

WINTER - 19 EXAMINATION

Subject Name: Thermal EngineeringModel AnswerSubject Code:17410Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

().1.	Attempt any <u>SIX</u> of the following:	
a) i)		In a boiler enthalpy of water supplied was 2000 kJ/kg. Enthalpy being added by fuel combustion is 3200 kJ/kg. Using first law of thermodynamics, find amount of heat supplied if steam generation rate is 10 tons per hour.	
	Sol.	Heat supplied $Q = m (h_2-h_1) \dots$ (Steady flow energy equation for boiler) ; $h_2=3200 \text{ KJ/kg} h_1=2000 \text{ KJ/kg}$ $m = 10 \text{ Tons /hour} = (10 \times 1000)/3600 \text{ kg/sec} = 2.77 \text{ Kg/sec}$ Q = 2.77(3200-2000) = 3324 KJ/sec heat supplied for 10 Tons/hr steam generation	01 Mark 01 Mark
	ii)	Find molar volume of air when volume of a container in which air is contained is 3 m^3 where as mass of air is 3.81 kg. Take molecular weight of air 29.	
	Sol.	Molar Volume:- Volume = 3 m^3 ; mass = 3.81 kg $3.81 \text{ kg in } 3 \text{ m}^3$; $3810 \text{ gm in } 3 \text{ m}^3$ $3810/29 \text{ moles in } 3\text{m}^3$ Molar volume = $3810 / (3 \times 29) = 43.79 \text{ mol/m}^3$ Molar volume = Volume occupied by 1 mole $43.79 \text{ moles in } 1 \text{ m}^3$ 1 mole in (1/43.79) m ³ = $0.0228\text{m}^3 = 22.8 \text{ Litre}$	01 Mark 01 Mark

iii)	Steam is available at turbine inlet at 10 bars and 250°C. Locate point on T-S diagram. Find degree of superheat.	
Sol.	T-S Diagram	
		01 mark
	TT p -> Corresponding point	
	on T-s diagram	
	400- 1MPa	01 mark
	· ·····	VI IIIal K
	-250CTC	
	179	
	100	
	5	
	Entropy ->	
	Dearge of superheat ->>	
	Degree of supervise	
	At 10 bar, using steam tables,	
	Tsat = 179.9 C	
	- Degree of Superheat	
	- Degiec of Superior	
	$= 2.50^{\circ} \text{C} - 179.9^{\circ} \text{C}$	
	$= 70.1^{\circ}C$	
 iv)	Comment on Mach number of steam in impulse and reaction turbines.	
Sol.	Mach number, in fluid mechanics, ratio of the velocity of a fluid to the velocity of sound in that	01 mark
	fluid. Mach numbers less than one indicate subsonic flow; those greater than one, supersonic	01 mark
	flow.	
 v)	State two factors on which efficiency of cooling tower depends.	A
Sol.	Efficiency of cooling tower depends on 1.Losses in duct, piping and joints, pipes should be free from scale/rust	Any two 1 mark
	2.Efficient heat transfer, maintenance of piping, Ensure fill is clean and free of debris.	each
	3.Sufficient airflow and correct fan speed.	cuch
vi)	Identify modes of heat transfer involved applications with brief explanation.	
	(1) Radiator of automobile	
 	(2) Condenser of domestic refrigerator.	
Sol.	Modes of heat transfer	01 1
	Automobile radiator-A radiator is a type of heat exchanger. It is designed to transfer heat from the	01 mark
	hot coolant that flows through it to the air blown through it by the fan. Heat transfer from a radiator occurs by all the usual mechanisms: thermal radiation, convection into flowing air or	
	liquid, and conduction into the air or liquid.	01 mark
	Condenser of refrigerator- The Condenser is a heat transferring device. It is used to	~ = 11111 IX
	remove heat from hot refrigerant vapour. Using air cooling method condenser changes the	
	vapour to a liquid. Convection mode of heat transfer plays very important deciding	
	factor transferring heat from condenser tube to atmosphere.	

	Categorize point and path functions from following. (pressure, heat, internal energy, temperature, work, total enthalpy.)	
Sol.	Point function-Pressure, temperature, internal energy, total enthalpy Path function-Heat, Work	01 mark 01 mark
viii)	A gas is compressed from 1 bar and 30°C to 5 bars and 30°C. Identify process and show on PV diagram.	
Sol.	Gas is compressed from (1) 1 bar 30 °C to (2) 5 bar 30 °C Temp is constant. Hence process is isothermal. P x V = Constant P_{2} $P_{1}V_{1} = P_{2}V_{2}$ P_{1} $P_{1}V_{1} = P_{2}V_{2}$ V_{2} V_{2} V_{2} V_{2} V_{1}	01 mark 01 mark
)	Attempt any <u>TWO</u> of the following:	08 Marks
i)	Describe thermodynamic equilibrium with two suitable examples.	
Sol.	Thermodynamic equilibrium with two examples Thermodynamic equilibrium , condition or state of a thermodynamic system, the properties of which do not change with time and that can be changed to another condition only at the expense of effects on other systems For a thermodynamic equilibrium, Mechanical equilibrium, Electrical equilibrium, Chemical equilibrium, and thermal equilibrium need to be satisfied. It is a state of a physical system in which it is in mechanical, chemical, and thermal equilibrium and in which there is therefore no tendency for spontaneous change. For example,	02 mark

ii)	Use equation of state to find density of air when atmospheric conditions are 760	
	mm of Hg and 30°C. Take R = 287 J/kg K.	
Sol.	Using the equation of state	02 marks
	760 mm of Hg = 1 bar = 100 KPa ; Take R= 287 J/ KgK = 0.287 KJ/KgK	
	PV = mRT	
	100 V = m x 0.287 (30+273)	
	m/V = 1.15 kg/m3 = Density of air	02 marks
		02 mai ks
iii)	Represent generation of steam on H-S diagram. Show constant dryness fraction	
Sal	lines, constant temperature lines, saturated line and superheated region on the same.	
Sol.	Typical Mollier Enthalpy - Entropy Diagram	
	H-S Diagram	
	i i si	02 marks
	Const. Temp Lines	
		02 marks
	Superheated region	
	鲁 1 4 1	
	Critical Point	
	Saturated Vapour Line	
	Andred Vapour Line	
	Entropy	
	Attempt any <u>FOUR</u> of the following:	16
Q.2.	Attempt any <u>FOOR</u> of the following.	Marks
a)	Write continuity equation for nozzles. State involved with their units. meaning of	
Sol.	all terms Continuity equation for nozzle	02 marks
501.		02 mai K5
	Mass flow rate = Density x Area x Velocity (Density = $1/v$)	
	$m = (AC/v) = A_1C_1/v_1) = (A_2C_2/v_2)$	02 marks
	where,	v⊿ marks
	m = mass flow rate of steam in kg/s	
	A= cross sectional area of nozzle at given section in m^2	
	v = specific volume of steam at given section in m ³ /kg	

b)	C= velocity of steam in m/s In surface condensers write role of					
~)	(i) Water tubes					
	(ii) Shell					
	(iii) Baffle plate					
~ -	(iv) Tube sheet					
Sol.	1					
	 Water tubes- Cooling water flows thro steam outside the tubes 	ough it, for convective heat transfer to occur with	each			
	2. Shell- Outer body, all components are	enclosed in it				
	3. Baffle plate- baffles provide support to tubes and also deflect the fluid flow approximately normal to tubes. This increases turbulence of shell side fluid and improves heat transfer					
	4. Tube sheet- All tubes are supported at	t the end in tube sheet				
c)	A typical application has wall made up of two different materials with inner layer 20 mm thick and outer layer 3 mm thick. The temperature difference across wall is 35°C. Thermal conductivity of inner layer material is 0.1 W/m K and outer layer material is 20 W 1m K. How much heat will transfer per m2 of the wall will take place across the wall.					
Sol.	Rate of heat transfer per m ²	·				
	$Q/A = (T_1-T_2) / [(L_1/K_1) + (L_2/K_2)]$					
	= 35/[(0.02/0.1)+(0.003/20)]					
	= 33/[(0.02/0.1)+(0.003/20)]		02 ma			
	$= 174.86 \text{ W/m}^2$		02 ma			
d)		es between heat and work.	02 ma			
d) Sol.	$=174.86 \text{ W/m}^2$	es between heat and work.	02 ma			
,	=174.86 W/m ² State two similarities and two dissimilarities Heat and work		02 ma			
,	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system	es between heat and work. h, both are boundary phenomena, both are path				
,	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, here	n, both are boundary phenomena, both are path	02 ma			
,	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, heat converted into work, but entire work can be converted into work.	n, both are boundary phenomena, both are path at is low grade energy ; Entire heat cannot be onverted into heat ; System can possess heat, but				
Sol.	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, heat converted into work, but entire work can be converted into work and the converted into work and t	n, both are boundary phenomena, both are path at is low grade energy ; Entire heat cannot be onverted into heat ; System can possess heat, but	02 ma			
Sol. e)	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, heat converted into work, but entire work can be converted into work, but entire work can be converted into work, but entire work can be converted into work enti	n, both are boundary phenomena, both are path at is low grade energy ; Entire heat cannot be onverted into heat ; System can possess heat, but ropic processes(any four points)	02 ma 02 ma 02 ma			
Sol. e)	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, heat converted into work, but entire work can be conditioned in the system it never possess work Differentiate between isothermal and isenter	n, both are boundary phenomena, both are path at is low grade energy ; Entire heat cannot be onverted into heat ; System can possess heat, but	02 ma 02 ma 02 ma			
Sol. e)	=174.86 W/m ² State two similarities and two dissimilarities Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, heat converted into work, but entire work can be converted into work, but entire work can be converted into work, but entire work can be converted into work enti	n, both are boundary phenomena, both are path at is low grade energy ; Entire heat cannot be onverted into heat ; System can possess heat, but ropic processes(any four points)	02 ma			
Sol. e)	=174.86 W/m ² State two similarities and two dissimilaritie Heat and work Similarities- Both are not properties of system functions, both are form of energy Dissimilarities-Work is high grade energy, heat converted into work, but entire work can be converted into work but	h, both are boundary phenomena, both are path at is low grade energy ; Entire heat cannot be onverted into heat ; System can possess heat, but ropic processes(any four points)	02 ma 02 ma 02 ma			

		·	
	is required	should take place	
	Law is PV = Constant	Law is PV ^Y =Constant	
	$dQ = dW = P_1 V_1 log_e(V_2/V_1)$	$dQ = 0$; $dW = (P_1V_1 - P_2V_2) / \Upsilon - 1$	
f)	In a constant pressure process steam is gen- become dry and saturated. Determine amo steam table at 10 bar Tsat = 179.9°C hf =		
Sol.	Constant pressure process		02 mark
	Final condition of steam is dry saturated		02 mark
	Enthalpy of dry steam = $hg = hf + hfg = 2776.2$	2 KJ/KgGiven	
	Latent heat of vaporization = $hfg = hg - hf = 2$	776.2-762.6 =2013.6 KJ/Kg	
	Initial condition of steam is 0.8 dry		
	Enthalpy of wet steam = $hw = hf + x$. $hfg = 76$	2.6+0.8 X 2013.6 =2373.48 KJ/Kg	
	Heat added = $hg-hw = 402.72 \text{ KJ/kg}$		02 mark
03	Attempt any <u>FOUR</u> of the following:		16
Q.3.			Marks
a) Sol.	With neat sketch describe working of react Working principle of reaction turbine-	ion turbine.	
	 -A turbine in which steam pressure decreass moving as well as through the fixed blade is -In pure reaction turbine , the drop of prekinetic energy take place in moving blades greater velocity than that they enter blades. -The jet of steam leaving the moving blade and turn them round. The passage through convergent so the steam expand as is passes -The expansion causes the steam to leave th which it entered. 	known as reaction turbine. essure with expansion and generation of the steam jet leaves the moving blades at with greater velocity reacts on the blades moving blade of reaction turbine is made through moving blades.	2 Marks
	Fixed blades Fixed blades Fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed blades fixed fixed blades fixed fi	Moving blades tor tor Moving blades Velocity graph 8 4	2 Marks
			Daga 6 of 10

	b)	Find condenser efficiency when following readings were obtained on a steam surface	
		condenser.	
		(i) Atmospheric pressure = 760 mm of Hg	
		(ii) Vacuum in condenser = 690 mm of Hg	
		(iii) Cooling water inlet temperature $= 28^{\circ}C$	
<u> </u>		(iv) Cooling water outlet temperature = 39° C	
Sol	•	Condenser Efficiency $h_v = 690 \text{ mm of Hg}; h_b = 760 \text{ mm of Hg}; T_{wo} = 39 \ ^0\text{C}; T_{wi} = 28^0 \text{ C}$	
		Pressure in condenser $P_c = hb-hv$	2 Marks
		$= 760-690 = 70 \text{ mm of Hg} = [(70/760) \times 1.01325] = 0.0933 \text{ bar}$	
		At 0.0933 bar condenser pressure, saturation temperature $T_s = 45^{\circ}C$	2Marks
		Condenser efficiency = $(T_{wo} - T_{wi})/(Ts - T_{wi})$	ZIVIALKS
		=(39-28)/(45-28)	
		= 0.647	
		Condenser efficiency = 64.7%	
	c)	State Fourier's law of 'conduction and Stefan Boltzmann law of	
		radiation. Express mathematically.	
Sol	•		
		Fourier law of heat conduction- It state that 'for homogeneous material, the rate heat transfer	1.77 1
		in steady state in any direction is linearly proportional to temperature gradient in that direction.	1 Marks
		$Q \alpha dt/dx$	1 Marks
		Q =-k dt/dx Stefan Boltzman Law- Stefan concluded from experimental data that" total radiation by block	1 Marks
		body par unit area per unit time is proportional to fourth power of absolute temperature of the	1 Marks
		body.	
		$E \alpha T^4$ $E = \sigma T^4$	
	d)	State first law of thermodynamics for (i) closed system and cyclic process	
		(ii) closed system and non-cyclic process	
Sol		First Law of Thermodynamics:	
501	•	i) Closed System Cyclic Process :-	
		It states that if a system executes a cycle, transferring work and heat through its boundary, the net heat transfer is equivalent to the network transfer and does not place any restriction on the direction of flow but the reversal of the process not violet the first law.	2 Marks
		According to this statement of first law the potential energy can be converted into kinetic energy and kinetic energy can be converted into potential energy but in natural practice this does not happen. ii) Closed system Non cyclic process:-	2 Marks
		The principle of conservation of energy leads to first law of thermodynamics. This principle states that "energy can neither be created nor be destroyed though it can be transformed from one form to another form of energy. According to this law, when a system undergoes a change of state (thermodynamic process) both heat and work transfer takes place. The net energy transfer is stored within the system and is known as stored energy or total energy of system. $Q = \Delta U + W$	
	e)	Air is heated at constant volume from initial condition of 1 bar and 30°C	

	to 5 bar. Calculate (i) Final Temperature (ii) Work done (iii) Change in Enthalpy. Take for air R = 287 J/kg ⁰ K, Cp = 1.005 kJ/kg ⁰ K	
Sol.	Given:	02 marks
	Constant volume process	
	So,	
	$V_1 = V_2$	
	$P_1=1$ bar	01 marks
	$T_1=30^{\circ}C=273+30=303K$	
	$P_2=5$ bar	
	$C_p=1.005 \text{ kJ/Kg}^0 \text{K}$	
	$R = 287 \text{ J/Kg}^{0}\text{K} = 0.287 \text{ kJ/Kg}^{0}\text{K}$	
	Calculate;	
	Final Temp $T_2=?$	
	Work done=?	
	Change in enthalpy $\Delta h=?$	01 marks
	We Know that at constant volume process;	
	$P_1/P_2 = T_1/T_2$	
	$T_2 = (P2/P1)*T1$	
	$T_2 = (5/1) * 303$	
	$T_2 = 1515^0 K$	01 marks
	At Constant volume process	
	Work done= 0	
	Change in enthalpy	01 marks
	$\Delta h = m C_P \Delta T$	
	=1 X 1.005 X (1515-303)	
	Change in Enthalpy= $\Delta h = 1218.06 \text{ kJ/Kg}$	
f)	State regulations for boilers which fall under IBR boiler. (Any four)	
Sol.	Boiler Regulations : (Any 4 Points)1. A boiler cannot be put to use unless it has been registered with the Chief Inspector of	

	 Boilers. 2. The maximum working pressure of the boiler has to be determined by Boiler Inspector who will issue certificate for this. Owner cannot exceed this pressure limit in any case. 3. In case of accident, it should be reported by owner within 24 hours with full details. 4. The rules, regulations and bye-laws governing the upkeep and maintenance of boilers, procedure of registration, inspection and certification of maximum pressure, safety conditions etc. are subject to a revision by a Central Board under control of Govt. of India. 5. The boiler house plan, chimney design (Max height 30.48 m from floor) should be approved by boiler inspector. 6. Owner should apply for registration in prescribed format, inspector should fix date of registration not exceeding 12 months period. 7. Following inspections are carried out by Boiler Inspector at various stages/ levels /need-Inspection for registration, Hydraulic test, steam test, annual inspection, Inspection under steam, Internal inspection, Accident inspection, Casual inspection 	1 mark for each Point (any 4)
Q.4.	Attempt any <u>FOUR</u> of the following:	16 Marks
a)	Draw a neat sketch of regenerative feed heating.	
Sol.	Regenerative Feed Heating	4 Marks
b) Sol.	Describe with neat sketch working of natural draft cooling towers. Natural draft cooling tower: -In natural draught cooling tower, the circulation of air is produced by the pressure difference of air inside the tower and outside atmospheric air Hot cooling water falls down in a form of sprays and atmospheric air enters from bottom of the tower. -The falling water gives up its heat to the rising column of air and temperature of circulating	2 Marks
	 water reduces -In natural draught cooling tower, hot water is pumped to ring troughs. Trough sprays water in the form of droplets, which is placed at bottom of towers. -Most advantage is of no use of fan, for air circulation. An air circulation takes place by the pressure difference of air inside and outside of cooling tower (natural flow). 	2 Marks

d)	Compare performance of refrigerator and heat pump when both are operating	
	between 9°C and 35°C. Assume both are working on reversible Carnot cycle.	
Sol.		
	Given;	
	$T_L=9^{0}C=9+273=282 \ ^{0}K$	
	$T_{\rm H}=9^{\rm 0}{\rm C}=35+273=308~^{\rm 0}{\rm K}$	02 marks
	For refrigerator; COP(refrigerator) = $T_L/(T_{H-}T_L)$	
	=282/(308-282)	
	COP(refrigerator) = 10.8461	
	$COP(heat pump) = T_H/(T_{H-}T_L)$	
	=308/(308-282)	02 marks
	COP(heat pump)=11.8461	
	COI (heat pullp) = 11.0401	
	There for,	
	COP(heat pump)=1 + COP(refrigerator)	
	From above result COP of Heat pump is gretter than COP of refrigerator.	
e)	Describe anyone safety mounting used in boilers with sketch.	
Sol.	Boiler Mounting : Fusible Plug	
	Function:	
	It is very important safety device of a steam boiler, which protects the fire tube boiler	1 Marks
	against overheating. Location:	
	It is located just above the furnace in the boiler. It consists of gun metal plug fixed in a	1 Marks
	gun metal body with fusible molten metal.	
	Construction: It is fitted on the fire box brown plate or over the combustion chamber. The fusible plug	
	consists of two hollow guns and one conical plug shown as figure. A hollow gun metal body is	
	screwed to the fire box crown plate of boiler. Another hollow gun metal is screwed to the first	1 Marks
	body. Third plug is made from copper is locked with the second plug by pouring metal in to the grooves provided on the both plugs.	
		1 Marks
		1 WIALKS

Fusible metal Gun metal plug Jun metal body Crown nlate	
In normal working condition, the upper surface of fusible plug is covered with water which keeps the temperature of the plug below its melting point while other end of plug is exposed to fire or hot gases. The low melting point (tin or lead) does not melt till the upper surface of plug is submerged in water. But in case of water level in boiler falls below the danger levels, the fusible plug uncovered by the water and get exposed to steam. This overheats the plug and the fusible metal having low melting point which melts quickly. Thus the third plug drops down and second hollow gun became open, the steam rushes into the furnace and puts out the fire (stop).	
f) Describe four losses in steam turbines in 1/2 sentences each.	04 Marks
 Sol. Energy losses in steam turbines [Any four points with explanation 01 mark each] (i) Residual velocity loss- The steam leaves the turbine with a certain absolute velocity which results in loss of KE. This loss is about 10 to 12%. It can be reduced by multistaging. (ii) Losses in regulating valves-Due to throttling action in valve, steam pressure drop occurs. Hence steam pressure at entry to turbine is less than the boiler pressure. (iii) Losses due to friction in nozzle-Friction occurs both in nozzle and turbine blades. In nozzle, nozzle efficiency is considered, whereas in turbines, blade velocity coefficient is taken into account. This loss is about 10% (iv) Loss due to leakage-The leakage occurs between the shaft, bearings and stationary diaphragms carrying the nozzles in case of impulse turbines. In reaction turbine the leakage occurs at blade tips. This is about 1-2%. (v) Loss due to mechanical friction-This occurs in bearings and may be reduced by lubrication (vi) Loss due to wetness of steam-In multistage turbine, condensation occurs at last stage ,so in dragging water particles with steam, some KE of stem is lost (vii) Radiation loss-As turbines are heavily insulated to reduce the heat loss to surroundings by radiation and so these losses are negligible 	1 Mark for each point (any 4)
Q.5. Attempt any <u>TWO</u> of the following:	16 Marks
a) Describe any two sources of air leak in surface condenser. Also describe effect of air leak on latent heat of steam and cooling water requirements.	
Sol. ✓ The main sources of air leakage found in condenser are given below:	02 marks
1) There is leakage of air from atmosphere at the joint of the parts which are internally under a pressure less than atmospheric pressure	
under a pressure less than atmospheric pressure.2) Air is also accompanied with steam from the boiler into which it enters dissolved in	

	3) In	ed water. jet condensers, a little ts of Air Leakage in C	quantity of air accompanies the	injection water.	02 mark
		_			
	1) The performance of condenser is affected by air leakage:				
	2) Th	he increased amount of	air in the condenser, the conde	enser pressure or back pressure	
	is	increased; this reduces	the useful work done in the prin	ne mover.	
	3) Pr	resence of air also lowe	rs the partial pressure of steam	which decreases the saturation	
	te	mperature of steam and	hence evaporation enthalpy of	steam increases therefore more	
	an	nount of cooling water	required in the condenser.		
b)	(i) Loo (ii) Cor	cation of fan rosion of blades ciency	nd forced draft cooling tow		
Sol.					01marl
	Sr. No. i.	Particular Location of fan	Forced Draft The fan is located at the base	Induced Draft Mounted at the top of the	each
	1.	Location of fun	of the tower.	tower.	
	ii.	Corrosion of blades	As it handles dry air, problem of fan blade erosion is avoided.	As it handles wet air, proble of fan blade erosion is not avoided.	
	iii.	Efficiency	It is more efficient.	It is not efficient.	
	iv.	Fan size	The fan size is limited to 4 meters.	The fan size of 20 m in diameter can be used of fan.	
c) Sol.	much en 0.8. Data: Emissive	power of black body= 1 power of non black body	when it is not perfectly blac E _b =150 W/m ²	energy by radiation. How k and have emissivity of	
	There for	$ε = E/E_b$ E = 0.8 X 150 $= 120 W/m^2$	t it will radiate 120 W/m ² energ	γ.	
d)	An engin work. W other kin	e is supplied with 4 Which kind of perpetu Id of perpetual mac	kW of heat energy. It is for al machine it is? Which lay	und that it produce 4 kW of	
		gine which violates Kel	vin plank statement of the second hine of the second kind (PMM-1	•	02 mark

	Hence steady flow equation can be expressed as:	
	Internal Energy at 1 + Potential Energy at 1 + Kinetic Energy at 1 + Flow work at 1 + Heat supplied = Internal Energy at 2 + Potential Energy at 2 + Kinetic Energy at 2 + Flow work at 2 + Work done	02 marks
	i.e. Hence the steady flow energy equation is,	
	$h_1 + \frac{c_1^2}{2} + Z_1g + Q = h_2 + \frac{c_2^2}{2} + Z_2g + W$	
	Where,	
	$h_1 \& h_2 = \text{Enthalpy at inlet and outlet in} \frac{J}{Kg}$	02 marks
	$C_1 \& C_2 =$ velocity at inlet and out of fluid $\frac{m}{s}$	
	Z_1 and Z_2 = height of inlet & outlet above datum m	
	Q = heat supplied perJoule	
	W = work done by 1 kg of fluid Joule	
	PV = Flow work N-m or Joule	
f)	An ideal gas is heated at constant volume and then expanded isothermally. Show processes on P-V & T-S diagrams.	
Sol.	P T	02 mark P-V
	1^2	02 mark T-S
	1^{3} 1^{3}	5
	Figure: Constant volume and isothermal process	
	Process 1-2 : Constant volume process Process 2-3 : Constant temperature process (Isothermal process)	

	Lamont boilers generates 45 to 50 tones steam per hour at 130 bar with 500° C.	
c)	State necessity of super heater in steam boilers. State advantages of economizer. (two each)	
Sol.	 Necessity of super heater in steam boilers: 1. The efficiency of the boiler is increase with the use of superheated steam. 2. It eliminates the erosion of the turbine blades. 3. It reduces specific steam consumption of engine and turbine. 	02 marks
	 Advantages of economiser: Saving of fuel. Dissolved gases as air and CO₂ are removed by preheating the feed water; so reducing corrosion and pitting. There will be less temp. strain in the boiler plates as the feed water enters the boiler at a higher temp. Circulation of the water is very well maintained as quick evaporation is possible because of hot feed water. This unit improves the overall efficiency of the boiler by reducing the fuel 	02 mark
	consumption.	
d)	Describe velocity compounding with neat sketch.	
Sol.		Figure
	Steam in Exit velocity Exit velocity N = Nozzle MB = Moving Blade	02 marl for explana on
	FB = Fixed Blade	
	Figure: Velocity Compounding ii) Velocity Compounding:	
	✓ In velocity compounding arrangement of blades and nozzles are made as below;	
	N-M-F-M Where;	

		\checkmark Steam expanded through nozzle from boiler to condenser pressure.	
		\checkmark K.E. increases of the steam increases due to increasing velocity.	
		\checkmark Fixed blades redirect the steam flow without altering its velocity.	
		\checkmark The changes in pressure and velocity are shown in figure.	
		\checkmark This method has advantage that the initial cost is low so its efficiency is low.	
	e)		
	Sol.	ExplainDalton'slaw in respect to steam condensers.It states that' "The pressure exerted by mixture of air and steam is equal to sum of partial	
	501.	pressures, which each constitute would exert, if it occupies the same volume".	
			Statement
		Air + Steam = Air + Steam	2 marks Mathmati cal
			expressio
		Figure: Dalton's law of partial pressure	n 2 marks
		Mathematically,	2 marks
		$P_c = P_a + P_s$	
		Where;	
		$P_c =$ Pressure in condenser containing mixture of air and steam	
		$P_a = Partial pressure of air$	
		P_s = Partial pressure of steam	
	f)	Define heat exchanger. Classify heat exchangers based on geometry, direction of fluids, method of heat exchange.	
Sol	•	1. A heat exchanger is a device, which transfers thermal energy between two fluids at	Definition
		different temperatures.	1 Mark
		2. In most common engineering applications, both fluids are in motion and the main mode	
		of transferring heat is convection. Heat exchanger can be classified based on:	
		1. According to the geometry:	
		i. Tubular	
		ii. Plate	
		iii. Plate fin	
		iv. Tube fin	Classifica
		2. According to the direction of fluid:	tion 3 Marks
		i. Parallel flow	5 WIAI K5
1		ii Counton flow	
		ii. Counter flow	
		iii. Cross flow	
		iii. Cross flow3.According to the method of heat exchange:	
		iii. Cross flow	

