4 = 64x$ $\therefore x^4 - 64x = 0$	
	$\therefore x = 0,4$	1
	$\therefore A = \int_0^4 \left(2\sqrt{x} - \frac{x^2}{4}\right) dx$ $\therefore A = \int_0^4 \left(2x^{\frac{1}{2}} - \frac{x^2}{4}\right) dx$	1
	(2)	2
		1
	$\therefore A = \frac{16}{3} \text{or } 5.333$	1
b)	Attempt the following:	06
i) Ans	Form a differential equation by eliminating arbitrary constant if $y = A \cdot \cos(\log x) + B \cdot \sin(\log x)$ $y = A \cos(\log x) + B \sin(\log x)$	03
	$\therefore \frac{dy}{dx} = -A\sin(\log x)\frac{1}{x} + B\cos(\log x)\frac{1}{x}$	1
	$\therefore x \frac{dy}{dx} = -A\sin(\log x) + B\cos(\log x)$ $\therefore x \frac{d^2y}{dx^2} + \frac{dy}{dx}(1) = -A\cos(\log x) \frac{1}{x} - B\sin(\log x) \frac{1}{x}$	1
	Sub Q.N. a)	Sub Q.N. Answers A

Subje	Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code:		22206	
Q. No.	Sub Q.N.	Answers	Marking Scheme	
5.	b) i)	$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -A \cos(\log x) - B \sin(\log x)$		
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -\left(A\cos(\log x) + B\sin(\log x)\right)$	1/2	
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$	1/	
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	1/2	
	b)ii)	Solve, $x(1+y^2)dx + y(1+x^2)dy = 0$	03	
	Ans	$x(1+y^2)dx + y(1+x^2)dy = 0$ $\therefore x(1+y^2)dx = -y(1+x^2)dy$		
		$\therefore \frac{x}{1+x^2} dx = \frac{-y}{1+y^2} dy$ $\therefore \frac{x}{1+x^2} dx = \frac{-y}{1+y^2} dy$	1	
		$\therefore \int \frac{x}{1+x^2} dx = -\int \frac{y}{1+y^2} dy$	1/2	
		$\therefore \frac{1}{2} \int \frac{2x}{1+x^2} dx = -\frac{1}{2} \int \frac{2y}{1+y^2} dy$	1/2	
		$\therefore \frac{1}{2}\log\left(1+x^2\right) = -\frac{1}{2}\log\left(1+y^2\right) + c$	1	
	c)	A particle starting with velocity 6m/s has an acceleration $(1-t^2)$ m/s ² .when does it	06	
		first come to rest? How far has it then travelled?		
	Ans	$Acceleration = \frac{dv}{dt} = 1 - t^2$		
		$\therefore dv = (1 - t^2)dt$	1/2	
		$\therefore \int dv = \int (1 - t^2) dt$	1/2	
		$\therefore dv = (1 - t^2)dt$ $\therefore \int dv = \int (1 - t^2)dt$ $\therefore v = t - \frac{t^3}{3} + c$	1/2	
		given $v = 6$ and $t = 0$	1/2	
		$\therefore c = 6$		
		$\therefore v = t - \frac{t^3}{3} + 6$		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subje	Subject Name: Applied Mathematics <u>Model Answer</u> Subject Code:		22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	c)	The particle comes to rest when $v = 0$	
		$\therefore t - \frac{t^3}{3} + 6 = 0$	
		$\therefore t^3 - 3t - 18 = 0$ $\therefore t = 3\sec$	1
		$\because v = \frac{dx}{dt}$	
		$\therefore \frac{dx}{dt} = t - \frac{t^3}{3} + 6$	
		$\therefore dx = \left(t - \frac{t^3}{3} + 6\right) dt$	
		$\therefore \int dx = \int \left(t - \frac{t^3}{3} + 6 \right) dt$	1/2
		$\therefore x = \frac{t^2}{2} - \frac{t^4}{12} + 6t + c_1$	1/2
		\therefore initially $x = 0$, $t = 0$	1/2
		$c_1 = 0$	1/2
		$\therefore x = \frac{t^2}{2} - \frac{t^4}{12} + 6t$,-
		put $t = 3$	
		$\therefore x = \frac{(3)^2}{2} - \frac{(3)^4}{12} + 6(3)$	
		$\therefore x = 15.75 \ m$	1
6.		Attempt any <u>TWO</u> of the following:	12
	a) i)	An unbiased coin is tossed 5 times. Find probability of getting three heads.	03
	Ans	$n=5$, $p=\frac{1}{2}$, $q=\frac{1}{2}$, $r=3$	
		$\therefore P(r) = {}^{n}C_{r}p^{r}q^{n-r}$	
		$P(r) = {}^{n}C_{r}p^{r}q^{n-r}$ $P(3) = {}^{5}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5-3}$ $P(3) = \frac{10}{32} \text{or} 0.1562$	2
		$\therefore P(3) = \frac{10}{32}$ or 0.1562	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

(180/1EC - 2/001 - 2013 Ceruneu)

Subj	ect Nan	ne: Applied Mathematics <u>Model Answer</u> Subject	t Code:	22206
Q. No.	Sub Q.N.	Answers		Marking Scheme
6.	a)ii) Fit a Poisson's distribution for the following observations			
	Ans	$ \frac{x_{i}}{f_{i}} = \frac{20}{8} = \frac{30}{12} = \frac{40}{30} = \frac{50}{60} = \frac{60}{70} $ $ \frac{f_{i}}{f_{i}} = \frac{8}{12} = \frac{10}{30} = \frac{10}{6} = \frac{60}{4} $ $ \text{Mean} = m = \frac{\sum f_{i}x_{i}}{\sum f_{i}} $		
		$\therefore m = \frac{20(8) + 30(12) + 40(30) + 50(10) + 60(6) + 70(4)}{8 + 12 + 30 + 10 + 6 + 4}$ $\therefore m = \frac{2860}{70} = 40.85$ Poisson distribution is, $P(x = r) = \frac{e^{-m}m^r}{r}$		2
		$P(x=r) = \frac{e^{-m}m^r}{r!}$ $\therefore P(r) = \frac{e^{-40.85} (40.85)^r}{r!}$		1
	b)	If 2% of the electric bulbs manufactured by a company are defective. Find the probatin sample of 100 bulbs. (i) 3 are defective (ii) At least two are defective.	 ibility tha	06
	Ans	$p = 2\% = 0.02 , n = 100$ ∴ mean $m = np$ ∴ $m = 100 \times 0.02 = 2$ Poisson's distribution is, $P(r) = \frac{e^{-m} \cdot m^r}{r!}$		1
		(i) 3 bulbs are defective $\therefore r = 3$ $\therefore P(3) = \frac{e^{-2}(2)^3}{3!}$ $\therefore P(3) = 0.1804$		1
		(ii) At least two are defective $\therefore P(\text{at least two are defective}) = 1 - [P(0) + P(1)]$		

Subj	ect Nar	me: Applied Mathematics <u>Model Answer</u> Subject Code:	22206
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	b)	$\therefore P(\text{at least two are defective}) = 1 - \left[\frac{e^{-2}(2)^0}{0!} + \frac{e^{-2}(2)^1}{1!} \right]$	2
		= 0.5939	1
	c)	In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming the distribution is to be normal, (i) How many students score between 12 and 15	06
		(ii) How many students score above 18 Given Frequency 0 to 0.8 = 0.2881 Frequency 0 to 0.4 = 0.1554	
	Ans	Frequency 0 to 1.6 = 0.4452 Given $\bar{x} = 14$ $\sigma = 2.5$ $N = 1000$ i) $z = \frac{\bar{x} - \bar{x}}{\sigma} = \frac{12 - 14}{2.5} = -0.8$	1
		$z = \frac{x - \bar{x}}{\sigma} = \frac{15 - 14}{2.5} = 0.4$ \therefore p(\text{score between 12 and 15}) = A(-0.8) + A(0.4)	
		= 0.2881 + 0.1554 $= 0.4435$	1
		:. No. of students = $N \cdot p = 1000 \times 0.4435$ = 443.5 <i>i.e.</i> , 444	1/2
		<i>ii</i>) $z = \frac{x - x}{\sigma} = \frac{18 - 14}{2.5} = 1.6$ ∴ $p(\text{above } 18) = A(\text{greater than } 1.6)$	1
		= 0.5 - A(1.6) $= 0.5 - 0.4452 = 0.0548$	1
		:. No. of students = $N \cdot p$ = $1000 \times 0.0548 = 54.8$ <i>i.e.</i> , 55	1/2
			-

Subje	ect Nar	ne: Applied Mathematics	Model Answer	Subject Code:	2	2206
Q. No.	Sub Q.N.		Answers			Marking Scheme
	Important Note In the solution of the question paper, wherever possible all the possible alternative methods solution are given for the sake of convenience. Still student may follow a method other the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking the secondary of the scheme of marking the scheme of the scheme of marking the scheme of th		an the			