MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 - 2005 certified)

Subject code: 17422

WINTER -2019 EXAMINATION Model Answer

Important Instructions to examiners:

1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding

Q. No.	Question and Model Answers	Marks
1.A	Attempt any SIX of the following:	12M
a)	Define Limit of eccentricity	
Ans:	Limit of eccentricity: A load whose line of action does not coincide with the axis of a member is called an eccentric load .The distance between the eccentric axis of the body and the point of loading is called an eccentric limit 'e'. The centrally located portion of a section within which the load must act so as to produce only compressive stress is called a core or kernel of section or limit of eccentricity.	2 M

b)	Write the formula for calculation of radius of curvature	
Ans:	calculation of radius of curvature	
	Bending Equation	
	$\sigma/y = M/I = E/R$ or	
	R = E * I/M	1 M
	Where, $M = Bending moment$	
	E = Modulus of elasticity I	
	= Moment of Inertia	1 M
	R = Radius of curvature	
c)	Define deflection of beam	
Ans:	figure: Elastic curve The vertical Displacement of a point on a beam with respect to its original position before loading is called deflection of beam. It is denoted by "Y"	2 M
d)	A cantilever of span 'L' carries a point load 'w' at 'L' from fixed end.	
u)	State deflection at tree end in terms of El.	
	$A = \frac{1}{1 + \frac{1}{1$	2 M
e)	Define fixed beam	
Ans:		

f)	A beam whose end supports are such that the end slopes remain zero is called fixed beam Define carry over factor of moment distribution method.	2 M
Ans:	It is the ratio of moment produced at a joint to the moment applied at the other joint with displacing it. It is $M_A/M_B = \frac{1}{2}$ or $M_A/M_B = 0$ zero	nout 2 M
g)	Define stiffness factor.	
Ans:	Stiffness factor: It is the moment required to obtain unit rotation at an end, without translating it.	2 M
h)	Explain perfect truss with example.	
Ans:	A frame which has members just sufficient to keep in stable equilibrium when loaded at its joints , is called perfect truss its shape remains unchanged .Example For a triangle , $\int \int \partial f df d$	t 1 M 1 M
0.1 P	2 j-3 = 2 x 3 = 3 therefore the perfect truss .	
Q.1 B	Attempt any Two of the following: Differentiate between Direct load and eccentric load	8 M
a)	Direct load Eccentric load 01 Direct load is that force which acts at centroidal longitudinal axis of the member. Eccentric load is that force which act away from centroidal longitudinal axis of the member.	
	02 Due to direct axial load causes only direct stress . Due to effect of eccentricity, eccentric load causes direct as well as bending stresses. 03 Due to direct loading it gives rise to Direct stress either tensile or Due to eccentric loading it gives rise bending stresses which are tensile and	g o

		e a joint with only two members		
		a free body diagram for reactionary forces of truss		step
	3. Using	gTrigonometry		¹ / ₂ M for each
		es, joint and forces		
	1.Exam	ples of trusses		
Ans			e by Method of joint, A truss is one of the ed in design of bridges and buildings. Step	
ŕ	frame		r calculation of forces in the member of	
c)	Funlair	Rectangula		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\rightarrow$	
		d d/3	//6 b/6 :	1 M
	= b/6		1	T TAT
	e = Cc	ore of section $e = d/6$ or $e$		1 M
:-	the line core of produce	of action of load must act, so as to p the section. It is also defined as the re	produce only compressive stress is called as gion or area within which if load is applied, Compressive load is applied, the there is no	2 M
Ans			portion around the centroid in within which	
<b>b</b> )	Define	core of section . Sketch it Rectangula	Ecccentric load	
		Direct Load		
	05		P	
		Р	value. Resultant stresses = $\sigma$ direct + $\sigma$ bending	each
	04	Direct stress = σο =P/A	Bending stress = σb = M * y / I Resultant stresses reach a higher	1 M mark
		compressive as per the nature of external load.	compressive in nature and they both exist together in a member on either side of neutral axis or centroidal axis.	

	7. Determine the unknown forces of the joint. $\sum F_x = 0 \sum F_y = 0$	
	8. Calculation will give you a negative or a positive number designating the real direction of	
0.2	forces. Full analysis of a simple truss by the method of joint	12 M
Q.2	Attempt any THREE of the following:	
a)	A rectangular column is 250 mm wide and 100 mm thick. It carries a load of 200 kN at an eccentricity of 100'mm in the plane bisecting thickness. Find the maximum and minimum intensities of stress in section.	
Ans:	$A = 250 \times 100 = 25 \times 103 \text{ mm}^2$	
	P=200  kN	1 M
	$Iyy = 100 \times 2503 / 12 = 130.208 \times 10^{6} \text{ mm4}$	
	$Z_{XX} = Iyy / Y = 130.208 \times 106 / 125 = 1.041 \times 10^6 \text{ mm3}$	1 M
	$M = P x e = 200 x 103 x 100 = 20 x 10^{6} N-mm.$	
	Direct stress = $6d = P / A = 200 \times 10^3 / 25 \times 10^3 = 8 \text{ N/mm}^2$	
	Bending stress $6b = M / Z = 20 \times 106 / 1.041 \times 10^6 = 19.21 \text{ N/mm}^2$	4 3 4
	Maximum stress = $6d + 6b = 8 + 19.21 = 27.21$ N/mm ² (Comp.)	1 M
	Minimum stress = $6d - 6b = 8 - 19.21 = (-) 11.21 \text{ N/mm}^2$ (tensile)	1 M
b)	(b) A hollow C.I. column of external diameter 300 mm and-internal diameter 250 mm carries an axial load 'w' kN and a load of 100 kN at an eccentricity 125	
	mm. Calculate the maximum value of 'w' so as to avoid the tensile stresses,	
Ans:	Axial load = $W$ ,	
	eccentric load P = 100 kN., eccentricity e = 125 mm Area A = $\pi * (D1^2 - D2^2)/4 = \pi x(300^2 - 250^2)/4 = 21.59 x 10^3 mm^2$ .	1 M
	Moment of Inertia I = $\pi^* D^4 / 64 = \pi (300^4 - 250^4) / 64 = 205.86 \times 10^6 \text{ mm}^4$	I IVI
	$Z = I / ymax = 205.86 \times 106 / 150 = 1.3724 \times 10^6 mm^3$	
	$M = P x e = 100 x 10^3 x 125 = 12.5 x 106$ N-mm.	
	For No tension, $6d = 6b$	1 M
	Direct stress = $(W / A) + (P / A)$	
	$6d = (W / A) + (100 x 10^{3} / 21.59 x 10^{3})$ Bending stress 6b = M / Z = 12.5 x 106 / 1.3724 x 10 ⁶ = 9.108 N/mm ²	
	For no tension, $6d = 6b$	1 M
	$(W/21.59 \times 10^3) + 4.63 = 9.108$	1 1/1
	$W = 4.47 * 21.59 \times 10^3 =$	
	$=96.64 \times 10^3 \text{ N}$	1 M
<b>c</b> )	A chimney having diameter 4 m and 50 m height. It is subjected to a horizontal wind pressure of 1.5 kPa normal to chimney. Find maximum bending stress in chimney.	
	h = 50  m,	
	$p = 1.5 \text{ kN/m}^2$ ,	
	D=4m	
	Assum i) Density of masonary $Y = 22 \text{ kN/m}^3$ , and Coefficient	
	of Wind pressure $C=1$	
	$A = \pi * D^2 / 4 = \pi * 4^2 / 4$	
	= 12.56  mm2	1 M
	ii)WindForce $P = C x p x D x h = 1 x 1.5 x 4 x 50 = 300kN$	
	iii) Self wtofchimney $W = Y x$ volume = $Y x A x h = 22 x 12.56 x50$	
	$= 13.82 \text{ x } 10^3 \text{ N}$	1 M
-		



W = 10 kV Deflection at free end YB = - WL ³ / 3 EI = - 10 x 2 ³ / 3 x 15 x 10 ³ = - 1.77 mmImage: Comparison of the end of t	Ans:	$A = \begin{bmatrix} X & Y \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	2 M
= $-10 \times 2^3 / 3 \times 15 \times 10^3$ = $-1.77 \text{ mm}$ f)Write Clapeyron's moment theorem for a beam with different M.I. giving meaning of each term.Ans:The clapeyron's theorem of three moment is applicable to two span continuous beams. It state that " For any two consecutive spans of continuous beam subjected to an external loading and having different moment of inertia, the support momentsMA:MB and MC at supports A, B and C respectively are given by following equationImage: MA:MB and MC at supports A, B and C respectively are given by following equationImage: MA:MB and MC at supports A, B and C respectively are given by following equationImage: MA:MB and MC at supports A, B and C respectively are given by following equationImage: MA:MB and MC at supports A, B and C respectively are given by following equationImage: MA:MB and MC at supports A, B and C respectively are given by following equationImage: MA:MB and MC at supports A, B and BC respectively.If the moment of inertia is not constant then claperon's theorem can be stated in the form of following equation.Image: MA:MA:Image: MA:M		L = 2m $W = 10  kN$	2 M
= - 1.77 mmf)Write Clapeyron's moment theorem for a beam with different M.I. giving meaning of each term.Ans:The clapeyron's theorem of three moment is applicable to two span continuous beams. It state that " For any two consecutive spans of continuous beam subjected to an external loading and having different moment of inertia, the support moments MA, MB and Mc at supports A,B and C respectively are given by following equation1 MImage: Mark MB and Mc at supports A,B and C respectively are given by following equation1 MImage: Mark MB and Mc at supports A,B and C respectively are given by following equation1 MImage: Mark MB and Mc at supports A,B and C respectively are given by following equation1 MImage: Mark MB and Mc at supports A,B and C respectively are given by following equation1 MImage: Mark MB and Mc at supports A,B and C respectively are given by following equation1 MImage: Mark MB and Mc at supports A,B and C respectively.1 MImage: Mark MB and BC respectively.1 M			
each term.Ans:The clapeyron's theorem of three moment is applicable to two span continuous beams .lt state that " For any two consecutive spans of continuous beam subjected to an external loading and having different moment of inertia, the support moments1 M $M_A$ , $M_B$ and $M_C$ at supports A, B and C respectively are given by following equation1 M $M_A$ , $M_B$ and $M_C$ at supports A, B and C respectively are given by following equation1 MIf the moment of inertia is not constant then claperon's theorem can be stated in the form of following equation.1 M $M_A$ , $\frac{L_1}{L_1} + 2M_B \left( \frac{L_1}{L_1} + \frac{L_2}{L_2} \right) + M_C \frac{L_2}{L_2} = - \left[ \frac{6A_1X_1}{L_1 I_1} + \frac{6A_2X_2}{L_2I_2} \right]$ 1 MWhere, $L_1$ and $L_2$ are length of span AB and BC respectively.1 MI moment of inertia of span AB and BC respectively.1 M			
state that "For any two consecutive spans of continuous beam subjected to an external loading and having different moment of inertia, the support moments $M_{A}, M_{B} \text{ and } M_{C} \text{ at supports } A, B \text{ and } C \text{ respectively are given by following equation}$ $M_{A}, M_{B} \text{ and } M_{C} \text{ at supports } A, B \text{ and } C \text{ respectively are given by following equation}$ $M_{A}, M_{B} \text{ and } M_{C} \text{ at supports } A, B \text{ and } C \text{ respectively are given by following equation}$ $M_{A}, M_{B} \text{ and } M_{C} \text{ at supports } A, B \text{ and } C \text{ respectively are given by following equation}$ $M_{A}, M_{B} \text{ and } M_{C} \text{ at supports } A, B \text{ and } C \text{ respectively are given by following equation}$ $M_{A}, \frac{L_{1}}{L_{1}} + 2M_{B} \left(\frac{L_{1}}{L_{1}} + \frac{L_{2}}{L_{2}}\right) + M_{C} \frac{L_{2}}{L_{2}} = -\left[\frac{6A_{1}X_{1}}{L_{1}I_{1}} + \frac{6A_{2}X_{2}}{L_{2}I_{2}}\right]$ $M_{R} \text{ respectively.}$ $I M$	<b>f</b> )		
If the moment of inertia is not constant then claperon's theorem can be stated in the form of following equation. $M_{4} \frac{L_{1}}{I_{1}} + 2M_{\beta} \left(\frac{L_{1}}{I_{1}} + \frac{L_{2}}{I_{2}}\right) + M_{c} \frac{L_{2}}{I_{2}} = -\left[\frac{6A_{1}X_{1}}{L_{1}I_{1}} + \frac{6A_{2}X_{2}}{L_{2}I_{2}}\right]$ Where, L ₁ and L ₂ are length of span AB and BC respectively. I M	Ans:	state that "For any two consecutive spans of continuous beam subjected to an external	1 M
of following equation. $M_{A} \frac{L_{1}}{I_{1}} + 2M_{B} \left( \frac{L_{1}}{I_{1}} + \frac{L_{2}}{I_{2}} \right) + M_{C} \frac{L_{2}}{I_{2}} = - \left[ \frac{6A_{1}X_{1}}{L_{1}I_{1}} + \frac{6A_{2}X_{2}}{L_{2}I_{2}} \right]$ Where, L ₁ and L ₂ are length of span AB and BC respectively. I ₁ and I ₂ are moment of inertia of span AB and BC respectively. 1 M		A $x_1$ $w$ $y$ $y$ $w$ $y$	1 M
$I_1$ and $I_2$ are moment of inertia of span AB and BC respectively. 1 M		of following equation. $M_{A} \frac{L_{1}}{I_{1}} + 2M_{B} \left(\frac{L_{1}}{I_{1}} + \frac{L_{2}}{I_{2}}\right) + M_{C} \frac{L_{2}}{I_{2}} = -\left[\frac{6A_{1}X_{1}}{L_{1}I_{1}} + \frac{6A_{2}X_{2}}{L_{2}I_{2}}\right]$	1 M
1 M			
$A_1$ and $A_2$ are area or simply supported Divid or span AD and DC respectively.		$A_1$ and $A_2$ are area of simply supported BMD of span AB and BC respectively.	1 M

	X ₁ and X ₂ are distances of centroid of simply supported BMD from A and C respectively	
Q. 3	Attempt any <u>FOUR</u> of the following	16 M
a)	State any two advantages and two disadvantages of fixed beam over simply supported beam	
Ans.	<ul> <li>Advantages <ol> <li>Fixed beam is more stiff, strong and stable than simply supported beam.</li> <li>For the same span and loading a fixed beam has lesser value of bending moment as compared to simply supported beam.</li> <li>For the same span and loading fixed beam has lesser value of deflection as compared to simply supported beam.</li> </ol> </li> <li>Disadvantages. <ol> <li>A little sinking of one support over ,the other induces additional moment at each end</li> <li>Extra care has to be taken to achieve correct fixity at the ends.</li> <li>Due to end fixity temperature stresses induced due to variation in temperature</li> </ol> </li> </ul>	2 M 2 M
b)	Fixed beam of span 6 meter caries a point load of 100 KN at 4 meter from left support calculate fixed end moment	
Ans.	$MA = wab^{2}/L^{2}$ = 100*4*(2) ² /6 ² = - 44.44 KN/M MB = wba ² /L ² = 100*2*(4) ² /6 ²	1M 1M
	= -88.89  KN/M	1 M
<b>c</b> )	Calculates Maximum Deflection at A Beam shown in the fig. use Macaulay's Method E=2 X108 KN/m2 & I =0.733 X 10-4 m4	<u>1M</u>
Ans:	$\begin{array}{c} 1 - 2 \times 100 \text{ key m2 cl} 1 - 0.733 \times 10^{\circ} \text{ mm}}{75 \text{ kN}} \\ \begin{array}{c} 75 \text{ kN} \\ \hline 1.5 \text{ m} \\ 4.5 \text{ m} \end{array} \end{array} \\ \begin{array}{c} B \\ \end{array}$	

	=75*4.5/6 = <u>56.25 KN.</u>	
	RB= wa/l =75*1.5/6 = <b>18.75 KN</b> .	1M
	Consider a section x-x at a distance "x" from 'A' in portion CB.	
	EI $d^2y / dx^2 = Mx = 56.25 x - 75 (x - 1.5)$	
	Integrating w. t .r. x	
	EI dy/dx = $56.25 x^2/2 + C1 - 75(x - 1.5)^2/2$	
	Again integrating wrtx	
	EI y= $56.25^2 x^3/6 + C1x+C2 - 75 * (x-1.5)^3/6$	
	At x=0 & Y= 0	
	C2=0	
	At x=6 Y=0	
	$0=56.25 (6)^3/6 + c1*6+0-75(6-1.50)^3/6$	
	=2025+c1*6-1139.06	
	C1*6=885.93 C1*6=885.93	1M
	<u>C1=-147.65</u>	
	EIY= $56.25^2$ (x ³ /6) -147.65x-75(x-1.5) ³ /6	
	$E dy/dx = 56.25 x^2/2 - 147.65 - 75 (x - 1.5)^2/2$	
	dy/dx=0	
	$0=28.125x^2 - 147.5 - 37.5(x-1.5)^2$	
	0=28.125 x ² -147.5 - 37.5 (x ² 3x+2.25).	
	$0 = -28.125x^2 - 147.5 - 37.5x^2 + 112.5x - 84.37$	
	$0 = -9.375x^2 + 112.5x - 231.80$	
	By solving above equation	
	$X=112.5+\sqrt{(112.5^2)-4*9.375*231.78/2*9.375}$	
	X=112.5 ₊₋ √(3964.5)/18.75	
	X=112.5 ₊₋ 62.96/18.75	1 M
	<u>X=2.64m X=9.35m</u>	1 14
	PUT X=2.64m	
	EIY=56.25 * 2.64/6 - 147.5*2.64 - 75 (2.64-1.5) ³ /6	
	EIY=172.49-389.4-18.51 Y=-235.43/EI	
	$Y = -235.42/2*10^{8*}0.733*10^{-4}$	
	$\frac{Y_{max} = -0.016M}{2}$	
	Y max= - 16 mm. (downward deflection).	1 M
<b>d</b> )	Find the slope at free end of beam as shown in figure.	

Ans:	A 4 m	
	<b>θ</b> A- slope at free end of beam due to udl. = wL ³ /6EI	1 M
	<ul> <li>θ B-slope at free end of beam due to point load</li> <li>= wL²/2EI</li> <li>θ max = θ A + θ B</li> </ul>	1 M
	=wL ³ /6EI + wL ² /2EI =5*4 ³ /6EI + 8*4 ² /2EI =53.33/EI + 64/EI =117.33/EI	2 M
	State Any Four Accumptions, Made In Analysis Of Simple Frome	
e) Ans:	State Any Four Assumptions Made In Analysis Of Simple Frame1) The frame is perfect one i.e. the relation n= 2j-3 always satisfy	
1 115.	2) All the member are hinged or pin jointed at the end	1 M
	3) The loads are acting only at the joint	EACH
	4) The self weight of member is neglected.	
<b>f</b> )	Determine the forces in member AB and BC use method of section	
1)	Let us consider the equilibrium of truss to right of section.	
Ans :	FAB SIN45=15 FAB=15/ SIN45	
10	0   25 Winter-2019 TOS-17422	

	<u>=21.21KN.(COMP)</u>	2 M
	let us consider the equilibrium of the truss to right of section 2-2	
	∑fy=0	
	0=-FAB Sin 45 + FCB	
	0 = -1 AD SIII 45 + 1 CD	
	FCB=21.21 Sin45	2 M
	<u>FBC=15KN (TENS).</u>	
0.4		
Q. 4 a)	Attempt any <u>FOUR</u> of the following Write the stop wise procedure for analysis of continuous beam	16 M
,	Write the step wise procedure for analysis of continuous beam	
Ans :	Step 1 to draw bending moment diagram 1) Assume the continuous beam as a series of simply supported beam and draw the	
	usual $\mu$ diagram due to vertical loads	
	2) Calculate $6a\bar{x} / L$ (calculate $6a\bar{x} / L$ for varying moment of Inertia )	
	3) Apply the CLAPEYRON THEOREM , three moment and find the unknown fixed end	
	moment draw the $\mu$ diagram.	
	4) Superimpose the $\mu$ diagram over $\mu$ diagram and draw the net bending moment diagram	2 M
	Step to draw a <b>SF</b> diagram	
	1) Calculate the reaction of simply supported beam	
	2) Calculate the reaction due to difference of fixed end moment	
	3) Superimposed reaction due to above two cases and find the reaction of continuous	2 M
	beam 4) Knowing the support reactions draw SF Diagram as usual.	2 M
<b>b</b> )	Find d support moment of a continuous beam as shown in figure use clapeyron's	
,	theorem.	
Ans :	30 kN	
	A C C D kN/m	
	+ $2m$ $+$ $4m$ $+$ $3m$ $+$	
	GIVEN DATA:-	
	Span AC=6m & CD=3m	
	Known moments are MA=MD=0	
	A)Assume The AC & CD As A Simply Supported Beam draw $\mu$ diagram BM _B =Wab ₁ b ₁ /l ₁	
	<b>125</b> Winter-2019 TOS- <b>17422</b>	

		L ₂ = /3) * (3 * 22.5)		
	$a_2=45$ $6a_2\bar{x}_{2=}$ =13	(6*45*1.5)/3		
	MA*L2 0+2M0 18MC	1+2MC(L1+L2)+MD*L2= - {(6a1x1/L ₁ )+( C(6+3)+0 = - (320.4+135) =455.4 <u>25.3KN-m</u>	6a ₂ x̄ ₂ /L ₂ )}	2 M
c)	Draw	Typical Deflection Curve For Continuo And Other Overhang)	ous Beam Of three Spans.(One End	
Ans :			V2 W3	4 M
		A BI-O	$\Theta_{c_1} \\ \Theta_{c_2}$	
<b>d</b> )	Differ	$\theta$ B1= $\theta$ entiate between symmetrical and uns		
d) Ans :		θ B1=θ entiate between symmetrical and uns	ymmetrical portal frame	
	Differ SR 1	<b>θ</b> B1= <b>θ</b>		1 M



	DCB= 0.5EI/1.25EI			
1	=0.4			
	DCD= 0.75EI/1.25EI			
	=0.60			
	Using moment distribution method propped cantilever of span 5 m carr the entire span			r
15 :	A A A A A A A A A A A A A A A A A A A	5 100	vino B m b b b c c c c c c c c c c c c c	
	=-30*5 ² /12 =-62.5KN.M MBA=WL ² /12 =30*5 ² /12 =62.5KN.M			1 M
				1 M
	<ul><li><u>Stiffness Factors:</u></li><li><b>1.</b> As there is no continuation at jostiffness and there will not be a</li></ul>			
	<ol> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> </ol>			
	<ol> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> </ol>	oution factor		
	<b>2.</b> distribution factor :- no distrib		B BA	
	<ol> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> <li>Point</li> </ol>	A A AB	В	2 M
	<ul> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> <li>Point</li> <li>Member</li> <li>Distribution factor</li> <li>Fixed end moment</li> </ul>	A	В	
	<ul> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> <li>Point</li> <li>Member</li> <li>Distribution factor</li> </ul>	A A AB	B BA	
	<ul> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> <li>Point</li> <li>Member</li> <li>Distribution factor</li> <li>Fixed end moment</li> </ul>	A A AB	B BA	
	<ul> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> <li>Point</li> <li>Member</li> <li>Distribution factor</li> <li>Fixed end moment</li> </ul>	A AB -62.5	B BA 62.5	
	<ul> <li>2. distribution factor :- no distrib</li> <li>3. Moment distribution table.</li> <li>Point <ul> <li>Member</li> <li>Distribution factor</li> <li>Fixed end moment</li> <li>Balance Carry Over To B</li> </ul> </li> </ul>	A AB -62.5 -31.25	B BA 62.5 62.25	

a)	wind pre induced	ry wall 6 m high of solid rectangular section 3 m wide 1 m thick. A horizontal essure 950 N/m ² acts on a 3 m side. Find the maximum and minimum stress at base, if the density of masonry is 19.5 kN/m ³ . Tess diagram	
Ans :	Given H = 6 m, B = 3 m, T = 1 m, P = 950 N/m ² act on 3 m side		
	$\gamma_{\rm m} = 19.5 \ {\rm kN/m}^3$		
	i)	Calculate masonry Weight of the wall	
		$W = A \times H \times \gamma_m$	
		= $3 \times 1 \times 6 \times 19.5$ W = $351 \text{ kN}$	1 M
	ii)	Calculate Area A = $3 \times 1 = 3 \text{ m}^2$	
	iii)	Calculate Direct stress $\sigma_{\rm D} = \frac{W}{A} = \frac{351}{3} = 117 \ kN/m^2$	1 M
	iv)	Calculate Bending stress $\sigma_{\rm b} = \frac{M}{L} x Y$	
		$\sigma_{b} = \frac{M}{I} x Y$ $M = P \times \frac{h}{2}$ $P = \text{Total wind load}$ $P = \text{wind pressure intensity x projected area}$	
		$P = \rho \times A$	
		P = 0.95 x 3 x 6 = 17.1 kN	
		M = 17.1 x $\frac{6}{2}$ = 51.3 KN.m	1 M
	v)	Calculate Moment of inertia $b = 3 \text{ m}, d = 1 \text{ m}$	
		$I_{xx} = \frac{bd^3}{12} = \frac{3 x 1^3}{12} = 0.25 \text{ m}^4$	1 64
		$y = \frac{d}{2} = \frac{1}{2} = 0.5 \text{ m.}$	1 M
		$\sigma_{\rm b} = \frac{51.3}{0.25} x \ 0.5$	1.64
		$\sigma_{\rm b} = 102.6 \ kN/m^2$	1 M
	vi)	Calculate Minimum & Maximum stresses	1 M
		$\sigma_{\rm max} = \sigma_{\rm D} + \sigma_{\rm b} = 117 + 102.6 = 219.6 \ kN/m^2$	1 101
		$\sigma_{\rm min} = \sigma_{\rm D} - \sigma_{\rm b} = 117 - 102.6 = 14.4 \ kN/m^2$	1 M
	vii)	Draw stress distribution diagram	1 M
		$ \begin{array}{c c} & \sigma_{\min} = 14.4 \\ & kN/m^2 \end{array} $	
	$\sigma_{\max} = 2$ $\frac{kN/m^2}{k}$	219.6	





angle CAF = angle AFC =  $\theta$  $\tan \theta = \left(\frac{0.5}{0.25}\right)$ 1 M  $[\theta = 63.436]^{0}$ Now angle CFD =  $180 - \theta - \theta$ = 180 - 63.43 - 63.43 Angle **CFD** =  $53.13^{\circ}$ 1 M 3) Take the section 1 - 1 passing through members CD, FD, FG Consider F_{CD}, F_{FD} & F_{FG} as tensile and consider equilibrium of all forces to the left of section 1 -1 a)  $\sum M_F = 0$ clockwise +ve and anticlockwise -ve moment -  $2 \ge 0.5 + F_{CD} \ge 0.5 = 0$  $-1 + F_{CD} \times 0.5 = 0$  $F_{\rm CD} = -\frac{1}{0.5}$ F_{CD} = 2 kN (+ve sign indicate Tension) b)  $\sum M_D = 0$  $-2 \times (0.5 + 0.25) + 7 \times \frac{0.5}{2} - F_{FG} \times 0.5 = 0$  $-1.5 + 1.75 - 0.5 F_{FG} = 0$  $F_{FG} = \frac{-0.25}{0.5}$ 2 M  $F_{FG} = 0.5 \text{ kN}$  (Tensile)  $\sum F_x = 0$  gives  $+3+F_{CD}+F_{FG}+F_{FD}\cos\theta=0$  $+ 3 - 1 + 0.5 + F_{FD} \cos 63.43^{\circ} = 0$  $F_{FD} = \frac{-2.5}{\cos 63.43}$  $F_{FD} = -5.59 \text{ kN}$  (-ve sign indicate compression) 2 M OR The problem can be solved using Method of joints **Consider** joint A  $Joint A \xrightarrow{53:43}{F_{AC}} F_{AC} Cos63:43^{\circ}$ 1 M OR  $\sum F_y = 0$ -2 + F_{AC} sin 63.43⁰ = 0  $F_{AC} = 2.236$  kN (Tension)  $\sum F_x = 0$  $F_{AF} + F_{AC} \cos 63.43^0 = 0$ 1 M  $F_{\rm AF} + 2.236\cos 63.43^0 = 0$  $F_{AF}$  = - 1kN (-ve sign indicate Compression ) **Consider** joint C



Calculate maximum deflection of beam if  $I = 8 \times 10^7 \text{ mm}^4$  $E = 2 \times 10^5 \text{ mm}^2$ Using macullays method Calculate support reactions  $\sum M_A = 0$  clockwise +ve and anticlockwise -ve moment  $-R_B x 4 + 10 x 6 = 0$  $R_B = 15 \text{ kN}$  $\sum f_y = 0$  $R_{\rm A} + R_{\rm B} = 10$  $R_A + 15 = 10$ 1 M  $R_A = -5 \text{ kN}$  (- ve sign indicate downward reaction)  $EI d^2y / dx^2 = M$  ------Differential equation Consider x from free end of overhang and Considering right side of section (Anti clock wise +ve and Clockwise -ve sign convension) EI  $d^2y / dx^2 = 10x | + 15 (x - 2) |$ X = 2 m x = 6 m EI d²y /dx² = -10 x  $+ 15 \frac{(x-2)^2}{2}$  ------- Slope equation EI y =  $-5 \frac{x^3}{2} + C_1 x + C_2 = 15 \frac{(x-2)^3}{6}$  ------Deflection equation Calculate the constants of integration using boundry condition i) At x = 2 m y = 0 putting in **Deflection equation**  $EI(0) = -\frac{5}{2} (2)^3 + C_1 x 2 + C_2 + \frac{15(2-2)^3}{6}$  $0 = -13.333 + 2 C_1 + C_2$ 2 C_1 + C_2 = + 13.333 ------ (1) ii) At x = 6 m, y = 0 putting in Deflection equation EI(0) =  $-\frac{5}{3}$  (6)³ + 6 C₁ + C₂ +  $\frac{15(6-2)^3}{4}$  $= -360 + 6 C_1 + C_2 + 160$  $6 C_1 + C_2 = +200$  -----(II) Solving two simultaneous equation  $C_1 = 46.67$  $C_2 = -80$ 2 M Putting values if C₁ & C₂ & rewriting slope & deflection equation EI  $\frac{dy}{dx} = -5 x^2 + 46.67 + 15 \frac{(x-2)^2}{2}$  ------ Final Slope equation

	EI y = $-5 \frac{x^3}{3} + 46.67 \text{ x} - 80 + \frac{15(x-2)^3}{6}$ Final Deflection equation		
	Maximum deflection will be their where slope is zero.	1 M	
	Putting $\frac{dy}{dx} = 0$ in slope equation to get distance x where deflection level is maximum.		
	$0 = -5 x^{2} + 46.67 + 7.5 (x - 2)^{2}$		
	$0 = -5x^{2} + 46.67 + 7.5(x^{2} - 4x + 4)$		
	$0 = -5 x^{2} + 46.67 + 7.5 x^{2} - 30x + 30$		
	$2.5 x^2 - 30x + 76.67 = 0$		
	Solving quadratic equation	1	
	x = 8.3 m, $x = 3.69 m$ deflection is maximum putting in deflection equation.	1 M	
	Hence deflection is maximum at $x = 3.69$ m		
	EI ymax = $-\frac{5}{3}$ (3.69) ³ +46.67 x (3.69) - 80 + $\frac{15}{6}$ (3.69 - 2) ³		
	EI ymax = - 83.739 + 172.212 - 80 + 12.067		
	•		
	$ymax = \frac{20.54}{EI}$		
	Putting values of E = $2 \times 10^5 \text{ N/mm}^2$ , I = $8 \times 10^7 \text{ mm}^4$	1 M	
	$EI = 16 \times 10^3 \text{ kN}.\text{m}^2$		
	$ymax = \frac{20.54}{16 \times 10^8}$		
	$ymax = 1.2837 \times 10^{-3} m$		
	ymax = 1.2837 mm		
	(distance x can be considered from left support and problem can be solved if student		
	solves problem by considering x from left support appropriate marks shall be given to	1 M	
	the students accordingly.)		
<b>b</b> )	Draw SFD and BMD for beam show in fig.		
	2101 2101		
	3 kN 3 kN		
	5 kN/m		
	A		
	ВС		
	1.5 m 1.5 m 3.0 m		
Ans :	1) Calculate Reactions of a beam by considering beam as a simply supported beam		
	$\sum M_A = 0$		
	$-R_{\rm D} \ge 6 + 3 \ge 1.5 + 3 \ge 3 + 5 \ge 6 \ge \frac{6}{2} = 0$		
	$R_{\rm D} = 17.25 \ \rm kN$		
	$R_A + R_D = 3 + 3 + 5 \times 6$		
	$R_A = 36 - 17.25$	1 M	
	$R_A = 18.75 \text{ kN}$	-	
	2) Calculate Simply Supported BM		
	$\mathbf{m}_{\mathrm{A}} = \mathbf{M}_{\mathrm{D}} = 0$		
	$m_B = 18.75 \times 1.5 - 5 \times 1.5 \times \frac{1.5}{2}$		
	$m_{\rm B} = 28.125 - 5.625$		
	1 L25 TOS 17422		







