

WINTER – 19 EXAMINATION

Subject Name: Heat power Engineering

Model Answer Subject Code:

17407

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.	Answer	Mark ing Sche me
1		Attempt any Six of the following.	12
	i	List different types of ideal gas processes	02
		 Answer: Following are the different types of ideal gas processes (Any four) 1. Isochoric (constant volume process) 2. Isobaric (constant pressure process) 3. Isothermal (constant temperature process) 4. Isentropic (constant entropy process) 5. Polytropic process 	02
	ii	Define sensible heat and latent heat	02
		Latent heat: It is defined as the quantity of heat required for phase change of working substance at saturation temperature. OR The amount of heat added at saturation temperature is called latent heat. Sensible heat: It is defined as the quantity of heat which can be sensed by the thermometer. OR The amount of heat added up to saturation temperature is called sensible heat.	01

iii	Define free air delivered of compressor	02
	Free Air Delivered (FAD): any two points	
	• It is the actual volume of air delivered by the compressor when reduced to NTP.	02
	• FAD is a flow rate of air derived from measurement at the outlet of the	02
	compressor.	
	• Free Air delivered is the amount of compressed air delivered at the outlet of a	
	compressor, converted back to the actual inlet (free air) conditions before it was	
 iv	compressed. List down the uses of compressed air	02
IV	List down the uses of compressed an	02
	Application of compressed air: (Any four)	1⁄2
	1. Operating tools in factories	mark
	2. Operating drills and hammers in road building	for
	3. Starting diesel engines	each
	4. Operating brakes on buses, trucks and trains5. Spray painting	
	6. Excavating	
	7. To clean the large workshops Etc.	
v	Give the classification of gas turbine	02
	Angunan Classification of and turking (Ang turk)	
	 Answer: Classification of gas turbine: (Any two) 1. According to the path of the working substance: 	
	i) Open cycle gas turbine	
	ii) Close cycle gas turbine	
	iii) Semi-closed cycle gas turbine	
	2. According to process of combustion:	
	i) Constant pressure gas turbine	
	ii) Constant volume gas turbine	
	3. According to direction of flow:	
	i) Radial flowii) Axial flow	
	iii) Tangential flow	02
	4. According to principle of action of expanding gases:	
	i) Impulse turbine	
	ii) Reaction turbine	
	5. According to their usage:	
	i) Constant speed	
	ii) Variable speed	

vi	Enlist conventional and non-conventional energy sources.	02
	 Conventional energy source: Any two Coal natural gas oil fire wood. Non-conventional energy sources: Any two Solar power Hydro-electric power Wind power Tidal power Ocean wave power Geothermal power Geothermal power Biomass, Bio-fuel etc. 	^{1/2} mark for each
vii	Give the classification of Fuels.	02
	Classification of Fules Based on occurrence Based on Physical State Primary or Natural Fules Liquid fule Wood and Coal Charcoale, Petrole and um coke Solid fule Wood and Coal Gaseous fule Natural gas	02
viii	List properties of Fuels	02
	 Properties of fuels: (any four) 1. It should possess high calorific value. 2. It should have proper ignition temperature. The ignition temperature of the fuel should either be neither too low nor too high. 3. It should not produce poisonous products during combustion. In other words, it should not cause pollution o combustion. 	1/2 mark each

		4. It should have moderate rate of combustion.	
		5. Combustion should be easily controllable i.e., combustion of fuel should be easy	
		to start or stop as and when required.	
		6. It should not leave behind much ash on combustion.	
		7. It should be easily available in plenty.	
		8. It should have low moisture content.	
		9. It should be cheap.	
		10. It should be easy to handle and transport.	
1.	b	Attempt any TWO of the following	08
		Dennegent Igeboria Igeboria Igethormal Adiabatic process on D.V. and T.S.	
	(i)	Represent Isobaric, Isochoric, Isothermal, Adiabatic process on P-V and T-S	
		diagram.	

	to which p1, V1 and T1 change to p2,V2 and T2, respectively. Line 2-3 shows the supply of heat to the air at constant volume so that p2 and T2 change to p3 and T3 (V3 being the same as V2). Line 3-4 represents the adiabatic expansion of the air. During expansion p3, V3 and T3 change to a final value of p4, V4 or V1 and T4, respectively. Line 4-1 shows the rejection of heat by air at constant volume till original state (point 1) reaches.	02
b)	Describe the different modes of heat transfer.	
	 Answer: Mode of heat transfer:- Conduction 2) Convection 3) Radiation Conduction- It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another without displacement of molecules or due to the vibrations of molecules. Example-Heat transfer in between metal rod. Convection: It is the mode of heat transfer from one part of substance to another part of same substance or one substance to another with displacement of molecules or due to the fluid flowing. Example: Heat flow from boiler shell to water. Radiation: It is the transfer of heat through space or matter. For Radiation there is no need of medium as like convection and conduction. It passes through vacuum in the form of electromagnetic waves. Example: The heat energy 	01 01 01
	receives from sun to the earth surface.	01
c)	Draw neat and labeled sketch of three pass packages type boiler.	
	Answer:(Explanation 2 Marks, Figure 2Marks) Each set of tubes that hot combustion flue gas travels through before making a turn within the boiler, is considered a "pass." A 3-pass fire tube boiler design consists of three sets of horizontal tubes, with the stack outlet located on the rear of the boiler. A downdraft design keeps the cooler water from having an effect on the hot surfaces within the boiler. A boiler with more passes provides more opportunities for hot gasses to transfer heat to the water in a boiler and operate more efficiently; however, boiler efficiency is highly affected by tube design, and not simply the number of passes. It is possible for a 3-pass boiler with a tube design that allows more heat transfer time to deliver the same or higher efficiency rating.	02

	obtained is then supplied to the prime mover.	
e)	Explain the factors affecting volumetric efficiency of reciprocating air compressor.	
	4) Piston ring leakages5) If fresh air comes in contact with hot wall, it get expanded, which decreases the charge taken in therefore volumetric efficiency decreases.	04
f)	Differentiate between open cycle and closed cycle gas turbine.	
	Air from atmosphere Burned gases to atmosphere Cooler	04 Any FOUR points
	2. Only air can be used as a Any type of working fluid with better	
	working fluid. thermodynamic properties can be used.	
	 Maintenance cost is low. Maintenance cost is high. 	
	4. Working fluid replaced Working fluid circulated continuously.	
	 Mass of installation per KW is Mass of installation per KW is more less. 	
	6. Pure form of fuel should be used. Any type of fuel is used.	
	 Heat exchanger is not used. Heat exchanger is used. 	
	8 The turbine blades wear away earlier as it gets contaminated with air. It avoids erosion of turbine blade du to contaminated gases.	
	9 The exhaust gas from the turbine The exhaust gas from the turbine is is exhausted to the atmosphere. passed into cooling chamber.	
	10 This system required less space. This system required more space.	
	11 Since turbine exhaust is Since exhaust is cooled by circulated	
	discharged into atmosphere, it is best suited for moving vehicle. installation, marine use.	

f)	Explain combustion chemistry of carbon, hydrogen and methane.	
	ANS: Combustion chemistry of carbon, methane and hydrogen: i) Carbon: Burning of carbon to carbon dioxide (complete combustion) $C+O_2 \rightarrow CO_2$	01
	i.e. $12 + (16 \times 2) = 12 + 16 \times 2$	
	i.e. $12 + 32 = 44$	
	1 + 2.67 = 3.67	
	 That means 1 kg of carbon needs 2.67 kg oxygen and produces 3.67 kg of carbon dioxide. ii) Methane (CH4): Burning of methane with oxygen to carbon dioxide and water/ steam 	
	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$	
	i.e. $(12+1\times4)+2(16\times2)=(12+16\times2)+2(1\times2+16)$	
	16 + 64 = 44 + 36	02
	$1 + 4 = \frac{11}{4} + \frac{9}{4}$	
	That means 1 kg of methane needs 4 kg of oxygen to produce 11/4 kg of carbon dioxide and 9/4 kg of water /steam	
	iii) Hydrogen: The union of hydrogen with oxygen produces steam it is represented by the following equitation	
	$2H_2 + O_2 = 2H_2O$	
	$2(1 \times 2) + (16 \times 2) = 2(1 \times 2 + 16)$	
	1+8=9 1 kg of hydrogen combines with 8 kg of oxygen to produce 9 kg of steam.	01

4.		pt any TWO of the following:		16
a)	Comp	are conventional and non-conventional	energy sources.	08
	Sr. No.	conventional source of energy	Non- <mark>conventional</mark> source of energy	
	1	These are non-renewable energy sources	These are renewable energy sources	
	2	Creates pollution	Does not creates pollution	(8 points
	3	It is not clean energy source	It is clean energy source	1 points
	4	Harnessing cost is more	Harnessing cost is less	mark
	5	Efficiency is more	Efficiency is less	each)
	6	Fuel is required	Fuel is not required	
	7	Exhaustible energy source	Non-Exhaustible energy source	
	8	Affects on ozone layer	Does not affects on ozone layer	
	9	ExPetrol, Diesel, Kerosene etc.	ExSolar, Wind, Tidal, Geothermal, Biomass, Etc.	
	A coa	al has the following combination	of mass C=90%, H ₂ =3% O2=2%,	
b)	S=1%	N2=2% and remaining is ash. Find HO	CV and LCV of the fuel.	
	Oxyge Nitrog Sulphu	gen = H_2 =3%=0.03 en= O_2 =2%=0.02 en= N_2 =2%=0.02 ur= S =1%=0.01 e%=0.02		
	=3380 =3380	g's formula: H.C.V. of coal 0C+144500(H ₂ -O ₂ /8)+9300S KJ/Kg 0*0.90+144500(0.03-0.02/8)+9300*0.01 6.75 KJ/Kg	KJ/Kg	04
	=HCV =3448	of coal 7 – 9H ₂ *2442 KJ/Kg 6.76-9*0.03*2442 7.41 KJ/Kg		04
c)		plain construction and working of geot		
		plain the construction and working of b (i)Geothermal power plant: :	John Calor meter.	04
	(Const Const main c and Ge stored This st steam	struction 1 Marks, Working 2 Marks, F ruction and Working: geothermal power components: Underground steam storage, enerator. Steam is present in the earth cr in the underground steam storage tank. team is taken out through pipe and valve separator moisture content in the steam is a steam drum where steam is stored. The r	er plant which consists of the following steam separator, steam separator, turbine ust at 10 km depth is about 2000 C. It is e and passed through steam separator. In is taken out and dry steam is allowed to	

$$p_{V} = C \qquad 02$$

$$P_{1} v_{1}^{\gamma} = P_{2} v_{2}^{\gamma}$$

$$\frac{P_{2}}{P_{1}} = (\frac{V_{1}}{V_{2}})^{\gamma} \dots \dots \dots (1)$$
From general gas equation
$$\frac{PV}{T} = C$$

$$\frac{T_{2}}{T_{1}} = \frac{P_{2}V_{2}}{P_{1}V_{1}} \dots \dots (2)$$
From (1)
$$\frac{V_{2}}{V_{1}} = (\frac{P_{1}}{P_{2}})^{1/\gamma} \dots (3)$$
(02)
$$P_{2} = (\frac{P_{1}}{P_{2}})^{1/\gamma} \dots (3)$$

	Put equation (3) into equation (2) $\frac{T_2}{T_1} = \frac{P_2}{P_1} \left(\frac{P_1}{P_2}\right)^{1/\gamma}$		
	$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$		
	$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} \dots $		
	From equation (1) & (4)		
	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$	01	
	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$		
 b)	Explain two pass down flow surface condenser with a neat sketch.		
	Two pass down flow surface condenser: :(Explanation 4 Marks, Figure 4 Marks) It consists of horizontal cast iron cylindrical vessel pack with tubes, through which the cooling water flows. The ends of the condenser are cut off by vertical perforated type plates in to which water tubes are fixed. This is done in such a manner that the leakage of water in to the center condensing space is prevented. The water tubes pass horizontally through the main condensing space for the steam. The steam enters at the top & is forced to flow downwards over the tubes due to the suction of the extraction pump at the bottom. The cooling water flows in one direction through lower half of the tubes & return in opposite direction through the upper half as shown in figure. The main advantage of surface condenser is condensate does not mix with cooling water which is used for cooling steam & convert into water; therefore whole condensate can be the reused in the boiler.	04	
			I.

E	Water outlet Water Water inlet	Plate Plate Water box	04
D'66	Fig. Two pass down flo	w surface condenser	
c)	ntiate between : (i) Reciprocating and rotary air c	-	
(i)	(ii) Centrifugal and axial flow con Reciprocating and rotary air com		
Sr. No. 1 2 3 4 5	It is having to and fro motion. Air supply is intermittent. Lubrication system is complicated. Maximum delivery pressure is upto 1000 bar. Maximum free discharge is about	Rotary air compressor It is having rotary motion Air supply is continuous. Lubrication system is simple. Maximum delivery pressure is upto 10 bar. Maximum free discharge is about 3000	
6 7 8 9	Speed is lesser Balancing is major problem Frictional losses are more Size of compressor is large for the	m3/min Speed is higher No balancing problem Frictional losses are less Size of compressor is small for the given discharge	04
10 11 (ii)	It is suitable for low discharge and high pressure Application- Auto workshop, service stations, air brake system etc.	It is suitable for high discharge and low pressure Application- Torbocharger, supercharger, Blower, Hair Drier etc.	
	Centrifugal and axial flow comp	ressor:(Any Four pis)	
Sr. No 1	Centrifugal compressor Flow is perpendicular to axis of compressor.	Axial Flow Compressor Flow of air is parallel to the axis of compressor.	04
2	Low manufacturing and running cost.	High manufacturing and running cost.	V -1
$\begin{array}{c c} 3\\ \hline 4\\ \hline 5 \end{array}$	Requires low starting torque.Not suitable for multi-staging.Requires large frontal area for given	Requires high starting torque.Suitable for multi-staging.Requires less frontal area for given	
6	rate of flow. Pressure ratio per stage is4:1.	rate of flow. Pressure ratio is 1.1 to 1.2	

		7 Isentropic efficiency is 70% Isentropic efficiency is 80%	
1		7 Isentropic enciency is 70% 8 Used in supercharging I.C. engine Used universally with large gas	
		and for refrigerants and industrial turbine.	
		gases.	
6.		Attempt any FOUR of the following:	16
	a)	Draw P-V and T-S diagram of dual combustion cycle.	
		Dual combustion cycle:	
		P Q Q Q Q Q Q Q Q Q Q Q Q Q	02
		 1-2 Isentropic compression of air 2-3 the combustion of fuel at constant volume. 3-4 the combustion of fuel at constant pressure 4-5 Isentropic expansion during which work is done by the system. 5-1 Heat rejection at constant volume. 	02
	b)	Explain the sources of air leakage in condenser.	
		 Sources of air leakage in condenser Air leak through joints and packing. Air leaks into condenser as pressure inside falls below atmospheric pressure. Air also comes in condenser with the steam. The feed water supplied to the boiler contains certain amount of air dissolved in it. The dissolved air gets liberated when steam is formed and is carried with the steam into the condenser. In jet condensers dissolved air in the cooling water enters the condenser. The dissolved air gets separated at low pressure in the condenser Air leaks if any bypass seal is broken. 	04
	c)	State necessity of multistaging and Intercooling of air compressor.	
		Necessity of multistaging – For producing high pressure i.e. more than 8 bar, single stage air compressor suffers fallowing drawbacks- i) Size of cylinder is too large	
		 ii) Rise in temperature of air is very high. To avoid this difficulty multi-staging is necessary. Necessity of intercooling – In two stages air commences of air is commenceed in first culinder and the temperature of air. 	02
		In two stage air compressor air is compressed in first cylinder and the temperature of air is increased. If this high temperature air is not passed through intercooler and sent directly to second stage then because of high temperature volume of air increases so amount of air taken inside decreases and pressure is also automatically decreased and volumetric efficiency is also decreases. To avoid this intercooling is necessary.	02

	over turbine blades. The gas while flowing over the blades gets expand from the turbine gas is passed to cooling chamber where it is cooled at constant pressure with the help of circulating air is circulated through compressor. (Explored a Marka, Figure 2 Marka)	
f)	(Explanation 2 Marks, Figure 2Marks)Explain construction and working of two stage reciprocating air compressors.	
	Ans: (Explanation 2 Marks, Figure 2Marks) WATER OUT MATER OUT M	02
	1 st stage 1 st	
	Figure: Two Stage Reciprocating air compressor	
	Construction and Working : It consists of two cylinders (L.P. and H.P.) with water cooled intercooler and air receiver. First of all fresh air is sucked from atmosphere in low pressure (L.P) cylinder during its suction stroke at inlet pressure P1 and temp T1.The air after compression in L,P cylinder (I st stage) from 1 to 2 is delivered to intercooler at pressure P2 and temp T2.Now air is cooled in intercooler from 2 to3 at constant pressure P2 and from temp T2 to T3.After that air is sucked in high pressure (H.P) cylinder during its suction stroke.	02