

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

17512

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.	a)	Attempt any <u>THREE</u> of the following:	12
	(i)	Describe generations of operating system.	4M
	Ans.	Generations of operating system:	
		1. First generation 1945 – 1955 - vacuum tubes, plug boards	
		The earliest electronic digital computers had no operating systems.	
		Machines of the time were so primitive that programs were often	
		entered one bit at time on rows of mechanical switches (plug boards).	
		Programming languages were unknown (not even assembly	Four
		languages).	generati
		2. The 1950's - Second Generation	ons 1M
		Second generation 1955 – 1965 - transistors, batch systems	each
		By the early 1950's, the routine had improved somewhat with the	
		introduction of punch cards.	
		The General Motors Research Laboratories implemented the first	
		operating systems in early 1950's for their IBM 701. The system of	
		the 50's generally ran one job at a time. These were called single-	
		stream batch processing systems because programs and data were	
		submitted in groups or batches.	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

(ii)	Third The sy they w runnin develo in main needed device 4. The Fourth With chips, compu- evolve compu-	vere able to take better advantage ag several jobs at once. So oped the concept of multiprogram in memory at once; a processor d to keep several jobs advancing is in use. The Fourth Generation a generation 1980 – present person the development of LSI (Lar operating system entered in the other and the workstation age and to the point that it becom- inters as powerful as the mainfram	batch processing systems, but e of the computer's resources by operating systems designers mming in which several jobs are is switched from job to job as g while keeping the peripheral onal computers ge Scale Integration) circuits, system entered in the personal e. Microprocessor technology nes possible to build desktop	4M
		licrokernel operating system s		
Ans.	S.	Monolithic operating	Mianakarnal ananating	
	Sr. No.	Monolithic operating system structure	Microkernel operating system structure	
	1	Kernel size is large	Kernel size is small	
	2	OS is complex to design	OS is easy to design, install and implement	Any
	3	Fast execution	Slow execution	four
	4	All operating system services	Kernel provides only IPC	points
		are included in kernel	and low level	1M each
	5	No message passing, no context switching required while kernel is performing jobs.		IM each
	5	No message passing, no context switching required while kernel is performing	and low level It requires message passing	IM each
	6	No message passing, no context switching required while kernel is performing jobs. It is hard to extend	and low level It requires message passing and context switching It is easy to extend	
(iii)	6 Enlist	No message passing, no context switching required while kernel is performing jobs. It is hard to extend the different states of process	and low level It requires message passing and context switching	IM each
	6 Enlist state t	No message passing, no context switching required while kernel is performing jobs. It is hard to extend the different states of process ransitions.	and low level It requires message passing and context switching It is easy to extend	
(iii) Ans.	6 Enlist state t 1 New	No message passing, no context switching required while kernel is performing jobs. It is hard to extend the different states of process ransitions. The process is being created.	and low level It requires message passing and context switching It is easy to extend and draw diagram of process	
	6 Enlist state t 1 New 2 Read	No message passing, no context switching required while kernel is performing jobs. It is hard to extend the different states of process ransitions. The process is being created. dy: The process is waiting to be	and low level It requires message passing and context switching It is easy to extend	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Ope	rating System Subject Code: 17	/512
	operating system so that they can run. 3 Running: Process instructions are being executed (i.e. The process that is currently being executed). 4 Waiting: The process is waiting for some event to occur (such as the completion of an I/O operation). 5 Terminated: The process has finished execution. 5 Terminated: The process has finished execution. 10 or event completion scheduler dispatch I/O or event wait waiting	Enlist 2M Diagram 2M
(iv)	With suitable diagram, describe the concept of swapping.	4 M
Ans.	Swapping: A process must be in the main memory so that it can execute. Swapping is a memory/process management technique used by the operating system to increase the utilization of the processor. A process in execution may go into blocked state due to expiry of time quantum, occurrence of interrupt, etc. when a process is in blocked state and next process is waiting for execution then operating system performs swapping. Swapping is a process of moving blocked process from the main memory to the backing store and new process from backing store to main memory. Swapping forms a queue of temporarily suspended process and the execution continues with the newly arrived process.	Explana tion 2M
	operating system 1 swap out 2 swap in user space main memory	Diagram 2M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code: 17512

Г			
		In the above diagram, two processes P1 and P2 are shown. A process	
		P1 is in main memory and in blocked state. Process P2 is in backing	
		store waiting for its turn to execute. As P1 is blocked, operating	
		system swap out this process by moving it from main memory to	
		backing store and swap in process P2 by loading it from backing store	
		to main memory. This process of swap out and swap in is called as	
		swapping of processes.	
1.	b)	Attempt any <u>ONE</u> of the following:	6
	(i)	With suitable diagram describe scheduling queues.	6M
	Ans.	Scheduling queues refers to queues of processes or devices. When the	
		process enters into the system, then this process is put into a job	
		queue. This queue consists of all processes in the system. The	
		operating system also maintains other queues such as device queue.	
		Device queue is a queue for which multiple processes are waiting for	
		a particular I/O device. Each device has its own device queue.	Descript
		This figure shows the queuing diagram of process scheduling.	ion 4M
		• Queue is represented by rectangular box.	
		• The circles represent the resources that serve the queues.	
		• The arrows indicate the process flow in the system.	
		• The arrows maleate the process now in the system.	
		Queues are of two types	
		Ready queue	
		• Device queue	
		A newly arrived process is put in the ready queue. Processes waits in	
		ready queue for allocating the CPU.	
		Once the CPU is assigned to a process, then that process will execute.	
		While executing the process, any one of the following events can	
		occur.	
		• The process could issue an I/O request and then it would be placed	
		in an I/O queue.	
		• The process could create new sub process and will wait for its	
		• The process could create new sub process and will wait for its termination.	
		The process could be removed forcibly from the CPU, as a result of	
		interrupt and put back in the ready queue.	
		Deady queues The processes that are residing in main memory and	
		Ready queue : The processes that are residing in main memory and	
		are ready and waiting to execute are kept on a list called the ready	
		queue.	
		Job queue: As processes enter the system they are put into a job	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

	queue. Device queue: The list of processes waiting for a particular I/O device is called a device queue.	Diagram 2M
(ii) Ans.	Calculate average waiting time for following scheduling Algorithm. 1) Round Bobin scheduling algorithm (Time slice: 2m sec) 2) SIF scheduling Jobs Arrival Time Processing time A 0 3 B 1 1 C 2 5 D 3 4	6M
	1) Round Bobin scheduling algorithm (Time slice: 2m sec): A B C D A C D $C0 2 3 5 7 8 10 12 13Waiting time A=7-2-0=5B=2-1=1C=12-4-2=6D=10-2-3=5AWT=5+1+6+5/4=4.25$ ms	RR=3m

Subj	ject: Oper	cating System Subject Code: 17	/512
		2) Instead of SIF Considering SJF Preemptive SJF	
		A B A D C 0 1 2 4 8 13	SHE 2
		Waiting Time A=2-1=1 B=0 C=8-2=6 D=4-3=1 AWT=1+0+6+1=8/4=2 ms	SJF=3m
		OR Non-Preemptive SJF	
		A B D C	
		0 3 4 8 13	
		Waiting Time A=0 B=3-1=2 C=8-2=6 D=4-3=1 AWT=0+2+6+1=9/4=2.25 ms	
2.	a)	Attempt any <u>FOUR</u> of the following: Describe distributed system with its two advantages.	16 4M
	Ans.	A distributed system consists of a collection of autonomous computers, connected through a network and distribution middleware, which enables computers to coordinate their activities and to share the resources of the system, so that users perceive the system as a single, integrated computing facility.	
		In such a system the processors do not share memory or a clock; instead, each processor has its own local memory. In such systems, if one machine or site fails the remaining sites can continue operation. So these types of systems are the reliable systems. The processors	Descript ion 2M

WINTER – 2019 EXAMINATION MODEL ANSWER

17512 Subject Code: **Subject: Operating System** communicate with one another through various communications lines, such as a high speed buses or telephone lines. These systems are usually referred to as Loosely Coupled Systems or Distributed Systems. The structure shown in figure contains a set of individual computer systems and workstations connected via communication systems. By this structure, we cannot say it is a distributed system because it is the software, not the hardware, that determines whether a system is distributed or not. The users of a true distributed system should not know, on which machine their programs are running and where their files are stored. The advantages of distributed systems are following: With resource sharing facility user at one site may be able to use the resources available at another. • Speedup the exchange of data with one another via electronic Two mail. advanta If one site fails in a distributed system, the remaining sites can ges 1M • potentially continue operating. each • Better service to the customers. • Reduction of the load on the host computer. Reduction of delays in data processing. b) List and describe any four services provided by operating system. 4M1. User interface Ans. 2. Program execution 3. I/O operations 4. File-system manipulation 5. Communications 6. Error detection 7. Accounting 8. Resource allocation List and 9. protection and security explanat ion of

	ion oj
1. User interface: Almost all operating systems have a user interface	any four
(UI). The interface can take several forms. One is a command-line	services
interface(CLI), which uses text commands and a method for entering	1M each
them (say, a program to allow entering and editing of	
commands). Another is a batch interface, in which commands and	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

directives to control those commands are entered into files, and those	
files are executed . Most commonly, a graphical user interface (GUI)	
is used.	
2. Program execution: The operating system loads the contents (or	
sections) of a file into memory and begins its execution. A user-level	
program could not be trusted to properly allocate CPU time.	
3. I/O operations: Disks, tapes, serial lines, and other devices must	
be communicated with at a very low level. The user need to only	
specify the device and the operation to perform on it, while the	
system converts that request into device- or controller-specific	
commands.	
4. File-system manipulation: There are many details in file creation,	
deletion, allocation, and naming that users should not have to per-	
form. Blocks of disk space are used by files and must be tracked.	
Deleting a file requires removing the name file information and	
freeing the allocated blocks. Protections must also be checked to	
assure proper file access.	
5. Communications: Message passing between systems requires	
messages to be turned into packets of information, sent to the net-	
work controller, transmitted across a communications medium, and	
reassembled by the destination system. Packet ordering and data	
correction must take place.	
6. Error detection: Error detection occurs at both the hardware and	
software levels. At the hardware level, all data transfers must be	
inspected to ensure that data have not been corrupted in transit. All	
data on media must be checked to be sure they have not changed	
since they were written to the media. At the software level, media	
must be checked for data consistency; for instance, whether the	
number of allocated and unallocated blocks of storage matches the	
total number on the device.	
7. Accounting: We may want to keep track at which users use how	
much and what kind of computer resources. What was the login time	
for a particular user; is he working on the system right now, what is	
the process -1 D for the user, all such in formations we can manage	
using accounting service provided by many multiuser systems.	
8. Resource allocation : When there are multiple users or multiple	
jobs running at the same time. Resources must be allocated to each of	
them. Many different types of resources are managed by the	
operating system. Some (Such as CPU cycles, main memory, and file	
storage) may have special allocation code, whereas others (such as	

MODEL ANSWER			
Subject: Operating System Subject Code: 175		7512	
	I/O devices) may have much more general request and release code. 9. Protection and security: The owners of information stored in multiuser or networked computer system may want to control use of the information .When several separate processes execute concurrently, it should not be possible for one process to interfere with the others or with the operating system itself, and Protection involves ensuring that all access to system resources is controlled. Security of the system from outsiders is also important. Such security starts with requiring each user to authenticate himself or herself to the system, usually by means of a password, to gain access to system resources.		
c) Ans.	Describe critical section problem with example. Each process contains two sections. One is critical section where a process may need to access common variable or objects and other is remaining section containing instructions for processing of shareable objects or local objects of the process. Each process must request for permission to enter inside its critical section. The section of code implementing this request is the entry section. In entry section if a process gets permission to enter the critical section then it works with common data. At this time all other processes are in waiting state for the same data. The critical section is followed by an exit section. Once the process completes its task, it releases the common data in exit section. Then the remaining code placed in the remainder section is executed by the process.	4M Expla tion 2	na

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:	
---------------	--

Code: 17512

	do { Entry section Critical section Exit section Exit section while(TRUE); Two processes cannot execute their critical sections at the same time. The critical section problem is to design a protocol that the processes can use to cooperate i.e. allowing entry to only one process at a time inside the critical section. Before entering into the critical section each process must request for permission to entry inside critical	Example 2M
d)	section. Describe the algorithm for finding out whether or not a system is in a safe. State (Safeter Algorithm)	4 M
Ans.	in a safe. State (Safety Algorithm) Let Work and Finish be vectors of length 'm' and 'n' respectively. Initialize: Work = Available Finish[i] = false; for i=1, 2, 3, 4n 	Correct
	 2) Find an i such that both a) Finish[i] = false b) Needi <= Work if no such i exists goto step (4) 	algorith m 4M
	3) Work = Work + Allocation[i] Finish[i] = true goto step (2)	
e)	4) if Finish [i] = true for all i then the system is in a safe stateGive difference between contiguous file allocation and linked file	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

	allocation wit	h respect to access, fra	gmentation, size and speed.	
Ans.	Criteria	Contiguous Allocation	Linked Allocation	
	Access	Contiguous access of blocks	Random access	Each
	Fragmentati on	Suffers from external fragmentation.	Dynamic access without external fragmentation,	point 1M
	Size	Starting block and length required in beginning.	Flexible, A file can continue to grow as there are free blocks.	
	Speed	Fast as blocks are adjacent to each other	Slow as blocks are scattered on to the disk	
f)	With suitable	diagram, describe file	system of UNIX	
Ans.	storing large manage. A file related) data, v characters). A system. The U with its highes slash). Immed subdirectories,	quantities of data suc e can be informally defi which can be logically w file is the smallest u nix file system has a hie st level directory called diately below the roc	gy for logically organizing an eh that the system is easy ned as a collection of (typical viewed as a stream of bytes (i nit of storage in the Unix f erarchical (or tree-like) structu root (denoted by /, pronounc ot level directory are seven n system files. Below this c	to ly le. ile re ed <i>Descri</i> ral <i>ion 2M</i>

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

foo bar
3.Attempt any FOUR of the following:16a)Describe real time system with its two types.4M
a)Describe real time system with its two types.4MAns.Real time systems are used in environment where a large number of
events, mostly external to the computer system, must be accepted and
processes in a short time or within certain deadlines. Such Description
applications include real-time simulations, flight control, industrial <i>ion of</i> control, military applications etc. <i>real time</i>
A primary objective of real-time systems is to provide quick event $2M$
response time and thus meet the scheduling deadlines. User
convenience and resource utilization are of secondary concern to real-
time system designers. In Real time systems, processor is allocated to the highest priority
process among those that are ready to execute. Higher priority
processes preempt execution of the lower priority processes. This
form is called as 'priority –based preemptive scheduling'.
The primary functions of the real time operating system are to:
1. Manage the processor and other system resources to meet the
requirements of an application.2. Synchronize with and respond to the system events.
3. Move the data efficiently among processes and to perform
coordination among these processes.
Types of real time system:

Subject: Ope	rating System Subject Code: 17	/512
	 Hard real time:- Hard real time means strict about adherence of each task deadline. When an event occurs, it should be serviced within the predictable time at all times in a given hard real time system. <i>Example:</i> - video transmission, each picture frame and audio must be transferred at fixed rate. Soft real time:- Soft real time means that only the precedence and sequence for the task operations are defined, interrupt latencies and context switching latencies are small. There can be few deviations between expected latencies of the tasks and observed time constraints and a few deadline misses are accepted. It allows small delay in response or deadline. <i>Example:</i>-Mobile phone, digital cameras and orchestra playing 	2 types- descripti on of each 1M
b)	robots.Enlist the activities of process management component and file management component of operating system.	4M
Ans.	 Process management activities: 1. Creating and deleting both user and system processes. 2. Suspending and resuming processes. 3. Providing mechanism for process synchronization. 4. Providing mechanisms for process communication 5. Providing mechanisms for deadlock handling. File management activities: 1. Creating and deleting files. 	list of activities of each compon ent 2M
	 Creating and deleting files. Creating and deleting directories to organize files. Supporting primitives for manipulating files and directories. Mapping files onto secondary storage. Backing up files on stable (nonvolatile) storage media. 	
c) Ans.	 Describe any two models of multithreading. 1. Many-to-One: - This model maps many user level threads to on kernel level thread. Thread management is done by thread library in user space. 	4M
	Advantages:-	

WINTER – 2019 EXAMINATION **MODEL ANSWER**

Subject: Operating System

WINTER – 2019 EXAMINATION **MODEL ANSWER**

Subject: Operating System

WINTER – 2019 EXAMINATION MODEL ANSWER

MODEL ANSWER				
Subject: Operating SystemSubject Code:17.			7512	
	number (p) and Page number is The page table memory. This base add	l a page offset (d). s used as an index into a pa e contains the base addre	ess of each page in physical ne page offset to define the	
e)		ce between linux and hitecture, processing spe	unix with respect to user ed and security.	4M
Ans.	Parameter	Linux	Unix	
	User interface	Linux typically provides two GUIs, KDE and Gnome. But there are millions of alternatives such as LXDE, Xfce, Unity, Mate, twm, etc Initially Unix was a command based OS, but later a GUI was created called Common Desktop Environment. Most distributions now ship with Gnome.	Initially Unix was a command based OS, but later a GUI was created called Common Desktop Environment. Most distributions now ship with Gnome.	Each point 1M
	Architectur e Processing speed	Originally developed for Intel's x86 hardware, ports available for over two dozen CPU types including ARM Low: As it is GUI based processing time	It is available on PA- RISC and Itanium machines. Solaris also available for x86/x64 based systems. OSX is PowerPC(10.0- 10.5)/x86(10.4)/x64(10. 5-10.8) High: As it is command based direct interpretation of	
		is more as compare to UNIX	interpretation of commands is done so it takes less time as compare to LINUX	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code: 17512

		Converter Linux has had should be available of]		
		Security Linux has had about A rough estimate of			
		60-100 viruses listed UNIX viruses is			
		till date. None of them between 85 -120 viruses			
		actively is spreading reported till date.			
		nowadays.			
4.	a)	Attempt any <u>THREE</u> of the following:	12		
	(i)	Describe with diagram CPU utilization in multiprogramming	4 M		
		system.			
	Ans.	In multiprogramming, more than one program exist in the memory			
		i.e. in terms of Operating system, the scheduler selects the jobs to be			
		placed in ready queue from a number of programs. The ready queue			
		is placed in memory and the existence of more than one program in			
		main memory is known as multiprogramming.			
		Since there is only once processor, there can be no simultaneous			
		execution of different programs. Instead the operating system			
		executes part of one program, then the part of another and so on.			
		Multiprogramming is the simple form of parallel processing in which			
		several programs run at the same time on a processor.			
		Multiprogramming peoded for officiency			
		•Single user cannot keep CPU and I/O devices busy at all times.			
		•Multiprogramming organizes jobs (code and data) so CPU always			
		has one to execute.			
		•A subset of total jobs in system is kept in memory.			
		•One job selected and run via job scheduling.			
		•One job selected and run via job scheduling. •When it has to wait (for I/O for example), OS switches to another			
		job.			
		J00.			
		P1 Run Wait Run Wait			
		P2 Run Wait Run Wait			
			Diagram		
			2M		
		P3 Wait Run Wait Run			
		P1, P2, P3 Run Run Run Wait Run Run Wait			
			1		

Subject: Oper	cating System Subject Code: 1	7512
	In the above diagram, three processes are shown. When CPU is allocated to the process it goes into executing state. When process P1 is executing other two processes (P2,P3) are in waiting state. When process P2 is executing processes (P1,P3) are in waiting and when process P3 is executing processes (P1,P2) are in waiting state. At a time only one process can have CPU for execution.	ion 2M
(ii) Ans.	 State and describe any four types of system calls. Process Control:- Program in execution is a process. When a process is running it must be able to stop its execution either normally or abnormally. A process or job executing one program may load and execute another program. When a process is created system allocates memory to it whereas when a process is terminated system deallocates memory from system. During process existence in the system it may need to wait, create or terminate child process. end, abort load, execute create process, terminate process get process attributes, set process attributes wait for time wait event, signal event allocate and free memory File Management:- System allows us to create and delete files. For create and delete operation system call requires the name of the file and other attributes for performing operations on file and directories. create file, delete file open close read, write, reposition get file attributes, set device attributes logically attach or detach devices 	Any four types 1M each

WINTER – 2019 EXAMINATION **MODEL ANSWER**

Subject: Operating System

17512 Subject Code: so on. If the resource is available it is assigned to the process .When the resource is not available process has to wait until resources are available. When resources are available operating system allocates resources to the process. • request device, release device • read, write, reposition • get device attributes, set device attributes • logically attach or detach devices **Information Maintenance:-**Transferring information between the user program and the operating system requires system call. System information includes displaying current date and time, the number of current user, the version number of the operating system, the amount of free memory or disk space and so on. Operating system keeps information about all its processes that can be accessed with system calls such as get process attributes and set process attributes. • get time or date, set time or date • get system data, set system data • get process, file, or devices attributes • set process, file, or devices attributes **Communication:**system communicate with each other. Processes in the Communication is done by using two models: message passing and shared memory. For transferring messages, sender process connects itself to receiving process by specifying receiving process name or identity.

- create, delete communication connection • send, receive messages
- transfer status information
- attach or detach remote devices.

(iii) Give difference between short term scheduler and long term **4M** scheduler (four points) Ans.

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

		Γ		
	Sr.	Short term scheduler	Long term scheduler	
	No	It is a CPU scheduler	It is a job scheduler	
	2	It selects processes from	It selects processes from job	
	_	ready queue which are	pool and loads them into main	
		ready to execute and	memory for execution.	Any
		allocates CPU to one of		four
	2	them.	A	points
	3	Access ready queue and CPU.	Access job pool and ready queue	IM each
	4	It executes frequently. It	It executes much less	
		executes when CPU is	frequently. It executes when	
		available for allocation.	memory has space to accommodate new process.	
	5	Speed is fast	Speed is less than short term	
	C		scheduler	
	6	It does not control degree	It controls the degree of	
		of multiprogramming	multiprogramming	
(iv)	Describe with suitable diagram two level directory structure. Also			4M
		two advantages.		
Ans.		el directory:-	n has its own waan file dimestant.	
			r has its own user file directory single user. System contains a	
		-	is indexed by user name or	Descript
			points to the UFD for that user.	ion 2M
		•	, only his own UFD is searched.	
		_	he same name, as long as all the	
	file name	es within each UFD are unic	que. When we create a file for a	
	_		that user's UFD same name file	
	• •	-	deleting a file again operating	
	system ch	necks the file name in the use	er' UFD only.	
	elsvistin konsta	of the entire file system stringship	Amanine contraits and structure	
	i since i s	master file directory user 1 user	2 user 3 user 4	
	381 36123		use the can e con	Diagram
	user file		lata a test x data a	1M
	E BALL AND	$\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$		
	CONCIDE.	North State 989 81 Abirly Arothe	n b-Manik Griff ini Thornafitth ^{na 19446}	
				2

Subject: Operating System

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject Code:

~~J	cen ope		
		 Advantages:- It solves the problem of name-collision. It provides security to each user's data. 	advanta ges ^{1/2} M each`
4.	b) (i)	Attempt any ONE Describe layered structure of operating system with two advantages and two disadvantages.	6 6M
	Ans.	Application Program User Mode System Call Interface Layer N Layer 1 Layer 0 Hardware	Diagram 2M
		The modules of the operating system are divided into several layers stacked one above the other, thus forming a hierarchical structure. The lowest layer (Layer 0) interacts with the underlying hardware and the topmost layer (Layer N) provides an interface to the application programs/ users. Only adjacent layers can communicate with each other. A layer N can request for services only from a layer immediately below it (layer N-1). A layer N can provide services only to the layer immediately above it (layer N + 1). A Layer only needs to know what services are offered by the layer below it. In this structure any request that requires access to hardware has to go through all layers. Bypassing of layers is not allowed.	Descript ion 2M
		 Advantage: - This approach makes it easy to build, maintain and enhance the operating system. Locating an error is easy as system can start debugging from 0th 	Two advanta ge ^{1/2} M each

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Ope	rating System Subject Code: 17	/512
	layer and proceed further covering entire system if required.	
	 Disadvantage: - Overall performance speed is slow as requests pass through multiple layers of software before they reach the hardware. It is difficult to exactly assign functionalities to the correct and appropriate layer. 	Two disadvan tages ^{1/2} M each
(ii)	Write steps involved in Banker's algorithm. Also give one	6M
Ans.	example for it. Banker's algorithm calculates resources allocated, required and available before allocating resources to any process to avoid deadlock. It contains two matrices on a dynamic basis. Matrix A contains resources allocated to different processes at a given time. Matrix B maintains the resources which are still required by different processes at the same time. F: Free resources	
	 Algorithm : Step 1: When a process requests for a resource, the OS allocates it on a trial basis. Step 2: After trial allocation, the OS updates all the matrices and vectors. This updating can be done by the OS in a separate work area in the memory. Step 3: It compares F vector with each row of matrix B on a vector to vector basis. Step 4: If F is smaller than each of the row in Matrix B i.e. even if all free resources are allocated to any process in Matrix B and not a single process can completes its task then OS concludes that the system is in unstable state. Step 5: If F is greater than any row for a process in Matrix B the OS allocates all required resources for that process on a trial basis. It assumes that after completion of process, it will release all the recourses allocated to it. These resources can be added to the free vector. Step 6: After execution of a process, it removes the row indicating executed process from both matrices. Step 7: This algorithm will repeat the procedure step 3 for each process from the matrices and finds that all processes can complete execution without entering unsafe state. For each request for any 	Steps of algorith m 3M

WINTER – 2019 EXAMINATION MODEL ANSWER

		Γ	
Subject: Ope	rating System	Subject Code: 17	7512
Subject: Ope	resource by a process OS goes through all these allocation and updation. After this if the system state, and then changes can be made in actual mat Example: 3 processes P_0 through $P2$; 3 resource types: A (10 instances), B (5instances), and C (7 instance Snapshot at time T_0 : $\frac{A}{BC} = \frac{B}{ABC} = \frac{Available}{ABC} = ABC = ABC$ $P_0 = 0 \ 10 = 7 \ 4 = 3 \ 545$ $P_1 = 2 \ 0 = 1 \ 2 \ 2 = 2 \ 2 = 2 \ 3 \ 0 \ 2 = 6 \ 0 \ 0 \ 0 \ 0 = 1 \ 2 \ 2 = 2 \ 2 = 2 \ 3 \ 0 \ 2 = 6 \ 0 \ 0 \ 0 \ 0 = 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	e trials of imaginary remains in the safe trices. ces) C Max - Allocation burce A is available pdates matrices.	Example 3M
	P1 executes and releases all resources allocated to available resources: 7 4 5With available resources P0 and P2 both the proc system remains in safe state.Operating system actually allocates one resource no deadlock can occur if this request is granted.	cesses can execute so	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject Code: 17512

WINTER – 2019 EXAMINATION MODEL ANSWER

17512 Subject Code: **Subject: Operating System** 2) Message Passing: In this model, communication takes place by exchanging messages between cooperating processes. It allows processes to communicate and synchronize their action without sharing the same address space. It is particularly useful in a **Explanat** distributed environment when communication process may reside on ion of a different computer connected by a network. Communication memory requires sending and receiving messages through the kernel. passing system The processes that want to communicate with each other must have a 2Mcommunication link between them. Between each pair of processes exactly one communication link exist. M process A M process B Diagram 1M2 M kernel **Advantages of Massage Passing:** Two • Explicit sharing advantag • Less error prone $ed^{1/2}M$ • Easier to build parallel hardware. each Enlist the deadlock prevention methods and describe any two in **8M** b) detail. Ans. **Deadlock prevention conditions:-**1. Preventing Mutual exclusion condition 2. Preventing Hold and wait condition Enlist 3. Preventing No preemption condition 2M4. Preventing Circular wait condition 1) Removal of "No Preemption" Condition : This necessary condition specifies that there is no pre-emption of

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code: 17512

resources that have already been allocated. To ensure that this condition does not hold, we can use the following protocol. If a **Descripti** process is holding some resources and requests another resource that on of cannot be immediately allocated to it (that is, the process must wait), any two then all resources the process is currently holding are preempted. In 3M each other words, these resources are implicitly released. The pre-empted resources are added to the list of resources for which the process is waiting. The process will only be restarted when it can regain its old resources, as well as the new ones that it is requesting. For example: If a process requests some resources, we first check if they are available. If so we allocate them. If they are not available, we check whether they are allocated to some other process that is waiting for additional resources. If so, we pre-empt the desired resources from the waiting or held by a waiting process, the requesting process must wait. While it is waiting, some of its resources may be preempted, but only if another process requests them. A process can only be restarted when it is allocated the new resources it is requesting and recovers any resources that we pre-empted while it was waiting. 2) Elimination of "Circular wait" related to deadlock prevention condition: If a circular wait condition is prevented, the problem of the deadlock can be prevented too. Consider all resources are numbered as shown in figure: Number **Resource Name** Tape Drive 0 1 Printer 2 Plotter 3 Card Reader Card Punch 4 Any process has to request for all the required resources in a numerically ascending order during its execution. This would prevent a deadlock. Let us assume that two processes P1and P2 are holding a tape drive and a plotter respectively. A deadlock can take place only ifP1 holds the tape drive and wants the plotter, whereas P2 holds the plotter and requests for the tape drive, i.e. if the order in which the resources are requested by the two processes is exactly apposite. And

this contradicts our assumption. Because 0<2, a tape drive has to be

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code: 1

17512

	Each process can require enumeration. That is, a instances of a resource request instances of ress can demonstrate this fa the set of processes in P11}, where Pi is waiti Pi+l· (Modulo arithme waiting for a resource T holding resource Ri w F(Ri) < F(R;H) for all i < < F(R11) < F (R impossible. Therefore, t	blotter, by each process, whether it is P1 or P2. lest resources only in an increasing order of a process can initially request any number of the type -say, R;. After that, the process can cource type Rj if and only if $F(Rj) > F(R;)$. We act by assuming that a circular wait exists. Let volved in the circular wait be { P0, P1,, ling for a resource R;, which is held by process etic is used on the indexes, so that P11 is R11 held by P0.) Then, since process Pi+l is while requesting resource Ri+l' we must have i. But this condition means that $F(Ro) < F(R1)$ Ro). By transitivity, $F(Ro) < F(Ro)$, which is there can be no circular wait.	
c) Ans.	suitable diagram. Also Fixed Partitioning: This is the oldest and a processes in the main partitions (non-overlap partition may or may	riable memory partitioning techniques with o state advantage and disadvantage of each. simplest technique used to put more than one n memory. In this partitioning, number of pping) in RAM are fixed but size of each not be same. As it is contiguous allocation, s allowed. Here partition are made before stem configure.	
	Block size = 4 MB Block size = 8 MB	Free = 3 MB Internal Fragmentation P1 = 1 MB P2 = 7 MB	memory partition with example 4M
	Block size = 8 MB	P3 = 7 MB	
	Block size = 16 MB	P4 = 14 MB Fixed size partition	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subj

oject: Ope	rating System Subject Code:	17512	
	As illustrated in above figure, first process is only consuming 1MI out of 4MB in the main memory Hence, Internal Fragmentation in first block is $(4-1) = 3ME$ Sum of Internal Fragmentation in every block = $(4-1)+(8-7)+(8-7)+(16-14)=3+1+1+2=7MB$.	7. 3 .	
	Suppose process P5 of size 7MB comes. But this process cannot b accommodated inspite of available free space because of contiguou allocation (as spanning is not allowed). Hence, 7MB becomes part of External Fragmentation.	s	
	Advantages of Fixed Partitioning – 1. Easy to implement:. 2. Little OS overhead:		
	 Disadvantages of Fixed Partitioning – 1. Internal Fragmentation: 2. External Fragmentation: 3. Limit process size: 4. Limitation on Degree of Multiprogramming: 		
	Variable Partitioning –		
	It is a part of Contiguous allocation technique. It is used to alleviat the problem faced by Fixed Partitioning. In contrast with fixe partitioning, partitions are not made before the execution or durin system configure. Various features associated with variabl Partitioning-	d g Explan e ion o Varial	of ble
	 Initially RAM is empty and partitions are made during the run time according to process's need instead of partitioning durin system configure. The size of partition will be equal to incoming process. The partition size varies according to the need of the process s that the internal fragmentation can be avoided to ensure efficien utilisation of RAM. Number of partitions in RAM is not fixed and depends on th number of incoming process and Main Memory's size. 	g with examp 4M	ion h ple

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

		Dynamic partitioning		
		Operating system		
		P1 = 2 MB	Block size = 2 MB	
		P2 = 7 MB	Block size = 7 MB	
		P3 = 1 MB	Block size = 1 MB	
		P4 = 5 MB	Block size = 5 MB	
		Empty space of RAM		
		Partition size = process size So, no internal Fragmentation		
		Advantages of Variable Partitioning –		
		1. No Internal Fragmentation.		
		2. No restriction on Degree of Multiprogramming.		
		3. No Limitation on the size of the process.		
		Disadvantages of Variable Partitioning –		
		1. Difficult Implementation		
		2. External Fragmentation		
6.		Attempt any <u>FOUR</u> of the following:		16
	a)	State and describe any four operations on file.		4M
	Ans.	File Operations are:		
		1. Create		
		2. Write		Enlist
		3. Read		
		4. Reposition		
		5. Delete		
		Basic file operations are		
		1. Creating a file. Two steps are necessary to create a file. Space in		
		the file system must be found for the file. An entry for the new file		
		must be made in the directory.		
		2. Writing a file. To write a file, we make a system call specifying		
		both the name of the file and the information to be written to the file.		
		The system must keep a write point		n 3M
		the next write is to take place. The	ne write pointer must be updated	

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

	 whenever a write occurs. 3. Reading a file. To read from a file, we use a system call that specifies the name of the file and where (in memory) the next block of the file should be put. The system needs to keep a read pointer to the location in the file where the next read is to take place. 4. Repositioning within a file. The directory is searched for the appropriate entry, and the current-file-position pointer is repositioned to a given value. Repositioning within a file need not involve any actual I/O. This file operation is also known as a file seek. 5. Deleting a file. To delete a file, we search the directory for the named file. Having found the associated directory entry, we release all file space, so that it can be reused by other files, and erase the directory entry. 	
b) Ans.	 Describe with suitable diagram the concept of system call. System Calls: System calls are programming interface to the services provided by the operating system. A system call is a way for programs to interact with the operating system. System calls provide an essential interface between a process and the operating system. 1. Each system call associated with a particular number. 2. System call interface maintains a table indexed according to these numbers. 3. The system call interface invokes intended system call in operating system kernel& returns status of the system call and any return values. 4. The caller needs to know nothing about how the system call is implemented. Just needs to obey API and understand what OS will do as a result call. 5. Most details of operating system interface hidden from programmers by API. It is managed by run-time support library. 	4M Explana tion 2M

WINTER – 2019 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code: 1

	user mode kernel mode i i i i i i i i i i i i i i i i i i i	Diagram 2M
	System callSystem calls related to process control: End, Abort Load, ExecuteCreate process, Terminate process Ready process, Dispatch processSuspend, Resume Get Process attribute, set attribute Wait for timeWait event, signal eventSystem calls Related to File management: Create file, delete fileOpen file , Close file Create directory Read, write, Reposition, Getfile attribute , set file attribute Create a link Change the workingdirectorySystem calls Related to Device Management: Request a device,Release a device Read, Write, Reposition Get device attribute, setdevice attributeSystem calls Related to Information Maintenance: Get Time or Date,Set Time or Date Get System data, Set system data Get process, file	
c) Ans.	 or device attributes Set process, file or Device attributes. Describe context switch with suitable diagram. Context switch Context Switching involves storing the context or state of a process so that it can be reloaded when required and execution can be resumed from the same point as earlier. This is a feature of a multitasking operating system and allows a single CPU to be shared by multiple processes. Switch the CPU to another process requires saving the state of old process and loading the saved state for new process. This task is known as a context switch. The context switch represented with PCB. 	4M Explana tion 2M

WINTER – 2019 EXAMINATION MODEL ANSWER

17512 Subject Code: **Subject: Operating System** times, particularly if the first process to get there takes a long time. For example, consider the following three processes: **Process Burst Time** Descripti on 2M P1 24 P2 3 P3 3 1) In the first Gantt chart below, process P1 arrives first. The average waiting time for the three processes is (0 + 24 + 27)/3= 17.0 ms. 2) In the second Gantt chart below, the same three processes have an average wait time of (0 + 3 + 6) / 3 = 3.0 ms. The total run time for the three bursts is the same, but in the second case two of the three finish much quicker, and the other process is only delayed by a short amount. P_1 P2 P_3 0 24 27 30 P_2 P3 P_1 3 6 0 30 Example FCFS can also block the system in a busy dynamic system in another 2M way, known as the convoy effect. When one CPU intensive process blocks the CPU, a number of I/O intensive processes can get backed up behind it, leaving the I/O devices idle. When the CPU hog finally relinquishes the CPU, then the I/O processes pass through the CPU quickly, leaving the CPU idle while everyone queues up for I/O, and then the cycle repeats itself when the CPU intensive process gets back to the ready queue.

Subject: Ope	erating System	Subject Code: 1	7512
e) Ans.	Explain the structure of unix operating system The kernel of UNIX is the hub of the operating time and memory to programs and handles communications in response to system calls. As way that the shell and the kernel work together, rm my file (which has the effect of removing the shell searches the file store for the file containing then requests the kernel, through system calls, to rm on my file. When the process rm my file has shell then returns the UNIX prompt % to the use waiting for further commands.	g system: it allocates the file store and an illustration of the suppose a user types he file my file). The g the program rm, and execute the program finished running, the	Explana tion 2M
	 Amongst the functions performed by the kernel Managing the machine's memory and all process. Scheduling the work done by the CPU so the user is carried out as efficiently as is possible. Organizing the transfer of data from one para another. Accepting instructions from the shell and car. Enforcing the access permissions that are system. 	llocating it to each hat the work of each e. art of the machine to rying them out.	
	The shell: The shell acts as an interface between the user and user logs in, the login program checks the user and then starts another program called the s command line interpreter (CLI). It interprets the types in and arranges for them to be carried out. The shell keeps a list of the commands you have to repeat a command, use the cursor keys to scellist or type history for a list of previous command	rname and password, hell. The shell is a e commands the user typed in. If you need roll up and down the	
	 You can use any one of these shells if they a system. And you can switch between the difference have found out if they are available. Bourne shell (sh) C shell (csh) 	•	

