

WINTER- 2019 Examinations Model Answer

Page 1 of 29

Important suggestions to examiners:

Subject Code: 17506

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1 A)	Attempt any THREE of the following :	12 Marks			
i)	What is the energy conservation? List its benefits.				
Ans:	s: Energy conservation: (2 Mark				
	Reduction in the amount of energy consumed in a process or system, or by an				
	organization or society, through economy, elimination of waste, and rational use is				
	referred as energy conservation.				
	OR It is defined as reducing growth of energy consumption by avoiding unneces				
	usages of energy by applying the energy conservation techniques.				
	Benefits of energy conservation: (Any two ben				
	2. Energy Conservation Products Have a Longer Life Span.				
	4. helps us Being Safer and Have Better Health.5. Saves Natural fuel.				
L					

WINTER- 2019 Examinations <u>Model Answer</u>

Page 2 of 29

	6 It reduces load shedding		
	7 It reduces energy demand		
ii)	State and explain following lighting terms : (1) CRI (2) ILER (3) Luminous flux (4) Luminaire		
Ans:	1) CRI (Colour Rendering Index):(1 Mark)		
	The CRI is the scale to quantify the ability of light source to import colour of objects		
	with reference to standard colour or natural colour.		
	OR		
	It indicates true colour of the object ,that count is known as CRI		
	2) ILER (Installed load efficiency Ratio) :- (1 Mark)		
	The installed load efficiency if the ratio of the average maintained illuminance		
	(illumination) provided on the horizontal working plane per circuit wattage to the target		
	illuminance on horizontal working plane.		
	$ILER = \frac{Actual Lux/W/m^2}{Target Lux/W/m^2}$		
	3) Luminous flux :- (1 Mark)		
	The luminous flux is the total energy radiated by the light source in all direction.		
	4) Luminaire: (1 Mark)		
	It is a device that distributes or transmits light emitted by one or more lamps. It		
	includes all parts necessary for fixing and protecting the lamps, circuit's auxiliaries for		
	connecting to supply. It works based on principle of reflection, absorption, transmission		

WINTER– 2019 Examinations Model Answer

Page 3 of 29

WINTER- 2019 Examinations Model Answer

Page 4 of 29

9) Use quality anti-friction bearings & lubricants,

10) Use effective methods of cooling.

OR

Power quality is defined by the closeness of the following to specified values:

1) Voltage :

Subject Code: 17506

- 2) Frequency (voltage & frequency should be within the tolerance limit without harmonics)
- 1) Voltage: Maintaining the voltage at the rated value for motors results in the properly expected torque speed characteristics available to drive the load. Lower voltage leads to excessive current drawn due to which the line losses increase, machine copper losses increase, line voltage drops increase. Even if voltage is above required value higher flux density results in motors that leads to higher iron losses. These lead to decrease in efficiency. Hence proper voltage has to be maintained.
- 2) **Frequency:** It governs the speed related losses and iron losses. If its value is more than rated these losses increase as speed is directly proportional to the frequency the speed dependent friction & windage losses increase that will decrease the efficiency. Lower value of frequency leads to lower speed that affects the output power. Hence frequency has to be maintained at rated value.
- 3) When the supply waveform is purely sinusoidal the harmonics are absent which means no iron & copper losses due to harmonic voltage & currents. Also the harmonics even if very small lead to production of unwanted harmonic torques and over heating in motors which need to be overcome & this requires energy which is wasteful. Hence the supply voltage must be as near as possible to sine wave in case of AC motors.

State any four advantages of VFDs.		
: Following are the advantages of VFDs (variable frequency drive):		
(Any Four advantages expected: 1 Mark each)		
1) Energy saving.		
2) Better process control.		
3) Cost saving.		

	Sect	WINTER- 2019 Examinations	
	Subject Code: 17506	Model Answer	Page 5 of 29
	4) Less maintenance co	ost.	
	5) Large life for bearin	g & motors.	
	6) Improved power qua	ality.	
	7) Smooth starting.		
	8) Improved power fac		
	9) Reduced M.D. Char		
	10) Increases efficiency 11)		
Q.1 B)	Attempt any ONE of the f	ollowing :	06 Marks
$\frac{\sqrt{1}}{i}$	1	wing on induction motors: (1) Voltag	
,	distortion		
Ans	i) Effect of voltage unba	alance:	(3 Mark)
	For three phase	motors this leads to unequal currents in the	he three phase windings that
	result in unbalance in th	ne fields produced due to which negative	phase sequence currents are
	produced that cause op	positely rotating magnetic field to the nor	mal one, leading to overheating
	in rotor. Over voltage p	roduces excessive amount of current whi	ch increases I ² R losses and
	motor efficiency reduce	es.	
	ii) Effect of harmonic di	stortion:	(3 Mark)
	Due to disto	rtion of the main frequency waveform by	harmonics produced due to
	solid state devices, elec	tromagnetic devices, arcing devices the h	high frequency harmonics lead to
	increased copper losses	and iron losses that results in over heating	ng of motors (due to the
	harmonic voltages and	resulting currents thereon). This leads to	motor failures, lower life and
	improper torque speed	characteristics.	
ii)	Explain with the flow cha	rt energy audit procedures.	
Ans:	Detailed energy audit proce		figure

WINTER- 2019 Examinations Model Answer

Page 6 of 29

- A) **Start up meeting**: For this programmer, we proceed with this meeting. If then continue us until implementation of energy saving measures.
- B) **Analysis of energy used**: Identify where energy used & it shows on which area should be concentrate.
- C) Collecting basic data: At site load, some of the following important points:

1.Operating hours 2.Duty cycle 3.Actual power consume

- D) Observation of actual field: After collecting data, we start actual field work. It means we have find out process where energy saving can be done. Always apply the 80 by 20 rule. It means concentrate on opportunities that require 20% input & givens 80% of the saving.
- E) **Cost benefit analysis of the data:** The energy conservation opportunities analysis should be in terms of cost of carrying out that project v/s the benefit that can be earned.
- F) **Reporting:** We have to submit the detail report. Then we have to take sanction of that report from final Authority.
- G) Action plan: In this all the measure steps must be included in the action plan for the proper implementation.

OR

1. Collect information about the plan:

In this information, the measured energy used, raw material required & components required for the plant are considered.

2. Collect production process:

In this process, the design the flowchart of production process, the schedule of operation & its time frame is also considered.

3. Energy and utility system:

In this step, load variation in pumps, fans & compressors are considered, the analysis of energy loss and measurement of insulation level is also considered.

4. Bridge description of each utility:

In this step, the electricity the steam, water, cooling water an compressed air is to be considered.

5. Detailed process flow diagram:

In this step the flow chart, the flow rate & boiler efficiency is to be considered.

WINTER- 2019 Examinations Model Answer

Page 7 of 29

6. Energy efficiency in utility & process system:

In this step, consider the following things i) specific energy consumption ii) furnace iii) DG set performance analysis iv) lighting system.

7. Energy conservation option & recommendation:

The energy conservation & recommendation of better energy source is to be considered.

OR (Any Six point expected: 1 Mark each)

- 1) Depending on the nature and complexity of the organization, a comprehensive audit can take from several weeks to several months to complete.
- Detail studies to establish and investigate energy & materials balances for specific organization departments of process equipment are carried out.
- Whenever possible checks of organization operations are carried out over extended periods of time at nights and at weekends.
- 4) The audit report will include a description of energy inputs and product outputs by major departments & will evaluate the efficiency of each step of the manufacturing process.
- 5) The improve this efficiency will be listed and at least a preliminary assessments of the cost of the improvement will be made to indicate the expected payback on any capital investment needed.
- 6) The audit report should conclude with specific recommendations for detailed engineering studies & feasibility analysis which must be performed to justify the implementation of those conservation measures that require investments.

OR

Methods of Improving Power Quality:

WINTER- 2019 Examinations <u>Model Answer</u>

Page 8 of 29

	1) By applying rated input voltage.					
	2) By maintaining rated frequency of input voltage.					
	3) By maintaining perfect sinusoidal wave shape of input voltage.					
	1) By Applying Rated Input Voltage:					
	Applying and maintaining the voltage at the rated value for motors results in the properly expected					
	torque speed characteristics available to drive the load. Lower voltage leads to excessive current					
	drawn due to which the line losses increase, machine copper losses increase, line voltage drops					
	increase, line voltage drop increase. Even if voltage is above required value higher flux density					
	results in motors that leads to higher iron losses. These lead to decrease in efficiency. Hence					
	proper voltage has to be maintained.					
	2) By Maintaining Rated Frequency of Input Voltage:					
	It governs speed related losses and iron losses. If its value is more than rated then these losses					
	increases as speed is directly proportional to the frequency also speed dependent friction &					
	windage losses increase that will decrease the efficiency. Lower value of frequency leads to lower					
	speed that affects the output power. Hence frequency has to be maintained at rated value.					
	3)By maintaining perfect sinusoidal wave shape of input voltage:					
	When the supply voltage waveform is purely sinusoidal the harmonics are absent which means no					
	iron & copper losses due to harmonic voltages & currents. The harmonics even if very small, leads					
	the production of unwanted harmonic torques which in turn waste of energy. Hence the supply					
	voltage must be as near as possible to of sine wave shape in case of AC induction motors.					
Q.2	Attempt any FOUR of the following : 16 Marks					
a)	State any four energy conservation techniques in lighting systems.					
Ans:	Energy conservation techniques in lighting systems:					
	(Any four point expected: 1 Mark each, Total 4 Mark)					
	1. Use of energy efficient lamp instead of conventional fluorescent lamp.					
	2. Use of CFL in case of incandescent lamp.					
	3. Metal halide lamp can be used to replace mercury and sodium vapour lamp					
	4. By replacing lamp source as per our requirement.					
	5. By using the energy efficient luminaries in our lighting system.					
	6. By using proper light controlled gears.					

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 9 of 29		
	7. The lux level on w	orking plane should be uniform.			
	8. By installing the se	eparate transformer or servo stabilizer.			
	9. By proper cleaning	g, marinating the lighting device.			
	10. Grouping in light	ing device manually or automatic.			
b) Ans:	ř ř	which luminance level is required. The level of any four different Places:			
Alls.	Recommended fummat	(Any Four Luminance level is expected: 1	Mark aach Total / Marks)		
	i) Homes restaurants	general lighting, emergency lighting : 8-1			
		itals, homes : 46-60 lumens/watts	o function watto		
	iii) Hotels, shops, homes, offices : 40-70 lumens/wattsiv) General lighting in factories, garages, car parking, flood lighting :44-57 lumens/watts				
	v) Display, flood lighting, stadium exhibition grounds, construction areas: 18-24				
	lumens/watts				
	,	factories, ware houses, street lighting : 67	-121 lumens/watts		
	vii) Roadways, tunnels, canals, street lighting: 101-175 lumens/watts. OR				
	Hospital :				
	-	ursing 250 to 300 lux station			
		rculation 40 to 60 lux areas			
	3. Patient wards				
		atres - 600 to 1000 lux			
	5. ICU - 500 to 70				
	6. General ward				
	Sports:				
	1. Badminton cou	ırt 750 Lux			
	2. Carom Hall 50				
	3. Table Tennis H				
		urt 500 Lux 7 Special ward 150 to 250 lux	etc.		

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 10 of 29
	Residential purpose:		
	1. Living Room 300	Lux	
	2. Bedroom 200 Lux	ζ	
	3. Kitchen 200 Lux		
	4. Stairs 100 Lux		
	5. Dining Room 150) Lux	
	6. Dressing table 20	0 Lux	
	7. Bathroom mirror	700 Lux	
	8. Study table 300 L	ux	
c)		onservation techniques related to trans	
Ans:		tunities) for energy conservation tech	_
	transformers:		(4 Marks)
		fficient transformer.	. 1.1
	_	s core containing ferromagnetic elemen	-
		as high resistivity than silicon steel. Du	e to this core losses are
		energy wasted.	
	-	ed dry type transformer.	1
	4. Use tapped transformer, usually auto transformer leading to savir		
		ninations of superior CRGO steel in trai	nsformer core to reduce iron
	losses.	1	
	5 I	dic maintenance of transformer.	1 1
	_	ity low resistance copper conductors to	
	-	ting voltage and frequency at the rated	values (power quality) so
	that losses are 1		1 1 4 11
	_	ity insulation materials to improve over	rload capacity and decrease
	dielectric leaka	0	1
	10. Use of optimur	n capacity of transformer and parallel c	ombination of transformers.

	Subject Code: 17	WINTER– 2019 Examinations 7506 <u>Model Answer</u>	Page 11 of 29	
d)	How paramet	ters of transmission line affects performance of tra	ansmission lines?	
Ans:	s: Following parameters of transmission line affects performance of transmission lines: (Any Four point expected: 1 Mark each, Total 4 Marks)			
		smission line always has, series Resistance, series In tive reactance.	ductive Reactance and shunt	
	2. The res	sistance is dependent upon the material from which	the conductor is made	
	3. The inc	ductance is formed, as the conductor is surrounded	by the magnetic lies of force	
	4. The cap	pacitance of the line is formed as the conductor is ca	arrying the current acts as a	
	capacit	or with the earth which is always at lower potentia	l than the conductor and the	
	air betv	ween them forms a dielectric medium.		
	5. Thus, tl	he performance of transmission lines is dependent	upon these three line	
	constar	nts. For instance, the voltage drop in the line dependent	ds upon the values of the	
	above t	three line constants. Similarly, the resistance of the	transmission line conductors	
	is the n	nost important cause of power loss in the line and c	letermines the transmission	
	efficien	ncy.		
	6. Due to	the power system parameters voltage regulation di	iffers.	
	7. Ferrant	ti Effect at light load is possible due to the system p	arameters.	
e)		te maintenance program is followed for lighting s		
Ans:	Following poin	nt adequate maintenance program for energy conserv	vation in lighting system: It expected: 1 Mark each)	
	≻ Illumina	ation level reduces due to accumulation of dirt on lamps	• • • •	
	➢ By carry	ying periodic survey & deciding/carrying the maintenance	ce i.e. cleaning, dusting of	
	lamps	s and luminaries will improve the light output / luminanc	e.	
	≻ Group	relamping: In this methods the all lamps are changed in	the group whenever they are in	
	use &	attend 80% of there life & start decreases there illuminate	ation efficiency. It is the	
	preve	ntive maintenance.		
	> Spot rel	lamping: It is the failure approach in which the lamps an	re changed immediately after	
		failure.		
	≻ As part	of maintenance programme, periodic surveys of installat	tion, lightning system with	

	Subject Co	de: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 12 of 29	
		respect lamp position			
	≻ Pr	ke advantage of energy conservation			
	opportunities as user requirements changes. ➤ Use energy saving fluorescent lamps/LED lamps without disturbing the CRI.				
	➤ Use the recommended optimal level of illumination levels at different places.				
			load using proper switches by funct	-	
			per the requirements of the particul	•	
f)	What is	the difference betw	veen Energy efficient motors an	d Standard motors?	
Ans:			(Any Four Point expec	ted: 1 Mark each, Total 4 Marks)	
	S.No	Particulars	Energy efficient motors	Standard motors	
	1	Material used	They are manufactured with higher quality conducting, electromagnetic & insulating	They are manufactured with lower quality conducting, electromagnetic & insulating	
			material & techniques	material & techniques	
	2	Losses	They usually have higher service factors & bearing lives, less waste heat output all of which increase reliability, Less losses	High losses	
	3	Starting torque	Good optimum value with soft starter	Depends on starting method	
	4	Speed	Smooth speed over a required range & less vibrations	Speed may not be so smooth, jerks, vibrations may be involved	
	5	Maintenance	Negligible maintenance, longer warranties, low failure rates	More maintenance, less warranty, High failure rates	
	6	Operating temperature	Can withstand high temperature without any problem	At high temperature some problems may arise in the operation	
	7	Noise	Noise and vibration level is less	Noise is More	
	8	Cost	More	Less	
	9	Effect of Voltage fluctuations	Less	More	

WINTER- 2019 Examinations <u>Model Answer</u>

Page 13 of 29

	10	Efficiency	More efficient	Less efficient
	11	Core length	More	Less
	12	Power factor	High	Less
	13	Air Gap	Optimum	More
Q. 3		any FOUR of the	<u> </u>	16 Marks
a) Ans:				y conservation in induction motors. ervation in induction motors: (4 Marks)
1110.		•	0	tion of LT motors. Load survey of LT
	moto	0	ip methodically to identif	
			1 5	lecting representative LT motor drives
	i) Samp	-	2	s, the criteria considered are:
	⊳ T	-		
	Utilization factor i.e., hours of operation with preference given to continuously			
	operated drive motors.			
	Sample representative basis, where one drive motor analysis can be reasoned as			
		-		ling Tower Fans, Air Washer Units, etc.
		Conservation pot	ential basis, where drive	motors with inefficient capacity controls
	0	n the machine si	de, fluctuating load drive	e systems, etc., are looked into
	ii) Meas	surements:		
		Studies of	n selected LT motors invo	olve measurement of electrical load
		parameters nam	ely volts, amperes, powe	er factor, kW drawn.
		Observatio	ons on machine side para	meters such as speed, load, pressure,
		temperature, etc	c., (as relevant) are also ta	ken. Availability of online instruments for
		routine measure	ements, availability of tail	l-end capacitors for PF correction, energy
		meters for moni	toring is also looked into	for each case.
	iii) Ana	lysis		
		Analysis of ol	oservations on representa	tive LT motors and connected drives is
	carried out towards following outputs:			

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 14 of 29
	➢ Motor lo.	ad on kW basis and estimated energy co	insumption.
	Scope for	r improving monitoring systems to enab	le sustenance of a regular
	inhouse 1	Energy Audit function.	
	Scope are	eas for energy conservation with related	cost benefits and source
	informat	ion.	
	The observations are t	to indicate:	
	% loading on	kW, % voltage unbalance if any, voltage	, current, frequency, power
	factor, machir	ne side conditions like load / unload con	dition, pressure, flow,
	temperature, o	damper / throttle operation, whether it i	is a rewound motor, idle
	operations, m	etering provisions, etc.	
	The findings / recomm	nendations may include:	
	 Identified motor 	ors with less than 50 $\%$ loading, 50 – 75 $\%$	6 loading, 75 – 100 % loading,
	over 100 % load	ling.	
	 Identified motor 	ors with low voltage / power factor / vo	ltage imbalance for needed
	improvement m	neasures.	
	 Identified motor 	ors with machine side losses / inefficience	cies like idle operations,
	throttling / dan	nper operations for avenues like automa	tic controls interlocks,
	variable speed o	drives, etc.	
	Motor load	survey is aimed not only as a measure to	o identify motor efficiency
	areas but equally impo	ortantly, as a means to check combined e	efficiency of the motor, driven
	machine and controlle	r if any. The margins in motor efficiency	may be less than 10 % of
	consumption often, bu	t the load survey would help to bring ou	ut savings in driven machines
	/ systems, which can §	give 30 – 40 % energy savings.	
b)		former is improved by epoxy resin cast	
Ans:	Due to following point	efficiency of transformer is improved l	by epoxy resin cast material: point expected: 1 Mark each)
	1. Core used is of CR	GO M4-M3 circular size therefore minimum	• • · · · · · · · · · · · · · · · · · ·
	core losses will be	less.	

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 15 of 29	
	2. Winding consis	t of flexible rope of copper instead of rectangular st	rips or rod. Therefore	
	current carry capacity is more and better cooling effect.			
	3. Insulation consists of high quality epoxy resin which is capable to withstanding high		withstanding high	
	temperature and also provides minimum clearance as per voltage requirement.			
	4. As the transform	ner is fully encapsulated, routine maintenances is le	SS.	
	5. As cooling oil is absent the total weight of transformer is less.			
	6. Due to less wei	ght loading & unloading of the transformer is easy.		
	7. In the absence of	of oil there is no need of testing the dielectric streng	th of oil or no filtration of	
	oil.			
c)	Explain how energy mode.	conservation can be achieved in induction me	otors by operating in star	
Ans:	Energy conservation	can be achieved in induction motors by oper	ating in star mode:	
			(4 Marks)	
	i) Lesser than 30% load means torque required by load is less than 30%. Hence current			
	requirement is reduced.			
	ii) When connected in star, the phase voltage reduces to $(1/\sqrt{3})$ times that in delta mode.			
	As the torque generated by motor is directly proportional to the (applied voltage per			
	phase) ² the torq	ue produced falls to 1/3 compared to delta mod	de.	
	iii) Due to decrease	d phase voltage, the iron losses decrease to nea	rly 1/3, as total iron	
	losses are propo	rtional to (applied voltage per phase) ² before sa	aturation.	
	iv) Due to reductio	n in phase voltage the current drawn in the line	es also reduces leading to	
	lower copper los	sses in motor and decrease line losses.		
d)	Differentiate betwee	en epoxy resin cast and encapsulated dry type	transformer.	
Ans:	1) Epoxy Resin Cast	Dry Type Transformer:	(2 Marks)	
	Cast resin di	ry type transformer (CRT) is used in the high m	oisture prone areas. It is	
	because of it	s primary and secondary windings are encapsu	lated with epoxy resin.	
	This encaps	alation helps to prevent moisture to penetrate to	o affect the winding	
	material.	^	Č	
		otection is achieved by this cast resin encapsula	ation so that the	
	1 1	5 1		

Subject Cod	e: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 16 of 29
tı	ansformer can wo	rk without disruption in highly mois	sture prone area. Thus this
tı	ansformer is non l	hygroscopic.	
≻ T	his type of transfo	rmer is available in ratings of 25 KVA	A to 12,500 KVA with
iı	nsulation class of F	f (90 C Temp. Rise).	
This	type of transform	er has some featured advantages. T	hey are-
	1. Beater over lo	oad capacity.	
	2. Low partial d	lischarge along with low loss. Hence	efficiency is very good.
	3. As it is with r	non inflammable winding insulation,	, it offers zero risk to fire
	hazard. So it	is suitable for indoor installation.	
	4. Can be filed o	outdoor in IP 45 enclosure.	
	5. And off cours	se non hygroscopic.	
2) Encaps	ulated dry type tr	ransformer/Vacuum Pressure Impre	egnated Transformer (VPI): <mark>(2 Marks)</mark>
> Th	is type of transform	ransformer/Vacuum Pressure Impre	(2 Marks)
> Th wit	is type of transform ndings.	ner is made with minimum flammab	(2 Marks) ble material as insulation of
 Th win Th 	is type of transform ndings. e windings of this	ner is made with minimum flammab transformer are made in foil or strip	(2 Marks) ble material as insulation of in a continuous layer. But for
 Th win Th hig 	is type of transform ndings. e windings of this ther voltages, the v	ner is made with minimum flammab transformer are made in foil or strip vinding is made of disks that are con	(2 Marks) ble material as insulation of in a continuous layer. But for
 Th win Th hig per 	is type of transform ndings. e windings of this ther voltages, the v power rating with	ner is made with minimum flammab transformer are made in foil or strip vinding is made of disks that are con h respect to voltage level.	(2 Marks) ble material as insulation of in a continuous layer. But for unected in series or parallel as
 The wind the wind the	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the	mer is made with minimum flammab transformer are made in foil or strip vinding is made of disks that are con h respect to voltage level. winding is void free impregnation th	(2 Marks) ble material as insulation of in a continuous layer. But for unected in series or parallel as hat is made with class H
 Th win Th hig per Th point 	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p	mer is made with minimum flammab transformer are made in foil or strip vinding is made of disks that are con h respect to voltage level. winding is void free impregnation th primary and secondary winding with	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as that is made with class H
 The with with with with with with with with	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p acuum protective	mer is made with minimum flammab transformer are made in foil or strip vinding is made of disks that are con h respect to voltage level. winding is void free impregnation th	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as that is made with class H
 The wind wind wind wind wind wind wind wind	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p acuum protective moisture.	ner is made with minimum flammab transformer are made in foil or strip winding is made of disks that are con h respect to voltage level. winding is void free impregnation th primary and secondary winding with box. Moisture Ingress Protection is h	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as hat is made with class H n core are laced safely within high and it never gets affected
 The wind wind wind wind wind wind wind wind	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p acuum protective moisture. is type of transform	ner is made with minimum flammab transformer are made in foil or strip winding is made of disks that are con h respect to voltage level. winding is void free impregnation th primary and secondary winding with box. Moisture Ingress Protection is h	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as hat is made with class H n core are laced safely within high and it never gets affected
 The wind wind wind wind wind wind wind wind	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p acuum protective moisture. is type of transform 55 C) and H(180 C	mer is made with minimum flammab transformer are made in foil or strip winding is made of disks that are con h respect to voltage level. winding is void free impregnation th primary and secondary winding with box. Moisture Ingress Protection is h mer is available from 5KVA to 30MV. C). It's with Protection up to IP56.	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as that is made with class H in core are laced safely within high and it never gets affected A with insulation grade
 The win The win The main 	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p acuum protective moisture. is type of transform 55 C) and H(180 C advantages of dry	mer is made with minimum flammab transformer are made in foil or strip winding is made of disks that are con h respect to voltage level. winding is void free impregnation th orimary and secondary winding with box. Moisture Ingress Protection is h mer is available from 5KVA to 30MV. C). It's with Protection up to IP56. y type transformer are given below.	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as that is made with class H in core are laced safely within high and it never gets affected A with insulation grade
 The wind wind wind wind wind wind wind wind	is type of transform ndings. e windings of this ther voltages, the v power rating with e insulation of the lyester resin. The p acuum protective moisture. is type of transform 55 C) and H(180 C advantages of dry Safety for peopl	mer is made with minimum flammab transformer are made in foil or strip winding is made of disks that are con h respect to voltage level. winding is void free impregnation th orimary and secondary winding with box. Moisture Ingress Protection is h mer is available from 5KVA to 30MV. C). It's with Protection up to IP56. y type transformer are given below.	(2 Marks) ole material as insulation of in a continuous layer. But for mected in series or parallel as that is made with class H in core are laced safely within high and it never gets affected A with insulation grade

WINTER-2019 Examinations Model Answer

	Subject Co	ode: 17506	Model Answer	Page 17 of 29
	3	. Easy insta	Illation.	
	4	. Side clear	ance is less.	
	5	. Environm	nentally friendly.	
	6	. Excellent	capacity to support overloads.	
	7	. Reduced o	cost on civil installation works and fire protec	ction systems.
	8	. Excellent	performance in case of seismic events.	
	9	. No fire ha	azard.	
	1	0. Excellent	resistance to short circuit currents.	
	1	1. Long lasti	ing due to low thermal and dielectric heating	•
	1	2. Suited for	damp and contaminated areas.	
e)	-	wer factor and tion system?	d load factor contributes to technical losses	in transmission and
Ans:			es technical losses in T & D system following r	eason:
			(Any four point expec	ted: 1/2 Mark each)
	1. T	he power factor	r of the system depends upon the load.	
	2. T	he quality of lo	ad may differ. Due to this if the power factor is	poor for the same connected
	10	ad current flow	ving through the line will be increase.	
		o improve the p e used.	power factor the shunt capacitors, phase advance	r, synchronous condenser can
	4. D	ue to this reacti	ive power flow is controlled hence technical loss i	is minimized.
	5. S	ometime s to c	control the reactive power flow the static VAR	compensators & flexible AC
	tr	ansmission syst	tem (FACTS) are to be installed.	
	6. D	ue to this powe	er factor improvements the energy losses in the lin	e will be less.
	Load fa	actor contribut	tes technical losses in T & D system following r	eason:
			(Any four point exp	ected: 1/2 Mark each)
	1. V	When load factor	r will be improved average demand and maximun	n demand will be nearly equal
	a	nd hence load fl	luctuation will be less	
	2. D	ue to less fluctu	uation the load system will work at higher efficien	ntly.

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 18 of 29
	3. Due to improved load	factor there will be incentive in energy	bill.
	4. Due to improved load	factor, reduces maximum demand.	
	5. The load factor will	be economical to big industrial consum	mers because there load factor is
	more.		
Q.4 A)	Attempt any THREE of th	e following :	12 Marks
<u>(i)</u>	State the objectives of tari	0	
Ans:	Following are the objectiv	es of tariff systems:	
		(Any Four objective expected:	: 1 Mark each, Total 4 Marks)
	1. The main objective of ta	ariff is satisfactorily recovery of total ex	penses and reasonable profit.
	2. All expenses like interes	st and depreciation (I &D) i.e. recovery	of cost of producing electrical
	energy at the generating sta	ation.	
	3. Interest & Depreciation	on capital investment made on T&D lin	ıe.
	4. Recovery of cost of operation and maintenance of supply of electrical energy (Energy bill).		
	5. Recovery of fuel cost should be considered while calculating tariff.		
	6. To recover all expenses made on generation, transmission and distribution.		
	7. Total recovery of all tax	tes, duties and other charges should be o	considered
	8. Expenses on premium (installment) paid to insurance company.		
	9. T&D losses also considered while calculating tariff.		
	10. We should also think the	at electricity cannot be stored economic	ally. It has to be consumed as
	soon as it is generated whil	le calculating tariff.	
	11. Additional supply charg	ges (ADC) should be recovered to compo	ensate the costly purchase energy
	(power) from outside to 1	reduce the load shading.	
	12. We should also think ab	oout investment required for future expansion	nsion.
ii)	List the advantages of cog	eneration.	
Ans:	Advantages of co-generati		r point expected: 1 Mark each)
	1) Co-generation can n	neet both power & heat needs.	
	2) Less cost than conve	entional generation.	
	3) Higher system effici	ency as energy wastage is highly rea	duced.

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 19 of 29
	4) Reduction in emiss	sion of pollutants due to reduced fuel co	nsumption.
	5) A much more effic	cient use of primary energy can be achiev	ved than with a separate
	production of electricity & heat.		
	6) In this system, heat generated is by-product in electricity generating process.		
	7) Due to decentraliz	ation of electricity supply it avoids trans	mission losses & makes
	system more flexil	ble.	
iii)	List various types of tari	ff and explain the two part tariff structu	ıre.
ns:	Various types of Tariff:-	(Any Two types	expected: 1 Mark each)
	1) Flat-demand	Tariff	
	2) Simple-dema	nd Tariff or Uniform Tariff	
	3) Flat-rate Tari	ff	
	4) Step-rate Tar	iff	
	5) Block-rate Ta	riff	
	6) Two-part Tari	iff	
	7) Maximum der	mand Tariff	
	8) Three-part Ta	riff	
	9) Power factor 7	Tariff :- a) KVA maximum demand Tariff	
		b) Sliding Scale Tariff or Average F	P.F. Tariff
		c) KW and KVAR Tariff	
	10) TOD (T	ime of Day) Tariff	
	i)Two part Tariff:		(2 Marks)
	> In this type of tar	riff energy bill is split into two parts.	
	ENERGY	BILL= FIXED CHARGE which depends o	n load (KW) +
	RUNNIN	G CHARGE which depends on actual energ	y consume (KWH)

WINTER-2019 Examinations Subject Code: 17506 **Model Answer** Page 20 of 29 Fixed charge which depends on load (KW) which is declared by consumer on test report. \geq There is no separate meter is installed to measure load. \succ Only one energy meter is used to measure number of units consumed. \geq \geq This type of tariff system is used for residential and commercial consumers.(up to 20 KW) \triangleright This type of tariff is not used for industrial consumers. OR To decide these tariff the all types of fixed charges, variable charges & semi fixed charges \triangleright are taken into account. The fixed charges & variable charges are similar to two part tariff but semi fixed charges \geq are depends upon the maximum demand, the power factor of the load etc To decide the semi fixed charges, the load factor, the plant capacity factor, the power factor \geq & diversity factor is also considered. If there are more losses to the consumer side there will be penalty to him & if there are less \geq losses it will be incentive to him in the semi fixed charges. > This tariff system is applicable for large commercial load consumers & industrial consumers. State how tariff is useful in reducing energy bills and energy conservations. iv) Following application tariff is useful in reducing energy bills and energy conservations. Ans: (Any four point expected: 1 Mark each) Rate of payment/ schedule of rates on which charges to be recovered from electricity consumer or Rate at which electrical energy is supplied to consumer is defined as Tariff. Following are some points from which energy bills can be reduced by proper tariff:-1. EC by improving Reducing Fixed /Demand charges : > By reducing unnecessary load, optimization of power consumption by equipments, proper load distribution /scheduling. 2. EC by improving Reduced Energy charges: Switching off unwanted load, shifting load to off-peak period, Using energy efficient lamps and apparatus. 3. EC by improving Prompt payment of bills and taking advantages of incentive / discount.

WINTER-2019 Examinations Model Answer

Subject Code: 17506	Model Answer	Page 21 of 29
> (Prompt pa	yment discount of 1% on monthly energy b	ill excluding taxes & duties).
creating av	vareness of Self discipline among consumers	s for less energy consumption
4. EC by improv	ing Power Factor Incentive:	
including	ing p.f. and maintaining at > 0.95, (incentive energy charges, ASC, FAC & fixed /demand erry 1% improvement in p.f. above 0.95)	
5. EC by improv	ing Load Factor Incentive:	
	above 75% up to 85% will be entitled to a r r every percentage point increase in load fac	
> Consumers	having a load factor above 85% will be ent	itled to a rebate of 1%
> Consumers	will be entitled to a total rebate of 15%.	
	oad curve which helps to observe energy use on and max. demand)	e trend (Monitor power
> Reschedul	ng of loads, storage of products, shedding o	f non-essential loads.
6. EC by Avoidi	ng penalty for exceeding contract deman	d:
appropriate	gh tension consumer exceeds his contract de demand charges for demand actually record % of the prevailing demand charges for the	ded and will be charged at the
Re calculat demand.	e and estimate existing connected load and a	ssuming proper DF, decide max.
7. EC by improv	ing Reactive power compensation:	
➢ Some utilit	es charge for reactive power consumption.	
➢ By providin	g capacitor bank and maintaining optimum	p.f.(also reduces max. demand)
	OR	
1. Energy Bill is de	ecided by following points also :	
Load factor of		
Maximum der	nand of the consumer	

WINTER-2019 Examinations **Model Answer**

	Subject Code: 17506	Model Answer	Page 22 of 29
	Power factor of	of the consumer.	
	> TOD tariff sys	stem	
	2. Time of use metering	ng:-	
	\succ In this method	I the day, month & year are divided into tari	ff slots.
	Then apply his periods.	gher tariff rates at peak load periods & low t	ariff rates at off peak load
	Therefore auto	omatic control on use of energy is done by c	ustomer.
	It is customer'	's responsibility to control his own use & pay	y accordingly.
	3. Domestic use mete	r:-	
	Domestic vari	able rate meters normally gives peak & off p	peak tariffs.
	In such install	ation a simple electromechanical time switch	h may be used.
	4. Getting benefit by	improving energy efficiency:-	
	Power factor i	ncentives can be taken by installing power f	actor correcting devices at
	Consumer leve		
		on the monthly energy bill is available to al	l consumer categories if bill are
	Paid within se	even days from issue of the bill.	
Q. 4B)	Attempt any ONE of th	ne following :	06 Marks
i)	Explain contribution of	f following factors in increasing transn	nission and distribution
	.,,	ow transmission voltage (3) Transmiss	6
Ans:	Contribution of follow	ving factors in increasing transmission	and distribution:
	1) Low power factor :		(2 Marks)
	N E		
	For a certai	in real power load low p. f leads to incre	ase in the current in the
		in real power load low p. f leads to incre onducting sections.	ase in the current in the
	different co		ase in the current in the
	different cc As 'I' = I	onducting sections.	
	different cc As 'I' = I ≻ This increas	pnducting sections. P/(V x p.f).	s in the concerned system
	different cc As 'I' = I ≻ This increas	onducting sections. ?/(V x p.f). sed current leads to higher copper losses . Hence losses increase with fall in powe	s in the concerned system
	different co As 'I' = F ➤ This increas conductors. 2) Low transmission	onducting sections. ?/(V x p.f). sed current leads to higher copper losses . Hence losses increase with fall in powe	s in the concerned system or factor. (2 Marks)
	different co As 'I' = H ➤ This increas conductors. 2) Low transmission ➤ Motoring d	onducting sections. ?/(V x p.f). sed current leads to higher copper losses . Hence losses increase with fall in powe voltage:	s in the concerned system or factor. (2 Marks)
	different co As 'I' = F ➤ This increas conductors. 2) Low transmission ➤ Motoring d load as 'I' =	onducting sections. P/(V x p.f). sed current leads to higher copper losses . Hence losses increase with fall in powe voltage: evices supplied with lower voltage drav ^c (o/p)/[η V p.f].	s in the concerned system or factor. (2 Marks) v excess current to handle the
	different co As 'I' = H > This increas conductors. 2) Low transmission > Motoring d load as 'I' = > This excess	onducting sections. P/(V x p.f). sed current leads to higher copper losses . Hence losses increase with fall in powe voltage: evices supplied with lower voltage drav	s in the concerned system or factor. (2 Marks) v excess current to handle the

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 23 of 29
	3) Transmission line v	voltage imbalance:	(2 Marks)
	\succ Due to this	the currents in the different phases will b	be unequal that will lead to
	higher currents	in the neutral and hence increased losses	s especially in the motor
	loads. A 5% imt	palance causes 40 % increase in motor los	sses. Also the negative phase
	sequence currer	nts will be active and create extra losses.	
ii)	A consumer has M.D of paise/Kwh, find overall	1000 KW at load factor 40%. If tariff is cost/ Kwh.	Rs. 100/KW of M.D. plus 20
Ans:	Data Given: M.D. = 100kW, p.f.= 0.8	Lag, L.F.= 40%= 0.4,	
	Tariff is Rs. 100 / kVA o	of MD, and rate p.u. = 20 paise /kWh	
		r: Max. Demand x L.F. x Hrs in years (0.4) x 8760	
	= 3504000	kWh	(2 Marks)
	ii) Annual Bill Charges =	= Annual Max. Demand charges + Annu	al Energy charges
	= R	es. (100 x 1000) + (0.2) x 3504000	
	= Rs. 100000	+ 700800	
	= Rs. 800800)/	(2 Marks)
	iii) Overall cost per unit	= (total bill) / (kWh for the year)	
	= 800	0800/3504000	
	= Rs.	0.2285/kWh	
	= 22.	85 paise/ kWh	(2 Marks)
Q.5	Attempt any FOUR of t	he following :	16 Marks
<u></u> a)		ses in transmission and distribution.	
Ans:	Following are the comm	nercial losses in Transmission and Distribu (Any four commercial loss	
	1) Make unaut	horized extension of loads. (Direct Hooking	;)
	, ,	eter reading & recording (faulty meter).	
	3) By passing	the meter. (unmetered supply & unmetered	bills)

	Subject Code: 17:	WINTER- 2019 Examinations506Model Answer	Page 24 of 29
	4) I	mproper testing & calibration of meters.	
	5) S	topping the meters by remote control.	
	6) C	changing the sequence of thermal wiring.	
	7) C	hanging the C.T. ratio.	
	8) I	ntentional burning of meters.	
		OR	
	1) Pov	ver theft (Direct hooking)	
	2)Unn	netered supply	
	3)Met	er in accuracies	
	4)Met	er discrepancies	
	5) Sm	all unmetered loads	
	6) Bill	ing issues	
	7)Low	er collection efficiency	
b)		ntages of soft starters compared to DOL starters.	
Ans:	Advantages (of soft starters compared to DOL starters. (Any Four advantages	s expected: 1 Mark each)
	1) Moto	r starts (without jerk) smoothly.	,
	2) Sever	e spikes of starting currents are eliminated.	
	3) Loss	of energy during starting is minimized to about 40 to 50	%.
	4) Sever	e wear and tear of mechanical parts such as bearing etc.	during starting is eliminated
	leadin	ng to longer life of bearings and other related component	ts.
	5) Very	low mechanical stress.	
	6) As sta	arting currents are highly inductively limiting their mag	nitudes results in improved
	powe	r factor.	
	7) As cu	rrent peaks are controlled the MD is reduced which may	y lead to lower MD billing.
	8) Less	mechanical maintenance.	
	· · · · · · · · · · · · · · · · · · ·	g in operating costs.	
		cement of motor starting duty by reducing the temperat	ure rise in stator windings and
	*	y transformer.	

WINTER– 2019 Examinations Model Answer

Page 25 of 29

Gas turbine cogeneration systems can produce all or a part of the energy requirement of the site. The energy released at released at height temperature in the exhaust stack be recovered for various heating cooling applications. The typical range of gas turbines varies from a fraction a MW to around 100 MW. Gas turbine cogeneration has probably experienced the most rapid development in the recent years due to the greater availability of natural gas, rapid progress in the technology, significant reduction in installation costs, & better environment performance.

Gas turbine has a low short start up time and provides the flexibility of intermittent operation. Though it has a low heat to power conversion efficiency more heat can be recovered at higher temperatures. If the heat output is less than that required by the user it is possible to have supplementary natural gas firing by mixing additional fuel to the oxygen rich exhaust gas to boost the thermal output more efficiently. Steam generated from the exhaust gas of the gas turbine is passed through a backpressure of extraction condensing steam turbine to generate additional power. The exhaust or the extracted steam from the steam turbine provides the required thermal energy.

OR

WINTER– 2019 Examinations <u>Model Answer</u>

Page 26 of 29

	Fuel Fuel Generator Electrical Topping cycle co-generation system OR OR OR OR or equivalent figure 1) The system employs the natural gas fired turbine which drives a generator to produce electrical power.		
	2) Again the exhaust gas from turbine is passed through heat recovery boiler.		
	3) This exhaust energy is converted to usable heat or steam		
	4) In most of the systems topping cycle, co-generation is widely used, and it is the most popular method of co-generation.		
d)	How efficiency of electric motor is improved by p.f. controller?		
Ans:	Automatic Power factor control:(4 Marks)		
	The pf controller is used to maintain the pf at unity across the lines it is connected.		
	Maintaining the pf at unity leads to reduction in the current through the lines as real power =		
	apparent power x pf. The apparent power decides the MD for which the consumer is billed.		
	➢ For a certain motor the current in the lines will depend on its pf which is lagging. For higher pf		
	near unity maintained at the motor terminals the line currents are minimized leading to lower		
	MD and hence saving in MD charges.		
	➢ Also as the current is minimized line voltage drops and power losses are reduced leading to		
	improvement in the motor power supply system efficiency. The pf controller does not efficiency.		
	 By using the IPFC (Intelligent power factor controller) smooth power factor control is possible. 		
e)	Explain KVAR controller for distribution systems.		
Ans:	kVAR Controller for Distribution System: (4 Marks)		
	The power factor controller is used to maintain the system power factor at unity		
	using capacitor banks across the line. It is controlled through microcontroller and contactor		
	arrangement. Power factor of load is sensed and capacitors are connected / disconnected on		

	WINTER- 2019 ExaminationsSubject Code: 17506Model Answer	Page 27 of 29
	the basis of KVAR demand. Maintaining the p.f. at unity leads to reduce through the lines as Real power = apparent power x pf. The apparent p MD for which the consumer is billed. The supply main terminals are connected to input of kVAR of Power factor is sensed by the CT & PT. As per the requirement the cap operated to achieve the required power factor by microprocessor based In the kVAR controller for distribution system reactive power by using shunt or series capacitors and reactors. In this method reactive compensation is possible.	power decides the ontroller panel. pacitor banks are d relay automatically. r control is obtained
f)		8 8
Ans:	ns: Advantages of centralized control equipment for conserving energy:	(4 Marks)
	1. Centralized control from a computer, smartphone, or tablet:	
	Centralized system management simplifies and streamlines ma	nagement work.
	Everything is viewable on smartphones or tablets, so the work can	be done efficiently
	from anywhere	
	2. Simple maintenance because everything is connected over a minim	ally wired network
	Maintenance is easy and low-cost. Simplify maintenance, incre	ease work efficiency
	3. Visualize energy consumption to encourage conservation	
	Conserve energy: visualize energy consumption in real time to	fully understand
	and curb wasteful consumption	
	4.Enhance security systems and reduce costs with centralized security	control:
	Centralized management of security with Smart AI reduces	s costs. The system
	automatically notifies users of intruders and other risks, enhancing	security and
	reducing personnel costs.	
Q.6	Attempt any FOUR of the following :	16 Marks
a)		
Ans:	 ABC analysis provides a mechanism for identifying different categories 	(2 Marks) ies of
	activities/stocks/items that will require different management and con	
	 "A class inventory" contains items that account for 70% of total value 	
	"B class inventory" contains items that account for 20% of total value	
	-	

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 28 of 29
	"C class inventory"	contains items that account for 10% of	total value.
	ABC analysis is the	material management technique which	helps energy audit process to
	achieve the goal of	energy audit.	
	Use of ABC Analysis:		(2 Marks)
	An energy audit i	is an inspection survey and an analy	sis of energy flows for energy
	conservation in a buildi	ng. It may include a process or syste	em to reduce the amount of
	energy input into the sy	vstem without negatively affecting th	ne output. In commercial and
	industrial real estate,		-
1)			
b) Ans:	State any four advantages Advantages of Energy Au		Point expected: 1 Mark each)
		gy costs in your facility.	1 /
	_	production costs, the competitivene	ss of your company will be
	improved.	production costs, the competitivene	ss of your company will be
	1	lependence on foreign energy source	es.
	4. It helps reduce envir	ronmental damage and pollution.	
	5. It can increase the se	ecurity of your energy supply.	
	6. It can reduce the con	nsumption of natural resources.	
	7. It can reduce damag	ge to the environment associated wit	h the exploitation of resources.
	8. It helps reduce the in	mpact of greenhouse gas emissions.	
	9. It helps you to lowe	r energy bills.	
	10. It enables you to inc	rease the comfort of those in the faci	ility.
	11. It helps you to incre	ase the life span of the equipment in	your facility.
	12. It discovers any una	ccounted consumption that may exi	st at the facility.
<u>`</u>			
c) Ans:	Compare steam and gas ty Steam generation:	pes of generation.	(2 Marks)
		r bine rotate in the currents caused b	
		vater cycle in which water condense	, I ,
	_	m turbines therefore do not come in	
		temperatures between 500 and 650 °	
	often arranged in a rov	w so that configured for high, mediu	m and low pressure they are
	able to optimally conv	ert the respective steam pressure int	o rotational movement.

	Subject Code: 17506	WINTER– 2019 Examinations <u>Model Answer</u>	Page 29 of 29
	Gas generation :		(2 Marks)
	In this ga	s turbine rotate directly in the hot combustion	on gases. With temperatures
	up to 1500 °C, th	ese gases are much hotter than those in stear	m turbines. For this reason
	the blades are co	oled with air that flows out of small opening	gs and creates a "protective
	film" between th	e exhaust gases and the blades. Without coc	bling, the blade material
	would quickly w	'ear out.	
d)	<u> </u>	ndustries suitable for cogeneration.	
Ans:		or co-generation of energy: (Any Valid ind	lustries may please be
	considered)	(Any Fight industries superto	de 1/2 cash Tatale (Marka)
	1. Sugar mil	(Any Eight industries expected	u: 1/2 each, 10tal: 4 Marks)
	2. Rice mills	15	
		nical Industry	
	4. Distillerie	2	
	5. Cement In		
		paper industry	
	-	m Industry	
	8. National	5	
	9. Wineries		
	10. Waste tre	atment plants	
e)		essential part of energy audit". Justify the staten	nent.
Ans:	Justification & State		(4 Marks)
	parameters is essen of various parame values, if measure necessary action w	ents of electrical parameters, Mechanical Par ntial because from measurements we know eters and then they are compared with the s d value are different than the standard or ill be taken accordingly therefore measurer cannot compare the values of parameters.	w the exact/ present values standard or specified specified values then
	After meas better energy conse	urering the electrical parameters better feedl ervation.	back control is possible for