

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Model Answer: Winter-2019

Subject: Irrigation Engineering

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	a)	Attempt any <u>THREE</u> of the following:		12
	(i) Ans.	Define 1. Runoff 2. Irrigation 3. Maximum flood discharge 4. Hydrological cycle		
		(1) Runoff: The amount of water which flows over the surface of earth after all losses have taken place is called as runoff.		
		OR		
		The part of rainfall which flows over the surface of water after all losses have taken place is called as runoff	1 each	4
		(2) Irrigation: The process of artificially supplying water to soil for raising the crops is called as irrigation.	cucii	
		OR		
		'This artificial application of water to the land in accordance with		
		the crop requirement is called as Irrigation.'		
		(3) Maximum flood discharge:		
		Maximum flood discharge is maximum concentration of flow from a catchment area at the outlet in a small period.		
		(4) Hydrological cycle: It is the cycle which deals with science of occurrence distribution and circulation of water on earth on and below the earth surface.		
	(ii)	Classify the irrigation project on the basis of purpose and		
	Ans.	administration.		
		 a) Classification based on purpose: 1) Single purpose irrigation project: This type of project mainly constructed and founded under one head or purpose like irrigation, power generation etc. 	1	
		2) Multipurpose irrigation Project: It is a project which is constructed for two or more purpose such as irrigation, power generation etc.	1	

Subject: Irrigation Engineering

Sub. Code: 17502

Que. No.	Sub. Que.		Model	Answer	Marks	Total Marks
Q.1	(ii)	b) Classification b	ased on Adminis	tration:		
				~ ~ ~ ~]		
			ass of project	Command Area (ha)		
			Aajor project	Over 10000	•	4
			edium project	10000 - 2000 Less than 2000	2	4
		<u> </u>	Ainor Project	Less than 2000		
	(iii)	Compute the MF Km ² using : (1) Dicken's form		m over a catchment area of 150		
		(2) Ingli's formula Given, $A = 150 \text{ Kr}$	a			
		(1) Dicken's form				
	Ans.	$\mathbf{Q} = \mathbf{C} \mathbf{A}^{3/4}$				
		$Q = 27 X 150^{3/4}$				
		Q = 27 X 42.86			2	
		$Q = 1157.22 \text{ m}^3/\text{se}$	ec			
		(2) Ingli's formula				
		$Q = 123 A / \sqrt{(A+1)}$				
		$Q = 123 \times 150 / \sqrt{100}$				
		$Q = 18450 / \sqrt{160}$				_
		Q = 18450 / 12.66			2	4
		$Q = 1457.35 \text{ m}^3/\text{se}$	ec			
		Derive the relation Let $D = Duty$ in Ha		, delta and Base period.		
	(iv)	$\Delta = Delta in meters$				
		B = Base period in				
	Ans.	-	•	vater supplied to field corres-ponding	1	
		to water depth of Δ			L	
		$= \Delta X D X 10^4$ cubi	c meter			
		$= \Delta X D X 10^4 m^3 -$	(1)			
				e cumec of water is required to flow	1	
		during the entire ba	se period.	2	-	
				$1 X B X 24 X 60 X 60 m^3$ (2)		
		Equating, (1) and (2)				
		$\Delta X D X 10^4 = 1 X$	B X 24 X 60 X 6	0	1	
		$\Delta = (B X 86400) / ($	D X 10 ⁴)			
		$\Delta = (8.64) \text{ B} / \text{D}$				
		or			1	4
		$D = (8.64) B / \Delta$				
					1	

Subject: Irrigation Engineering

0	uu	••••	ut	• -	1/	50	4	
			 					 _

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	b)	Attempt any <u>ONE</u> of the following :		6
	(i)	In an area four rain gauge station which are equidistant from each other at a distance of 6 km. The rainfall measured at each station is 4 cm, 2.8 cm, 6 cm and 8 cm. Calculate average rainfall.		
	Ans.			
		Total numbers of rain gauge stations are 4	1	
		\therefore N = 4		
		Find out $\sum P$ i.e. sum of rainfall for all stations.	1	
		= (4+2.8+6+8)	1	
		$\therefore \Sigma P = 20.8 \text{ mm}$	1	
		\therefore Rainfall = Average Rainfall	1	
		$P = \frac{\sum P}{N}$	1	
		$=\frac{20.8}{4}$		
		= 5.2 cm	1	6
		(Note: If any other appropriate method used should be considered.)		

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

Que. No.	Sub. Que.			Mo	odel A	nswer				Marks	Total Marks
Q.1	b) (ii)	data. 1) Ef 2) Ca	he control levels fective storage rec arry over allowanc ead storage 10 % o	quired ces and	3000] d tank	Ha.m. losses 2		L from	ı following	5	
			Contour RL (m)	580	582	584	610	612	614		
		5	Storage (Mm ³)	3.0	4.5	6.0	30	40	50		
		Assu	me flood lift as 1.5	5 m fre	ee boai	rd as 2.	5 m.				
	Ans.	Effec Gross Live Effec Live Gross 0.9 G Gross From capac FRL HFL HFL HFL TBL TBL TBL TBL TBL Dead	me flood fift as 1.2 ctive storage requires s storage = Dead storage = Effective y over allowance) ctive storage requires storage = $30 + (25)$ storage = 37.5 Mm s storage = 37.5 Mm s storage = 37.5 Mm s storage = 41.66 M n capacity table, by city 41.66 Mm ³ will = $612 + [(614 - 61)]$ = 612.332 m ming flood lift = 1. = FRL + Flood lift = $612.332 + 1.5$ = 613.832 m = HFL + Free boar = $613.832 + 2.5$ = 616.332 m l storage = $10/100$ c orresponding to the	ed for o orage $-$ crop v ed for o /100) 3 of gros f m ³ interpo 1 be, 2) / (5) 5 m ar of gros K 41.6	crops = + Live water re- crops = (30) = 1 s storag olating 0 - 40) and free s storag 6 = 4.1	= 3000 H storage equirem = 3000 H 30+7.5 ge + 37 R.L. cc] X (41 board = 	ha-m = 3 hent + (') ha-m = 0 a-m = 0 a = 37.5 a =	Tank lo (30 Mr Mm ³ nding to	sses + n ³)	1 1 1 1	
		DSL	orresponding to the = 580 + [(582 - 58 = 581.55m	-	•					1	6

Model Answer: Winter-2019

Subject: Irrigation Engineering

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2		Attempt any <u>FOUR</u> of the following:		16
	a)	Define rate of silting and enlist any three factors affecting silting		
	Ans.	of reservoir.		
		Rate of silting:	1	
		The amount of collection of silt into the reservoir is known as rate	1	
		silting of reservoir.		
		Factors affecting rate of silting:	1	4
		1.Catchment area	each	-
		2. Slope of country	(any	
		3.Beginning of storing water in reservoir	three)	
		4. Nature of surface soil		
		5.Rainfall characteristics		
		5. Kamran characteristics		
	• \	State the types of survey required for irrigation project and data		
	b)	required for irrigation project.		
	Ans.	Survey for irrigation project:		
		1.Reconnaissance survey: In reconnaissance survey following		
		information is collected. The size of catchment area, vegetation in the		
		catchment area, soil type, slopes, existing ponds etc		
		2. Preliminary survey: It is divided as follows into three.		
		a. Engineering surveys		
		 Water spread. Capacity of the reservoir. 		
		3. Suitable dam site.		
		4. Site for waste weir and outlets.		
			2	
		b. Hydrological survey		
		1. To study runoff pattern and to estimate yield.		
		2. To determine maximum discharge.		
		3. Determination of hydrograph of worst flood to		
		determine spillway capacity and its capacity.		
		c. Geological survey		
		1. Water tightness of the basin.		
		2. Stability of foundation for the dam.		
		3. Faulty structure in the basin.		
		4. Type and depth of overburden.		
		5. Ground water condition of region.		
		6. Location of quarry sites for construction materials.		
		3. Detailed survey: After the preliminary survey only a few sites are		
		selected for further consideration. In this type of survey office		
		studies and estimates for each of the selected site is prepared.		

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

Que. Sul No. Qu		Model	Answer	Marks	Total Marks
Q.2 b)	 Siz Ar Ty Ex Ri⁺ Flo Flo Slo Co 	to be collected for Irrigation ze of catchment (area in Km ²) ea under cultivation, under for pe of soil isting ponds and size, their ca- ver sites in that area. bod levels if available from pas- ope of hills	est and under habitation pacities st record if any	2	4
c) An	10. A 11. S 12. T 13. S 14. D Diffe	Farthen Dam	a d and rehabilitation problems m and gravity dam. (four points) Gravity Dam They cannot be found on any soil without any proper foundation. Comparatively there is less seepage in case of gravity dam. a. For its construction skilled labours are required. b. Construction cost of gravity	1 each	4

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
Q.2	d)	Draw the neat sketch of gravity dam with usual notation.		
	Ans.	Top of the drainage shaft U/S Drainage shaft Drainage gallery Drainage gutter Heel Body of Dam Fig. Gravity Dam	4	4
		(Note: 2 marks for sketch and 2 marks for notation)		
	e) Ans.	 Explain any two types of failure of earthen dam and give their remedial measures. 1. Hydraulic failures: About 40% of earthen dam failures due to this reason only. It includes overtopping of dam surface, failure of u/s slope due to wave erosion, toe erosion, gullying etc. These failures can be avoided by taking following remedial measures. a) Design capacity of spillway accurately. b) Provide sufficient free board. c) Stone pitching and wave breakers on upstream face. 	1	
		 2. Seepage failures: More than 33% of earthen dam failures due to seepage. Seepage always occurs in earthen dam. It does not harm its stability, if it is within design limit. It includes piping, sloughing. These failures can be avoided by taking following remedial measures. 1) Proper compaction and bonding between layers. 2) Careful Investigations of foundation soil. 3) Proper design. Remedial measures to avoid failure of earthen dam: 	1	
		 Control of seepage through embankment a) Provide Hearting in the central portion of dam. b) Provide casing over the hearting. c) Provision of horizontal drainage blanket Control of seepage through foundation a) Provide cutoff trench under hearting zone. b) Provide concrete cut-off wall. Control of seepage in general 	1	

Subject: Irrigation Engineering

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	e)	Structural Failure :		<u>4</u>
		1. Slide in embankment.		
		2. Foundation slide.		
		3. Failure due to earth quake.	1	
		4. Failure due to holes caused by burrowing animals.		
		5. Failure by spreading.		
		6. Failure due to leaching of water soluble salts.		
		Remedial measures to avoid structural failure:		
		1. Care should be taken that excessive pore pressure should not	1	4
		be formed during construction of dam.		
		2. Avoid sudden draw down of reservoir.		
		3. Avoid steep slopes, regular maintenance of slope.		
		4. Earthquake pressure should be considered while designing		
		dam.		
	f)	Explain energy dissipation spillway with and without gates.		
	Ans.	Spillway: It is an arrangement provided at the crest of dam to expel		
	Alls.	the excess water rises above the full reservoir level. This is necessary		
		otherwise water will go on rising even above HFL and will start		
		flowing from top of dam which may affect stability of dam. Therefore		
		it is very essential to provides spillway to dispose surplus water on		
		downstream side.		
		Energy dissipation: When water flows from crest and if the	2	
		difference in upstream and downstream water level is more. This		
		causes very high velocity. This high velocity has a very high kinetic		
		energy which can scour the bed. Hence, energy dissipaters help in		
		reducing this kinetic energy of flow.		
		Energy Dissipation spillway types:		
		1. Spillway with gate (controlled): It has mechanical structures or		
		gates to regulate the rate of flow. This design allows nearly the full		
		height of the dam to be used for water storage year around and flood		
		waters can be released as required by opening one or more gates.		
		2. Spillway without gate (uncontrolled): It does not have gates,		
		when the water rises above the lip or crest of the spillway it begins to		
		be released from the reservoir. The rate of discharge is controlled only	2	4
		by the depth of water above the reservoir spillway. Storage volume in		
		the reservoir above the spillway crest can only be used for the		
		temporary storage of flood water it cannot be used as water supply		
		storage because it is normally empty.		

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

Que. No.	Sub. Que.	Model A	Answer	Marks	Total Marks
Q.3	a)	Attempt any <u>FOUR</u> of the followin Differentiate between ogee spillwa	0		16
	Ans.	Sr. Ogee Spillway No.	Bar Type Spillway		
		1. The profile of the spillway is ogee or 's' shaped.	The profile is simple vertical fall type.		
		2. It is mostly used for gravity dam.	• It is mostly used for M.I. tanks or percolation tanks.	1	4
		3. It is constructed in concrete and mostly used for large height gravity dams.	founded on concrete block	each	•
		4. The falling water is made to glide over the curved	-		
	b) Ans.	Theoretical Profile: It is an element forces i.e. water pressure and the war right angled triangle. It is an econ dam is stressed to its maximum safe Practical Profile: In this profile p and top width is considered. All type	eight of the dam is considered. It is omical profile because material of compressive stress. ractical requirements i.e. free board	2	
		considered. Road way at top is poss modifications are made.	ible. It is not right angled but some	2	4
	c) Ans.	Give the salient feature of vertical Following are the salient features of i) Gate groove: Steel plate mov ii) Lifting cable: To lift the gate	vertical gate with their use e through these grooves		
		iii) Steel plate : To work as gate iv) M.S.R.S.J.: To support steel	-	1 each	4

Subject: Irrigation Engineering

5451 66461 17662

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	<u>d</u>)	State any four criteria for selection of site for percolation tank.		
Q. 3	d) Ans.	 State any four criteria for selection of site for percolation tank. The important points considered for selection site for percolation tank. 1. The tank bed should be pervious. 2. The nalla or stream should have sufficient discharge in monsoon. 3. There should be number of wells on downstream side of the tank. 4. A good agricultural land should be available near each well. 5. The flanks on both the sides of the nalla should be rising with steep slopes. 6. The materials of construction, labour, machinery, approach road should available nearby. 	1 each (any four)	4
	e)	Give the construction and working of bandhara irrigation.		
	Ans.	A bandhara is a masonry diversion weir of small height, 1.2m to 4.5m. constructed across a nallah or a small stream. The water level is raised and it is diverted to a small canal taking off from the upstream side of bandhara.		
		 Following are the main component parts of bandhara. i. The bandhara ii. Screen wall iii. The flood banks iv. Off taking canal. The bandhara is constructed in masonry and has trapezoidal shape. 	2	
		Screen wall is kept 0.3m above the H.F.L. so that flood water is controlled. Flood embankment is provided from the upstream end of screen wall to confine the flood water in the stream.		
		Water obstructed by the bandhara is diverted to off taking canal from upstream side.	2	4

Subject: Irrigation Engineering

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	a)	Attempt any <u>THREE</u> of the following:		12
	(i)	State two advantages and two disadvantages of bandhara irrigation.		
	Ans.	 Advantages of bandhara irrigation: a. The system of irrigation is economical b. Maximum utilization of water. c. The length of canal and distribution system is small, hence water losses are very less. d. The area to be irrigated is close to the source, hence duty and intensity of irrigation is high. e. Ease in construction 	1 each (any two)	
		 Disadvantages of bandhara irrigation: a. The irrigation area of one bandhara is more or less fixed. b. The system of water becomes seasonal and unreliable in summer if river is non-perennial. c. If number of bandhara's are constructed on a stream downstream people may be adversely affected. 	1 each (any two)	4
	(ii)	Draw layout of lift irrigation and give their component.		
	Ans.	Pumping house Centrifugal pump Centrifugal pum	2	
		Fig. Layout of Lift Irrigation Scheme Component Parts: 1) Intake well 2) Inlet chamber 3) Jack well	2	4
		 4) Inlet pipe 5)Engine House 6) Rising main 7) Delivery chamber 8) Water distribution system 		

Model Answer: Winter-2019

Subject: Irrigation Engineering

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	a)	State the component of weir with their functions.		
	(iii)	Following are the components of weir with their function.		
	Ans.	a. Body of weir- To raise the water level on the upstream side.		
		b. Upstream apron- It protects the main body of the weir during floods.		
		c. Upstream curtain wall- To reduce the uplift pressure.		
		d. Downstream apron- To protect the downstream bed of the river.	1	4
		e. Downstream curtain wall- To protect downstream and floor from uplift pressure	each (any	-
		f. Crest- To resist the water pressure during floods.	four)	
		g. Shutter- To raise water level on upstream side and divert it in to the canal for irrigation purpose.		

INO.	Que.			магкя
Q.4	a)	State the component of weir with their functions.		
	(iii)	Following are the components of weir with their function.		
	Ans.	a. Body of weir- To raise the water level on the upstream side.		
		b. Upstream apron- It protects the main body of the weir during floods.		
		c. Upstream curtain wall- To reduce the uplift pressure.		
		d. Downstream apron- To protect the downstream bed of the river.	1	4
		e. Downstream curtain wall- To protect downstream and floor from	each	
		uplift pressure	(any	
		f. Crest- To resist the water pressure during floods.	four)	
		g. Shutter- To raise water level on upstream side and divert it in to the		
		canal for irrigation purpose.		
	(iv)			
	Ans.	Define barrage and enlist the function of their component part.		
		Barrage: If storage of water is done by gates and very small portion or		
		nil portion of water is stored by raised crest then the barrier is	1	
		called as barrage.		
		Function of component parts:		
		a. Gate:		
		1. To maintain Water level.		
		2. To raise the water level during low supplies and also flood		
		control.		
		b. Inverted Filter:		
		1. Check the escape of fine soil particles in the seepage water.		
		c. Scouring Sluices:		
		1. Control silt entry into channel.		
		2. Pass the low floods without dropping.	3	4
		d. Divide Wall:		
		1. To keep the cross-section, if any, away from the canal.		
		2. To serve as a trap for coarser bed material.		
		3. To serve as a side-wall of the fish ladder.		
		4. To separate canal head regulator from main weir.		
		e. Fish Ladder:		
		1. For the movement of fish.		
		f. Sheet Piles:		
		1. Protect barrage structure from scour.		
		2. Reduce uplift pressure on barrage.		
		g. Marginal Bunds:		
		1. Provided on the upstream in order to protect the area from		
		submergence due to rise in HFL, caused by afflux.		
		h. Groans or Spurs:		
		1. Protect the bank from which they are extended by deflecting the		
		current away from the bank.		

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

- - -

Subject: Irrigation Engineering

~	 	 	 	_	
	 	 	 		_

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	(ii)	Calculate the balancing depth for a channel section having a bed		
		width equal to 18m and side slope of 1:1 in cutting and 2:1 in		
		filling. The bank embankments are kept 3.0m higher than the		
		ground level and crest width of bank is kept as 2.0m.		
	Ans.	$\frac{k 2 \cdot 0 - \pi}{3 \cdot 0}$ $\frac{1}{3 \cdot 0}$ $\frac{1}{100}$ $$	1	
		Fig. Channel Section Let , d_c = economical depth of cutting Height of embankment above G.L = 3.0 m		
		Area of cutting = $(b + nd)$		
		$= (18 + 1 \times d_{c})d_{c}$	1	
		= $18 d_c + d_c^2$ equation 1		
		Area of cutting = $2(\text{area of one bank})$		
		=2[(b+nd)d]		
		=2[(b+2h)h]		
		$= 2[(2+2\times3)3]$	1	
		$= 2[(2+2\times3)3]$		
		= 48equation 2		
		Equating area of cutting = area of filling		
		For economical or balancing depth	1	
		$18 d_{c} + d_{c}^{2} = 48$	I	
		$d_c^2 + 18 d_c - 48 = 0$		
		$d_{c} = \frac{-18 \pm \sqrt{18^{2} - 4 \times (-48)}}{2 \times 1}$	1	
		$d_c = 2.355m$		
			1	6

Subject: Irrigation Engineering

Sub. Code: 17502

No.	Sub. Que.		Model An	swer		Marks	Total Marks
Q.5	a)	Attempt any <u>TWO</u> A main canal irriga					16
		Name of crop	Base period	Area under	Duty		
			(Days)	crop (Ha)	(Ha/cumec)		
		Cotton	200	2500	1300		
		Wheat	120	7000	2000		
		Rice (Kharif)	120	3050	900		
		Sugarcane	360	4600	800		
		Vegetables (Hw)	120	1400	500		
		Designs the capacity		er canal losses a	as 10% and		
		capacity factor 0.85	•				
	Ans.	Given,					
		Canal losses = 10% =		0.90			
		Capacity factor $= 0.8$	5				
		1. Cotton:	• • • •				
		$\Delta = \frac{8.64B}{D} = \frac{8.64}{11}$	$\frac{1}{2} \times 200}{=} 1.329$				
		$V_{\text{cotton}} = A \times \Delta = 2$	$500 \times 1.329 = 332$	3.07 <i>Ha.m</i>		1	
		2. Wheat:					
		$\Delta = \frac{8.64B}{D} = \frac{8.64}{2}$	$\frac{4 \times 120}{10} = 0.518$				
		D 2	000				
		$V_{\text{wheat}} = A \times \Delta = 7$	$000 \times 0.518 = 362$	28.8 <i>Ha.m</i>		1	
		3. Rice:					
		$\Delta = \frac{8.64B}{D} = \frac{8}{2}$	$\frac{64 \times 120}{900} = 1.152$				
		$V_{rice} = A \times \Delta = 3$	$3050 \times 1.152 = 351$	3.6 <i>Ha.m</i>			
		4. Sugarcane:				1	
			8.64×360				
		$\Delta = \frac{D}{D} = 0$	$\frac{8.64 \times 360}{800} = 3.88$	8			
			$\Delta = 4600 \times 3.888$			1	
		5. Vegetables:					
			8 64×120				
		$\Delta = \frac{0.04D}{D} = 1$	$\frac{8.64 \times 120}{500} = 2.07$	36			
			$\Delta = 1400 \times 2.073$		n	1	
		Total Volume of wat					
			= 31253.31	20.0+3313.0+17	001.012703.04	4	
		т		ater 21752 21		1	
		Canal Capacity = $\frac{10}{100}$	otal Volume of wa	$\frac{1}{0.90 \times 0.85} = \frac{31233.31}{0.90 \times 0.85}$	= 40854Ha-m	2	8

Subject: Irrigation Engineering

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	b)	State the procedure of maintenance and repair of radial and vertical gate.		
	Ans.	Maintenance and repair of radial and vertical gate : 1. Monthly maintenance:		
		 Seals and seal seating shall be inspected for leakages. Locations of excessive leakages shall be recorded for taking remedial measures. Excessive or wide spread leakages if any shall be reported to Engineer-in-charge and remedial measures like tightening of bolts is to be carried out necessary plan for replacement of parts shall be initiated and carried out before floods. Remove all dirt, girt, etc., from trunnion assembly and lubricate 	2	
		 trunnion bearings of the gate with suitable water resisting grease. More concentration is to be given for checking of welds : (i) Between yoke girder web and tie flats. (ii) Between trunnion and tie between turnnion. (iii) Lifting bracket and gate. 2. Quarterly Maintenance: The maintenance shall preferably be carried out once in three months including pre- monsoon and post monsoon maintenance. All the nuts and bolts of trunnion assembly and its anchorages shall be checked for tightness. Check all the welds for soundness and rectify defects if any. 		
		 Check welding between latching bracket and skin plate with help of magnifying glass for cracks / defects and rectify the defects. Clean all drain holes including those in end arms, horizontal girders trunnion and pulley blocks. Check all nuts and bolts for tightness and tighten them if loose. Check upstream face of skin plate for pitting, sealing and corrosion. Sealing formation shall be removed, pitting shall be filled with weld and ground, and Corroded surface shall be cleaned and painted. In case of gate not being raised every quarter, these can be carried out in annual maintenance. The wheel bearings and guide rollers shall be lubricated. The seal shall be checked for damages, if damaged, shall be replaced. 	3	
		 All nuts and bolts shall be tightened. The guide assemblies, wheel assemblies and sealing assemblies shall be cleared of girt, sand or any other foreign material. General cleaning is to be done for the following: Hoist bridge components, trunnion girders / yoke girders, trunnion brackets, trunnions arms and horizontal girders. 		

Subject: Irrigation Engineering

Que.	Sub. Que	Model Answers	Marks	Total Marks
<u>No.</u> Q.5	Que. b) Ans.	 Lubrication is to be attended for: Bearings at Gate wheels, trunnion bushes, hoist pulleys and pins provide in Hoist Bridge at hoist level and gate. Rope drum shaft Plummer blocks. Line shaft Plummer blocks. Check tightness of all coupling bolts of motor to work reducer and line shaft. If required they may be tightened. Care shall be taken to check the condition of holding rope with rope socket and balancing of gate is to be observed and if necessary adjusted. 3. Annual maintenance: The following additional checks or maintenance shall be carried out in addition to checks mentioned under quarterly maintenance. All the embedded parts shall be checked for defects / damages and shall be rectified where ever noticed and exposed parts shall be painted for longer life. The sill beam and guides shall be cleared for all girt, sand etc., The wire ropes shall be checked. The wire rope shall be greased. The guide roller pins shall be lubricated and ensure for its rotation. Check the condition of rubber seal. If damaged, replace the seals. All bolts and nuts holding rubber seals shall be tightened. Adjust seal if leakages are found at local points. 	3	Marks 8
	Ans.	 each of the following situation. (i) Nala bed level is above FSL of canal. (ii) HFL of nala is between FSL of canal and bed level of Canal. (iii) Canal bed level and nala Bed level are same (iv) Canal bed level is above HFL of nala (i) Nala bed level is above FSL of canal: 	2	

Subject: Irrigation Engineering

Model Answer: Winter-2019

Subject: Irrigation Engineering

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

Que. No.	Sub. Que.			Model Answer		Mark	Total Marks
Q.6	b)	(i) F (ii) A (iii) M	tiate between we lood control fflux Iaintenance rest level	eir and barrage with	respect to.		
	Ans.	Sr. No.	Points	Weir	Barrage		
		i	Flood Control	Control over the flood is not possible.	Good control over		
		ii	Afflux	It gives high afflux	It gives low afflux	1	4
		iii	Maintenance	Maintenance of barrage is difficult.	Maintenance of weir is easy.	each	
		iv	Crest Level	Crest level is below HFL. In some cases it is at FSL.			
	c) Ans.	canal ne Classific		rding to alignment a lignment:	and position in the		
		2) F 3) S Classific	Ridge Canal Side Slope Canal ation based on p	oosition:		2	
		2) Br 3) Ma	Iain Canal anch Canal ajor Distributary inor distributary				
		5) Wa	ater Course ead Work			2	4

Model Answer: Winter-2019

Subject: Irrigation Engineering

Sub. Code: 17502

Que.	Sub.	Model Answer	Marks	Total
No. Q.6	Que. d)			Marks
Q.0	u)	Explain the design procedure for most economical canal section. Design procedure for most economical canal section:		
	Ans.	 A channel which gives maximum discharge for a given cross sectional area and bed slope is called a channel of most economical cross-section. 1. For design of canal section, discharge, coefficient of rugosity, canal side slopes and longitudinal bed slope should be known. 		
		2. For most economical channel. Half of the top width = Length of the slopping side $R = \frac{d}{2} \qquad \qquad \frac{b+2nd}{2} = d\sqrt{n^2 + 1}$	1	
		 Calculate b in terms of d. 3. Calculate area Area = (b + nd)d 4. Use Manning's formula or Chezy's Formula to calculate Velocity 	1	
		$v = \frac{1}{N} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}}$ OR $v = C\sqrt{R \times S}$	1	
		5. Calculate discharge $Q = A \times V$ to find dimensions of b and d.	1	4
	e)	Explain water logging and state three causes of water logging.	-	
	Ans.	Water logging: The condition of soil when it becomes completely	1	
		saturated with water and becomes unfit for the growth of plants is		
		called as water logging.		
		Causes of Waterlogging:		
		1. Over and Intensive irrigation	1	1
		2. Seepage of water from the adjoining high lands	each	-
		3. Seepage of water through canals	(any	
		4. Impervious Obstruction	three)	
		5. Inadequate natural drainage		
		6. Inadequate surface drainage		
		7. Excessive rainfall		
		8. Submergence due to floods		