MAHARASHTF (Autonomous) (ISO/IEC - 2700

WINTER – 19EXAMINATION

Subject Name:Digital Technique

Model Answer

Subject Code: 17333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		Answer		Marking
No.	Q. N.				Scheme
Q.1	(A)	Attempt any SIX of the	following:		12Marks
	(a)	Compare analog system	with digital system. (an	y 4 points)	2M
	Ans:	Parameter	Analog systems	Digital systems	2M(1/2 each)
		1. Type of signals processed	Analog signals	Digital signals	
		2. Type of display	Analog meters	Digital displays using LED and LCD.	
		3. Accuracy	Less	More	
		4. Design complexity	Difficult to design	Easier to design	
		5. Memory	No memory	They have Memory	
		6. Storage of information	Not Possible	Possible	
		7. Effect of noise	More	Less	
		8. Versatility	Less	More	
		9. Distortion	More	Less	
	(b)	Perform the following m	ultiplication in binary n	umber system:	2M
		$(15)_{10} \times (8)_{10}$			

			7	1111	$(15)^{*}(x)_{\mu} = (120)_{10}$ $(H11), \times (1000) =$	
Ans:			+1 1 1 (11 11 0	1 × × ×	$(12)_{10} = (128)_{10}$ $(11)_{2} \times (1000)_{1} = \frac{111000}{2}$	2M
(c)	Define f	followi	ng characterist	ics of IC's		2M
	(i) (ii)		agation delay e immunity			
Ans:	(i) Prop	Prop pagatior pagate f s. Noise The gene	agation delay: n delay is the av rom input to ou e immunity: circuit's ability	tput when the to tolerate no	on delay time for the signal to signals change in value. It is expressed oise signals is referred to as noise immunity. It is high level and low level noise margins (expressed	1M each
(d)	Draw lo			table of two	i/p Ex-NOR gate.	2M
Ans:	$Y = \overline{A}\overline{B} + A$ $Y = A \odot B$ TRUTH A 0 0	B H TABI B 0 1	$Y = A \odot B$ 1 0		> Y	1M each
	1	0	0	-		
 (e)				/ /ux and give	its truth table.	2M
Ans:			-1 I	$x \times 1$ TUX $s_1 s_0$	$\begin{array}{c c} Truth table \\ Y & S_1 & S_0 & Y \\ \hline 0 & 0 & I_0 \\ 0 & 1 & I_1 \\ 1 & 0 & I_2 \\ 1 & 1 & I_3 \end{array}$	1M each
(f)	How ma	any fil <u>r</u>	p-flop are requ	ired to constr	ruct following modulus counter	2M

Û

	(i) 56	
	(ii) 83	
	(iii) 99	
	(iv) 10	
Ans:	The Number of flip flops are calculated from the formula: $2 n \ge m$ Where $n=no$ of flip flops	
	and m is the number of states.	
	i) 56= 6	1⁄2 each
	ii) 83 = 7	
	iii) $99 = 7$	
	iv) $10 = 4$	
(g)	List any four applications of A/D converter.	2M
 Ans:	1. In a digital signal processing system, an ADC is required if the input signal is analog. For	Any
	example, a fast video ADC is used in TV tuner cards. 8, 10, 12, or 16 bit analog to digital	four
	controllers are common in microcontrollers.	Applicat
	2. They are also needed in digital storage oscilloscopes.	ions 2M
	3. Analog to digital converters are used in music reproduction technology when done using	
	computers. In such an application, an ADC is needed when an analog recording is used in	
	order to create the PCM data stream that goes onto a CD or a digital music file.	
	4. ADC is used in Cell phones	
	5. Computers use analog-to-digital converters in order to convert signals from analog to digital before they can be interpreted. For example, a modem will convert signals from	
	digital to analog before transmitting them over telephone lines that carry only analog signals.	
	These signals are then converted back into digital form at the receiving end so that the	
	computer can interpret the data in digital format.	
	6. ADC is used in digital voltmeters	
	7. ADC is used in digital oscilloscope	
(h)	Write any four Boolean laws used to reduce Boolean Expression.	2M
Ans:	Boolean laws: $A + 1 = 1$ A + 0 = A	Any 4 Boolean
	$\begin{array}{l} \mathbf{A} + 0 - \mathbf{A} \\ \mathbf{A} \cdot 1 = \mathbf{A} \end{array}$	laws ¹ / ₂
	$\begin{array}{c} A \cdot 1 - A \\ A \cdot 0 = 0 \end{array}$	each
	$A \cdot 0 = 0$ $A + A = A$	each
	A + A = A $A \cdot A = A$	
	$A \cdot A - A$ $A + B = B + A$	
	A+B = B+A $A.B = B.A$	
	A.B = B.A (A + B) + C = A + (B + C)	
	(A B) C = A (B C)	
	A (B + C) = A B + A C $A + (B C) = (A + B) (A + C)$	
	A + (B C) = (A + B) (A + C)	

b)	Attempt any TWO of the following:	8 Marks
(a)	Define the following terms with reference to logic families:	4 M
(a)	(i) Threshold voltage	-111

MAHARASHTF (Autonomous) (ISO/IEC - 2700

	(iii)	Operating s	peed						
			_						
Ans :	(iv) (i) T ref (ii) P It is the (iii) O Speed of theapplic (iv) L <u>Positive</u> the least +5V Log <u>Negative</u> the least p	Logic voltag hreshold volta quired to make ower dissipation ne amount of power This po perating speed Operation: Speation of input a ogic voltage le Logic: A Login positive of the to a, If +5 V repro- ic 0 = 0V Or if Logic: A Login negative of the	ge level ge: Thresho the transist ower dissip Dissipation ower is in m d: eed of a log ind change vel: c 1 level re- two voltage logic 1= +3 ic 1 level r- two voltage	or ON. pated in an n is given b nilliwatts. ic circuit is in the outp epresents a e levels rep gic 1 level 5V, logic 0 epresents a e levels rep	IC. by $P = Vcc$ s determine but of the c a more post resents a l And 0 V 0 = +2V a most negotiesents a	e X Icc ed by the ti circuit. sitive of the logic 0 leve represents gative of the logic 0 leve	me betwee e two volt l. a logic 0 e two volt el.	en age levels while level Logic 1 = age levels while	
	Example	If 0V represent	nts a logic	1 level An	d +5V rep			el Logic $1 = 0V$	
(1.)	-	+5V Or if log l prove De Mo		-	+5V				4M
(D)	State and	1 PI UVE DE IVIO	ngan s me	orems					
		1: It state that t	0		sum is equ	al to produ	ct of its co	omplements.	4141
Ans		-	he, comple	ment of a s $\overline{A+B}$ 1	Ā 1 1	B 1 0	$\overline{A} \cdot \overline{B}$ 1 0	omplements.	-111
Ans		1:It state that t	he, comple	ment of a solution $\overline{A + B}$	Ā 1 1 0	B 1 0 1	\$\vec{A}\$ \cdot \$\vec{B}\$ 1 0 0 0	omplements.	-111
Ans		1:It state that t	he, comple	ment of a s $\overline{A+B}$ 1	Ā 1 1	B 1 0	$\overline{A} \cdot \overline{B}$ 1 0	omplements.	
Ans	Theorem	1:It state that t	he, comple	ment of a s	Ā 1 0 0 0 A +	$\overline{\mathbf{B}}$ 1 0 1 0 $\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	A ⋅ B 1 0		2M each
Ans	Theorem	1:It state that t	he, comple	ment of a s	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B}	$\overline{\mathbf{B}}$ 1 0 1 0 $\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	A ⋅ B 1 0		
Ans	Theorem	1:It state that t	he, comple	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1	$\overline{\mathbf{B}}$ 1 0 1 0 $\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ s equal to su	A ⋅ B 1 0		
Ans	Theorem	1: It state that t A O O I	he, comple	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a	$\overline{\mathbf{A}}$ 1 1 0 0 $\overline{\mathbf{A}}$ \mathbf{F}	$\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ s equal to su $\overline{\overline{\mathbf{A}} + \overline{\mathbf{B}}}$ $\frac{1}{1}$	A ⋅ B 1 0		
Ans	Theorem	1: It state that t A O O I	he, comple $B \\ 0 \\ 1 \\ 0 \\ 1$, the comple	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a \overline{A} 1 1	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1	$\overline{\mathbf{B}}$ 1 0 1 0 $\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ s equal to su	A ⋅ B 1 0		
(b) Ans :	Theorem	1: It state that t A O O I	he, comple $ \begin{array}{c} B\\ 0\\ 1\\ 0\\ 1 \end{array} $, the comple	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a \overline{A} 1 1 0 0 	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1 0 1 0	$\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ s equal to su $\overline{\overline{\mathbf{A}} + \overline{\mathbf{B}}}$ $\frac{1}{1}$	A ⋅ B 1 0		
Ans	Theorem	1: It state that t A O O I	he, comple $ \begin{array}{c} B\\ 0\\ 1\\ 0\\ 1 \end{array} $, the comple $ \begin{array}{c} B\\ \overline{AB}\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a \overline{A} 1 1 0 0 \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} $\overline{A + B}$	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1 0 1 0 $\overline{A} + \overline{B}$	$\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}}$	A ⋅ B 1 0		
Ans	Theorem	1: It state that t A O O I	he, comple $ \begin{array}{c} B\\ 0\\ 1\\ 0\\ 1 \end{array} $, the comple $ \begin{array}{c} B\\ \overline{AB}\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a \overline{A} 1 1 0 0 	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1 0 1 0 $\overline{A} + \overline{B}$	$\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}}$	A ⋅ B 1 0		
Ans	Theorem	1: It state that t A O O I	he, comple $ \begin{array}{c} B\\ 0\\ 1\\ 0\\ 1 \end{array} $, the comple $ \begin{array}{c} B\\ \overline{AB}\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a \overline{A} 1 1 0 0 \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} $\overline{A + B}$	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1 0 1 0 $\overline{A} + \overline{B}$	$\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}}$	A ⋅ B 1 0		
Ans	Theorem	1: It state that t 1: It state that t 0 0 1 1	he, comple $ \begin{array}{c} B\\ 0\\ 1\\ 0\\ 1 \end{array} $, the comple $ \begin{array}{c} B\\ \overline{AB}\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	ment of a s $\overline{A + B}$ 1 0 0 LHS ement of a \overline{A} 1 1 0 0 \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} \overline{A} $\overline{A + B}$	\overline{A} 1 1 0 0 $\overline{A} + $ product is \overline{B} 1 0 1 0 $\overline{A} + \overline{B}$	$\overline{\mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{\mathbf{A}} + \overline{\mathbf{B}}$	A ⋅ B 1 0		

(C)	Add (83) ₁₀ and (34) ₁₀ in BCD.	4M
Ans :	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Conversio n-1M Addition- 1M
	$\frac{11}{1000} + 1000000000000000000000000000000000000$	Final Answer- 2M
2.	Attempt any FOUR of the following:	16 Marks
(a)	Convert (2003.31)10 to hex equivalent.	4M
	Fractional Part (.31*16) = 4.96 MB (0.96*16) =15.36(F) (.36*16) = 5.76 (.76*16) = 12.16(C)	2M fractional part 2M
Ans :	Integer part $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	integer part
(b)	Final answer= $(7D3.4F5C)_{16}$ Implement the following expression by minimizing the variable using Universal gate $Y = A\overline{B} + AB + \overline{A}BC + ABC$	4M

MAHARASHTF (Autonomous) (ISO/IEC - 2700) BOARD OF TECHNICAL EDUCATION :tified)

Ans	ATBC	4M
:	y= AtBc - So take dense	
	Inversion	
	$\Rightarrow \overline{A} \cdot \overline{BC} \qquad \overline{Y} = \frac{1}{2} = \overline{A} + \frac{1}{18} c$	
	and prod Divid	
	The Dome The Be to A. Be	
	C + AC	
	logte dagren ing wondger	
	$= A\overline{B} + AB + \overline{A}BC + ABC$	
	$= A(B + \overline{B}) + BC (A + \overline{A})$	
	= A + BC	
(c)	Simplify using K map and Realize reduced expression using gates $f(A,B,C,D) = \Sigma m$ (1,3,4,5,7,9,11,13,15)	4M
Ans	y = m (12 30 - 5, +1, +1, 11, 10, 15)	Kmap-
:	- 35 35 11° 1°	1M
	- (a) (a) (a) (a) (a)	Pair-1N
	to of the tot 1 to 100	
	A Herry V	Final
	co II fint mit	equation 2M
	to the set	2 1 VI
	CP 10 21 16 10	
	Any Y= D+ ABE	
	Draw master slave- JK flip-flop using NAND gates and explain its working.	4M
(d)	Draw master state off mp nop asing that 2 gates and explain its worming.	
(d) Ans		(2M-
		diagran
Ans		diagran M-
Ans	J (aim) (9: a (853)) = 0,	diagran M- truthtal
Ans		diagran M- truthtal ,1M
Ans		diagran M- truthtal ,1M explaina
Ans		diagran M- truthtal ,1M
Ans	J GLANT GLANT Masfer Slave Slave	diagran M- truthtal ,1M explaina
Ans	The start start JK FF.	diagran M- truthtal ,1M explaina
Ans	$I = \frac{1}{1 + 1} + \frac{1}{1 + 1$	diagram M- truthtab ,1M explaina
Ans	The start start JK FF.	diagram M- truthtab ,1M explaina
Ans	Image: state of the state o	diagram M- truthtab ,1M explaina

/IEC - 2700	(tined)	
	Truth table	
	Master Slave flip flop, the master directly gets the clock pulse, whereas the slave gets the	
	clock pulse through a NOT gate. Hence even if the output of slave is connected to input of	
	master, the output of slave cannot change as it does not get the clock transition.	
	Case I: Clock=x, J=K=0	
	For clock=1 the master is active, slave in active. As J=K=0.Therefore Output of master i.e. Q1 and	
	will not change. Hence the S and R inputs to the slave will remain unchanged.	
	Case II:clock= present , <u>J=K=0</u>	
	This condition has been already discussed in case I.	
	Case III:	
	Clock=1: Master active, slave inactive.	
	Output of themasterbecome Q1=0 and $\overline{Q_1}$ =1. That means S=0 and	
	R=1Clock =0slave active masterinactive	
	Outputs of the slave become Q=0and= $\overline{Q_1}=1$	
	Thus we get a stable output from the MasterSlave.	
	Case VI:	
	Clock =1 master active, slave inactive	
	Outputs of master become Q1=1 and $\overline{Q_1}=0$ i.e. S=1,	
	R=0Clock=0:master inactive slaveactive.	
	Outputs of slave become $Q=1$ and $\overline{Q_1}=0$.	
	Again if clock=1then it can be shown that the outputs of the slave are stabilized to Q=1 and $\overline{Q_1} = 0$	
	Case V:CLK: = \Box , J=1, K=1	
	Clock =1: master will be active, slave inactive.	
	Outputs of master will toggle so S and R also will be inverted. Clock=0:	
	master inactive, slave active	
	• Outputs of the slave willtoggle.	
	These changed outputs are returned back to the master inputs.	
	• But since clock=0,the master is still inactive. So it does not respond to	
	these changed outputs.	
	• This avoids the multiple toggling which leads to the race around	
	condition. Thusthe master slave flip flop will avoid the race	
	aroundcondition.	
(e)	Draw symbol of D flip-flop and write down its truth table	4M
Ans	Preset	(2M-
:		symbol
		2M- truth
	<u> </u>	table)
	Clear	

MAHARASHTI (Autonomous) (ISO/IEC - 2700 BOAR) :tified)

		Truth Table:	clock	Input Dn	Output Q _{n+1}	
			1	0	0	
			1	1	1	
		(Note: Symbol of D	flip flop using any t	riggering m	ethod can be consider.)	
((f)	Convert following e	-	SOP form		4M
		$\mathbf{Y} = (\mathbf{A} + \mathbf{B}\overline{\mathbf{C}}) (\mathbf{B} + \mathbf{A}\mathbf{C})$	()			
A :	Ans :	4 4 70 70	$\frac{S \circ P}{I = (A + B \in) CB +}$ $= AB + A \circ Ac$ $= AB + Ac +$ $AB (e+z) +$ $\frac{AB c + AB \in + A}{2}$ $= AB c + AB \in + AB =$ $= M \circ c + AB =$ $= M \circ c + AB =$	BC + 0 $AC (B+B)$ $BC + ABC + 1$ T T $ABC + 1$	+ (MA)€83) + <u>A B3+ 785</u> - 7883	4 M
Q. 3		Attempt any FOUR	of the following :			16 Marks
a	a)	Design half adder ci	rcuit using NOR ga	ites only.		4M
A :	Ans :	A	Half Adder	→ Sum 0 0 1 1	B Sum Carry 0 0 0 1 1 0 0 1 0 1 0 1	Truth Table-1M Kmap- 1M
			K-mop simplifice For Carry		For Sum	Diagram- 2M
			A B 0 1 0 0 0 1 0 (1)			
			Carry = AB		Sum = A∃ + ⊼B = A⊙B	

c)	State any four applications of DAC.	4M
Ans	Digital Motor Control	4M(1M
:	Computer Printers	each)
	Sound Equipment (e.g. CD/MP3 Players, etc.)	
	Function Generators/Oscilloscopes	
	Digital Audio	
	(Note: Any other applications also can be considered)	
d)	Draw logic diagram of 1:8 demultiplexer. Write its truth table.	4M
Ans		logic
:		diagram
		2M
	V1 Input 1:8	
	V_2 $D_{in} \longrightarrow DEMUX \longrightarrow Y_4$	
		Truth
	Data input Select inputs Outputs D 52 51 50 Y3 Y4 Y4 Y3 Y4 Y4	Table-2N
		14,510 21
	D 0 0 1 0 0 0 0 0 D 0	
	D 0 1 0 0 0 0 0 D 0 0 D 0 1 1 0 0 0 0 D 0 0	
	D 1 0 1 0 0 D 0 0 0 0	
	D 1 1 0 0 D 0 0 0 0 0 0 D 1 1 D 0 0 0 0 0 0 0	
e)	What is race around condition and how it can be avoided? Explain.	4M
Ans	Race around Condition: In a JK flip flop the Race Around condition occurs when J=K=1 i.e.	
:	when the FF is in the toggle mode.	
•	Elimination of Race around Condition	
	Race around condition can be avoided using	Race
	1. Master Slave Flip Flop.	around
	2. Edge Triggered Flip Flop	condition
	Master Slave Flip Flop :	1M
	The Master-Slave Flip-Flop is basically a combination of two JK flip-flops connected	How
	together in a series configuration. Out of these, one acts as the "master" and the other as "	
	slave ".The slave simply follows the master The master is active for 1 clock period and	eliminat
	slave is active for another clock period avoiding the race condition	1M
	Edge Triggered Flip Flop :	Explaina
	In edge triggered JK flip flop, the positive/negative clock pulse is present only for a very	ion-2M
	short time. Hence by the time the changed outputs return back to the inputs of NAND gates,	
	the clock pulse has died down to zero. Hence the multiple toggling cannot take place. Thus	
	the edge triggering avoids the race around condition.	

	• For construc is number of	ting a MOD-11 counter we require states and N is number of flip		
(b)	Compare R-2R	and Weighted Register DAC	•	4M
Ans	SNo	Weighted Resistor DAC	R-2R Ladder Type DAC	Any 4
:	1 2	Simple Construction Wide range of resistors are required	Slightly Complicated Resistors pf two values are required Two resistors per bit	point-1N each
	3	One resistor per bit Not easy to expand for more	Easy to expand for more number of	
(c)	3 4	Not easy to expand for more number of bits	Easy to expand for more number of bits	4M
	3 4	Not easy to expand for more number of bits etween Asynchronous and Sy	Easy to expand for more number of bits	4M
(c) Ans :	3 4 Differentiate be	Not easy to expand for more number of bits etween Asynchronous and Sy Asynchronous Counter	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are	Any 4
Ans	3 4 Differentiate be	Not easy to expand for more number of bits etween Asynchronous and Sy No. In an Asynchronous Counter the output of one Flip Flop acts as the clock Input of	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are	Any 4 point-1N
Ans	3 4 Differentiate be	Not easy to expand for more number of bits etween Asynchronous and Sy No. Asynchronous Counter No. In an Asynchronous Counter the output of one Flip Flop acts as the clock Input of the next Flip Flop. 2. Speed is Low 3. Only J K or T Flip Flop can be used to construct Asynchronous Counter	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are Connected to a common clock signal. Speed is High Synchronous Counter can be designed using JK,RS,T and D FlipFlop.	Any 4 point-1N
Ans	3 4 Differentiate be	Not easy to expand for more number of bits etween Asynchronous and Sy Mo. Asynchronous Counter 10 In an Asynchronous Counter the output of one Flip Flop acts as the clock Input of the next Flip Flop. 2. Speed is Low 3. Only J K or T Flip Flop can be used to construct Asynchronous Counter 4. Problem of Glitch arises 5. Only serial count either up or down is	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are Connected to a common clock signal. Speed is High Synchronous Counter can be designed using	Any 4 point-1N
Ans	3 4 Differentiate be	Not easy to expand for more number of bits etween Asynchronous and Sy tween Asynchronous Counter No. Asynchronous Counter In an Asynchronous Counter the output of one Flip Flop acts as the clock Input of the next Flip Flop. Speed is Low 3. Only J K or T Flip Flop can be used to construct Asynchronous Counter Low 4. Problem of Glitch arises	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are Connected to a common clock signal. Speed is High Synchronous Counter can be designed using JK,RS,T and D FlipFlop. Problem of Lockout	Any 4 point-1N
Ans	3 4 Differentiate be	Not easy to expand for more number of bits Asynchronous and Sy Im an Asynchronous Counter 1. In an Asynchronous Counter the output of one Flip Flop acts as the clock Input of the next Flip Flop. 2. Speed is Low 3. Only J K or T Flip Flop can be used to construct Asynchronous Counter 4. Problem of Glitch arises 5. Only serial count either up or down is possible.	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are Connected to a common clock signal. Speed is High Synchronous Counter can be designed using JK,RS,T and D FlipFlop. Problem of Lockout Random and serial counting is possible.	Any 4 point-1N
Ans	3 4 Differentiate be	Not easy to expand for more number of bits etween Asynchronous and Sy No. Asynchronous Counter No. In an Asynchronous Counter the output of one Flip Flop acts as the clock Input of the next Flip Flop. 2. Speed is Low 3. Only J K or T Flip Flop can be used to construct Asynchronous Counter 4. Problem of Glitch arises 5. Only serial count either up or down is possible. 6. Settling time is more	Easy to expand for more number of bits nchronous counter. Synchronous Counter In a Synchronous Counter all the Flip Flop's are Connected to a common clock signal. Speed is High Synchronous Counter can be designed using JK,RS,T and D FlipFlop. Problem of Lockout Random and serial counting is possible. Settling time is less	Any 4 point-1N

Ans		Memories		Classifica
:	Sequential	Read and Read only	Content addressable	tion-2M
	Memories	write memories memories (RWM or RAM) (ROM)	(CAM)	
	Shift	Change coupled ROM PR	V V V OM EPROM EAROM	
	Registers	devices (CCD)	INON LINON	F le :
		mory device is to store data		Explaina ion-2M
	-	ories are storage devices that re Memory is a temporary or vol	eads stored data in sequence atile storage device. Data can be	
		order .It is a read write memory		
			atile memory device. We can only	
	read but cannotContent-address		al type of computer memory used in	
		h-speed searching applications	a type of computer memory used m	
(e)	Compare combination	al logic system and sequentia	l logic system.	4 M
Ans	PARAMETERS	COMBINATIONAL CIRCUIT	SEQUENTIAL CIRCUIT	Any 4
:	Definition	The output at any instant of time	The output at any instance of time	point-1M
	C7	depends upon the input present at that instant of time.	depends upon the present input as well as past input and output.	each
	Need of Memory	No memory element required in the ckt	Memory element required to stored bit	
	Need of clock	Clock input not necessary	Clock input necessary	
	Examples	E.g. Adders, Subtractors ,Code converters, comparators etc.	E.g. Flip flop, Shift registers, counters etc.	
	Examples Applications	converters, comparators etc. Used to simplify Boolean	E.g. Flip flop, Shift registers, counters etc, Used in counters & registers	
		converters, comparators etc.	etc,	
f)	Applications	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table	etc, Used in counters & registers	
f)	Applications	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table	etc,	4M
f) Ans	Applications Simplify following equ	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{Y}Z$)	etc, Used in counters & registers	4M
	Applications Simplify following equ	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table	etc, Used in counters & registers	4M
Ans	Applications Simplify following equ	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a + $\overline{Y}Z$)	etc, Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.\overline{W} + \overline{Y.Z}}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a + $\overline{Y}Z$)	etc, Used in counters & registers	4M
	Applications Simplify following equ $Z = (\overline{X.\overline{W} + \overline{Y.Z}}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra $= +\overline{YZ}$)	etc, Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.\overline{W} + \overline{Y.Z}}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a + \overline{YZ})	etc, Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.\overline{W} + \overline{Y.Z}}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{YZ}$)	etc, Used in counters & registers	4M
Ans	Applications Simplify following equals $Z = (\overline{X.W} + \overline{Y.Z}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{YZ}$)	etc, Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.W} + \overline{Y.Z})$ (X.W	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{Y}Z$)	etc. Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.W} + \overline{Y.Z}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{YZ}$)	etc. Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.W} + \overline{Y.Z}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra and \overline{FYZ}) \overline{FYZ}	etc. Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.W} + \overline{Y.Z}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{Y}Z$)	etc. Used in counters & registers	4M
Ans	Applications Simplify following equ $Z = (\overline{X.W} + \overline{Y.Z}) (X.W)$	converters, comparators etc. Used to simplify Boolean expressions, k-map, Truth table ation using Boolean algebra a $+\overline{YZ}$)	etc. Used in counters & registers	4M

	Attempt any FOUR of the following:	16 Marks
(a)	For the logic circuit shown in figure below, what will be the expression for output Y? Identify the basic gates & universal gates used in ckt.	4M
Ans :	$Y = \overline{A} + \overline{AB} + \overline{BC} + \overline{C}$ $Y = \overline{A} + $	Final output- 2M Identifica tion of gate-2M
(b)	Draw and explain SISO with truth table and timing diagram.	4M
Ans :	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diagram 1M

BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 2700

MAHARASHTF

Ans	Convert (a) - (a) - (b)	2M each
:	Convext (GAC) ₁₆ = (7) ₁₀ = (7) ₂ [$H \rightarrow D$ embs	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(GAC)16 = (6×16") + (A×16") + (E×16")	
	$-(6 \times 12^{2}) + (10 \times 12^{2}) + (12 \times 12^{6})$	
	$= 1536 + 160 + 12$ $\int (6Ac)_{16} = (1708)_{10}$	
	5 f c 100	
	$\frac{0110}{1(6AC)_{16}} = (01101010100)_{2}$	
Q. 6	Attempt any TWO of the following:	16 Marks
(a)	Find the Boolean expression for logic circuit given below.	8M
(u)	That the Doolean expression for logic chicale given below.	UIVI
Ans		
:	9) $\binom{(1)}{(1)} - 4$ marks	
	AB+AB	
	· Lop_J2.	
	B A.B	
	V = AB + AB	
	(ii) A TA	
	Ā +B	
	s-tDo_	
	$\int - Y = \overline{\overline{A} + \overline{B}}$	
(b)	Convert following expression into standard SOP form.	
	$(\mathbf{i})\overline{A} + \mathbf{B}\overline{C}\overline{D}$ $(\mathbf{i}\mathbf{i})\mathbf{A}\overline{B}\mathbf{C} + \mathbf{B}\overline{D}$	8M
1		

MAHARASHTI (Autonomous) (ISO/IEC - 2700

(c)

expression.

tified)

Ans :	Nb (i) + maths (ii) + maths i) $\overline{A} + B\overline{c}\overline{D}$ total vatiables = + (A, B, C, D) missing variables in 1 ³¹ tem = B, C, D missing variables in 1 ³¹ tem = B, C, D missing variables in 1 ³¹ tem = B, C, D (Lmmu) = $\overline{A} \cdot (1 \cdot 1 + 1 \cdot B\overline{c}\overline{D} - [2A \cdot 1 - A] - [Lmmu)}$ = $\overline{A} \cdot (B \cdot \overline{B}) (c + \overline{C}) + (\overline{D} \cdot \overline{D}) + (A\overline{B} \cdot \overline{D} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{L} - \overline{A} \cdot \overline{D}) + (A \cdot \overline{D} \cdot \overline{D} + \overline{A} \cdot \overline{D} \cdot \overline{C}) + (A \cdot \overline{D} \cdot \overline{D}) + (A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D}) + (A \cdot \overline{D} \cdot \overline{D} - (A \cdot \overline{D} \cdot \overline{D}) + (A \cdot \overline{D} \cdot \overline{D} - (A \cdot \overline{D} \cdot \overline{D}) + (A \cdot \overline{D} \cdot \overline{D} - (A$	
	= Stondard Sop Porm	
$\langle \rangle$		07 F

Draw the circuit diagram of 3 bit R-2R ladder DAC. Obtain its output voltage

8M

BOARD OF TECHNICAL EDUCATION

MAHARASHTF (Autonomous) (ISO/IEC - 2700

