(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: DME <u>Model Answer</u> Subject Code: 17610

WINTER-17 EXAMINATION

Important Instructions to examiners:

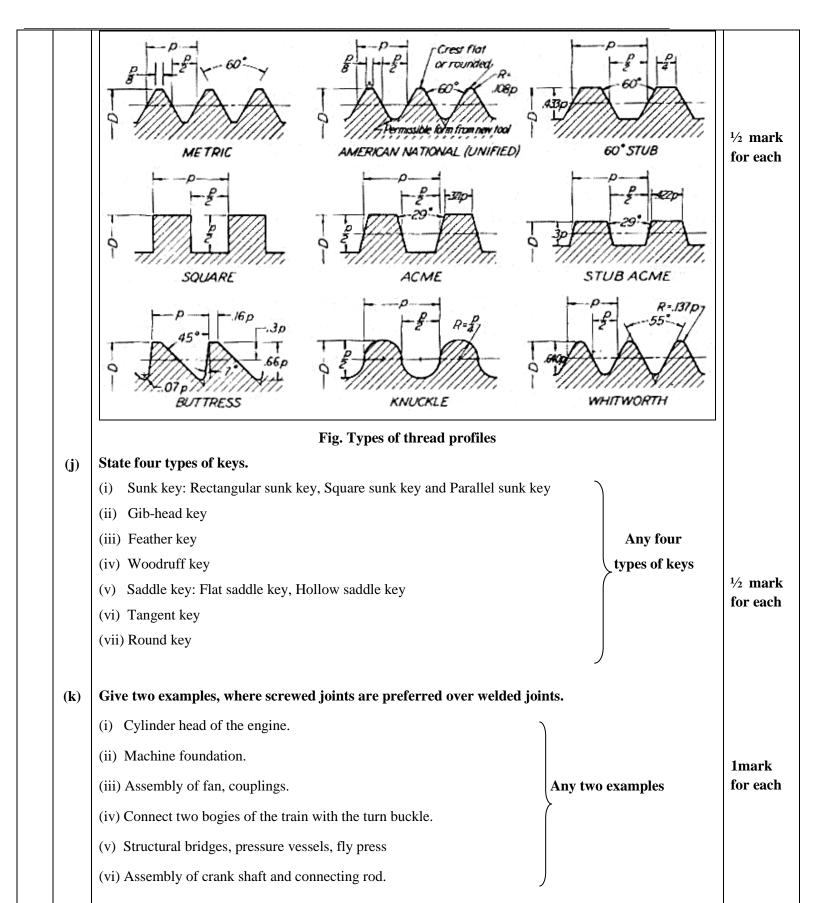
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. No.	Answer	Marking Scheme
01.	(a)	Define machine design.	
		Machine design is the process of selection of the materials, shapes, sizes and arrangements of	
		mechanical elements so that the resultant machine will perform the prescribed task. OR	2
		Machine Design is the creation of new and better machines and improving the existing ones.	
	(b)	Cive the composition of	
		Give the composition of (i) FoF 220. Stool having yield strongth of 220 N/mm²	1
		(i) FeE220: Steel having yield strength of 220 N/mm ² .	_
		(ii) 20C8 : Carbon steel containing 0.15 to 0.25 percent (0.2 percent on average) carbon and 0.60 to	
		0.90 percent (0.80 percent on average) manganese.	1
	(a)	State four types of loads acting on machine elements.	1/
	(c)	(i) Dead or steady load	1/2
		(ii) Live or variable load	1/2
		(iii) Suddenly applied or shock load	1/2
		(iv) Impact load	1/2
	(4)		
	(d)	What do you mean by creep?	
		When a machine part is subjected to a constant stress at high temperature for a long period of time, it	
		will undergo a slow and permanent deformation called 'creep'. This property is considered in designing	
		internal combustion engines, boilers and turbines.	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 17 EXAMINATION

(e)		
	Define Ergonomics.	
	Ergonomics is defined as the scientific study of the man – machine working environment relationship	
	and the application of anatomical, physiological, psychological principles to solve the problems arising	2
	from this relationship.	2
(f)	Give two applications of knuckle joint.	
	(i) A knuckle joint is used to connect two rods which are under the action of tensile loads. However, if	
	the joint is guided, the rods may support a compressive load.	2 mark
	(ii) Its use may be found in the link of a cycle chain, tie rod joint of roof truss, valve rod joint with	for any
	eccentric rod, pump rod joint, tension link in bridge structure and lever and rod connections of	applica on
	various types.	
(g)	Define following towns of anxings	
	Define following terms of spring: (i) Spring rate : The spring rate is defined as the load required per unit deflection of the spring. It is also	
	known as spring stiffness or spring constant. Mathematically,	
	Spring rate, $k = W / \delta$	
	Where, $W = Load$	
	δ = Deflection of the spring	1
	(ii) Spring index: The spring index is defined as the ratio of the mean diameter of the coil to the	
	diameter of the wire. Mathematically,	
	Spring index, $C = D / d$	
	Where, D = Mean diameter of the coil	
	d = Diameter of the wire	
(1.)	How do you express the life of bearings?	1
(h)	• The life of an individual bearing is defined as the total number of revolutions (or the number of hours	
	at a given constant speed) which the bearing can complete before the evidence of fatigue failure	1
	develops on the balls or races.	
	The bearing life can be defined by rating life.	
	• The rating life of a group of apparently identical bearing is defined as the number of revolutions (or	1
	the number of hours at a given constant speed) that 90 percent of a group of bearings will complete or	
	exceed before the first evidence of fatigue failure develops. It is also known as L_{10} life.	
(i)	Draw the different thread profiles used for power screws.(Draw any four thread profiles)	1
(*)	Page 2 of 22	1


رث

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

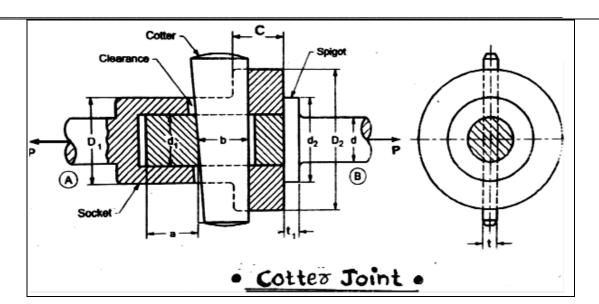
(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 17 EXAMINATION


	<u>(1)</u>	State any form applications of welling contact bearings	½ mark
	(1)	State any four applications of rolling contact bearings.	for each
		(i) Industrial and automotive gear boxes.	
		(ii) Electric motors and machine tool spindles.	
		(iii) Small size centrifugal pumps.	
		(iv) Automobile front and rear axles.	
	(m)	What are the requirement of a good coupling?(Any four)	
		A good coupling should have the following requirements:	½ mark
		(i) It should be easy to connect and disconnect.	for each
		(ii) It should transmit the full power from one shaft to another shaft without losses.	
		(iii) It should hold the shafts in perfect alignment.	
		(iv) It should reduce the transmission of shock loads from one shaft to another shaft.	
		(v) It should have no projecting parts.	
	(n)	Draw stress – strain diagram for brittle material.	
02.	(a)	Fig. Stress vs Strain diagram for Brittle materials Explain various failures to be considered in designing a cotter joint along with the necessary sketches and strength equations.	2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

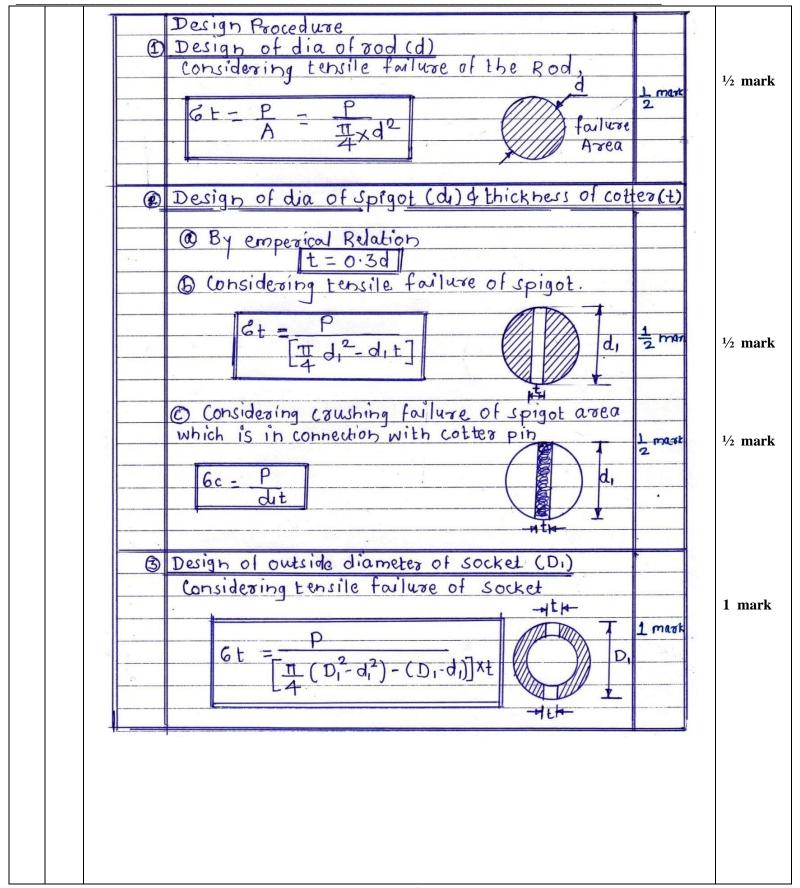
Subject Name: DME <u>Model Answer</u> Subject Code: 17610

1 mark for fig

It consist of 3 elements:

- i. Socket
- ii. Spigot
- iii. Cotter

Where,


- d= End diameter of rod
- d₁= Diameter of spigot/Inside diameter of socket
- d₂= Diameter of spigot collar
- D₁= Outer diameter of socket
- D₂= Diameter of socket collar
- C=Thickness of socket collar
- t₁= Thickness of spigot collar
- t= thickness of cotter
- b= Mean width of cotter
- a= Distance of end of slot to the end of spigot
- P= Axial tensile/compressive force
- σ_t , σ_c , τ = Permissible tensile, compressive, shear stress for the component material

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER- 17 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

4)	Design of distance from end of slot to the end of spigot (a) considering double shear failure along the		½ mar
	two plane, au shown in fig.	1 med 2	½ mar
	3 = P d1		
6	Design of Dia of socket collar (D2)		
	considering cousing failure of socket	1 mark	1 marl
*	$Gc = P$ $(D_2 - d_1) t$ D_2		
6	Design of thickness of socket collar (C)		
(9)	Considering failure of socket and in shearing		
		1 mark	1 mark
	# C H		
0	Design of Dia of socket collar (dz) Considering Crushing, fullure of spigat collar		
1	at the contact area between socket collar	1 mask	1 marl
	$6c = \frac{P}{\frac{\Pi}{4} \left[d_2^2 \cdot d_1^2 \right]} d_1 $		
8	Design of thickness of spigot collar (ti)		
	$3 = \frac{\rho}{\pi d_1 t_1}$	1 mar	½ mar
9	Design of Width of cotter (b) 7 = P Double sheep	1 man	½ mar

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME

Model Answer

Subject Code: 17610

In practice, sometimes the following proportions in terms of the diameter of the rod (d), are used when all components of the cotter joint are made of steel.

$$d_1 = 1.21 d;$$

$$d_2 = 1.5 d;$$

$$D_1 = 1.75 \text{ d};$$
 $D_2 = 2.4 \text{ d};$

$$D_a = 2.4 d$$
:

$$t = 0.3 d;$$

$$b = 1.6 d;$$

$$t_{r} = 0.45 d;$$

$$a = c = 0.75 d$$

Knowing the dimensions, the various stresses induced in the components are calculated and ensured that all are within the permissible limits.

State the theories of elastic failure. Explain maximum normal stress theory and maximum shear **(b)** stress theory with equations.

The principal theories of failure for a member are as follows:(Any four)

2 marks

(i) Maximum principal or normal stress theory

½ mark

(ii) Maximum shear stress theory

each

- (iii) Maximum principal or normal strain theory
- (iv) Maximum strain energy theory
- (v) Maximum distortion energy theory

Maximum normal stress theory

- According to this theory, the elastic failure occurs when the greatest principal stress reaches the elastic limit value in a simple tension test irrespective of the value of other two principal stresses.
- Taking factor of safety (F. S.) into consideration, the maximum principal or normal stress (σ_t) is given by,

$$\sigma_t = \sigma_{vt}/F$$
. S. (for ductile materials)

3

$$\sigma_t = \sigma_{u/} F$$
. S. (for brittle materials)

where, σ_{vt} = Yield point stress in tension as determined from simple tension test

 σ_u = Ultimate stress

• This theory ignores the possibility of failure due to shear stress, therefore it is not used for ductile materials.

Ú

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME <u>Model Answer</u> Subject Code: 17610

- However, for brittle materials which are relatively strong in shear but weak in tension and compression, this theory is generally used.
- This theory is also known as maximum principal stress theory or Rankine's theory.

Maximum Shear Stress Theory

 According to this theory, the failure or yielding occurs at a point in a member when the maximum shear stress reaches a value equal to the shear stress at yield point in a simple tension test.
 Mathematically,

 $\tau_{\text{max}} = \tau_{\text{vt}} / \text{ F. S.}$

where, $\tau_{\text{max}} = \text{Maximum shear stress}$

 τ_{vt} = Shear stress at yield point as determined from simple tension test

F. S = Factor of safety

• Since the shear stress at yield point in a simple tension test is equal to one half the yield stress in tension, therefore

$$\tau_{\text{max}} = \sigma_{\text{vt}} / (2 \text{ x F. S.})$$

- This theory is mostly used for designing members of ductile materials.
- This theory is also known as **Guest's theory or Tresca's theory.**
- (c) (i) State and describe in brief about four ergonomic considerations in the designing of machine elements.

The different areas covered under the ergonomics are:

- 1. Communication between the man (user) and the machine.
- 2. Working environment.
- 3. Human anatomy and posture while using the machine.
- 4. Energy expenditure in hand and foot operations.

Communication between man and machine

- The machine has a display unit and a control unit.
- A man (user) receives the information from the machine display through the sense organs.
- He (or she) then takes the corrective action on the machine controls using the hands or feet.
- This man-machine closed loop system in influenced by the working environmental factors such

3

1 mark

for each

on

cosiderati

Page **9** of **22**

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME <u>Model Answer</u> Subject Code: 17610

as: lighting, noise, temperature, humidity, air circulation, etc.

Working Environment

- The working environment affects significantly the man-machine relationship.
- It affects the efficiency and possibly the health of the operator.
- The major working environmental factors are: Lighting, Noise, Temperature, Humidity and air circulation.

Ergonomics Considerations in Design of Controls

- The control devices should be logically positioned and easily accessible.
- The control operation should involve minimum and smooth moments.
- The control operation should consume minimum energy.
- The controls should be painted in proper colour to attract the attention.

Ergonomics Considerations in the Design of Displays

- The scale should be clear and legible.
- The size of the numbers or letters on the scale should be taken appropriate.
- The pointer should have a knife-edge with a mirror in a dial to minimize the parallax error while taking the readings.
- The scale should be divided in a linear progression such as 0 10 20 30... and not as 0 5 25 45...
- The number of subdivisions between the numbered divisions should be as less as possible.
- The numbering should be in clockwise direction on a circular scale, from left to right on a horizontal scale and from bottom to top on a vertical scale.

(ii) How will select bearing from manufacturer catalogue?

The following steps must be adopted in selecting the bearing from the manufacturer's catalogue:

- 1. Calculate the radial and axial load reaction (F_a and F_r) acting on the bearing.
- 2. Decide the diameter of the shaft on which the bearing is to be mounted.
- 3. Select the proper size of bearing suitable for given application, specified with speed and available space.

4. Find the basic static rating C_0 of the selected bearing from the catalogue.

- 5. Calculate the ratio (F_a/VF_r) and (F_a/C_o) .
- 6. Find the value of x and y i. e. radial and thrust factor from the catalogue. These values depend upon (F_a/VF_r) and (F_a/C_o) .

4 marks

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME <u>Model Answer</u> Subject Code: 17610

- 7. Find the value of load factor or application factor 'K_a' from the catalogue.
- 8. Calculate the equivalent dynamic load by using relation,

$$P_e = (XVF_a + YF_a) K_a$$

- 9. Calculate the approximate bearing life in hours from the type of bearing, operation and type of machinery that depends upon application.
- 10. Calculate the required basic dynamic capacity for the bearing by using relation,

$$L_{10} = \left(C / P_e\right)^a$$
or

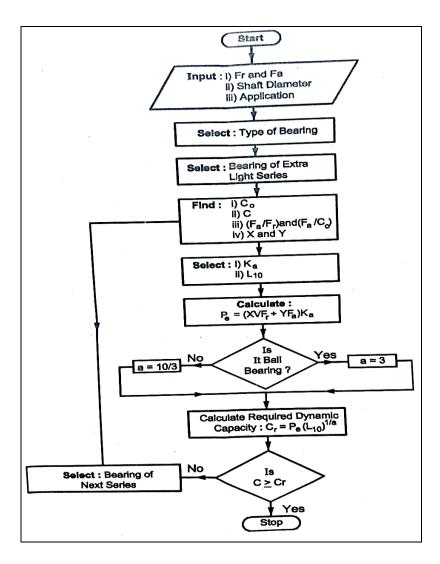
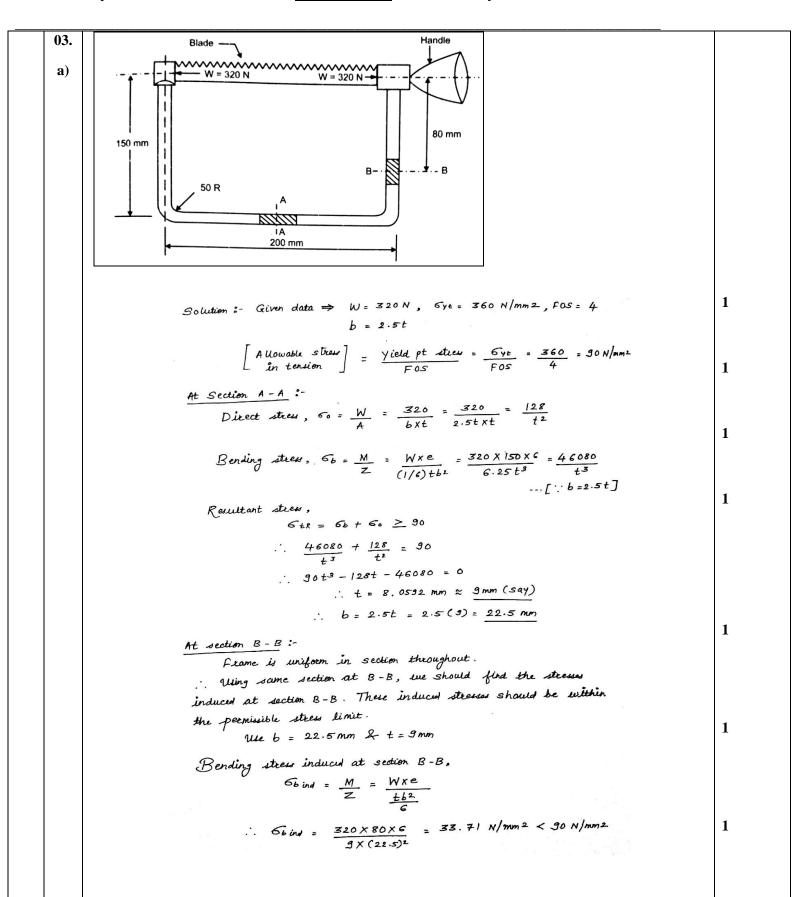


Fig. Procedure for selection of bearing from manufacturer's catalogue

4 marks

(Autonomous)


(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME

Model Answer

Subject Code: **17610**

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 17 EXAMINATION

Subject Name: DME

Model Answer

Subject Code: 17610

	It is less than permissible stress.	1
	It is less than permission to bending stress, there is transverse shear stress.	
	We know, z = 1.5 50	
	which is less than 90 N/mm2	
	Hence, design is safe	
	:. At section $B-B$: - Use, $\frac{b}{t} = 22.5 \text{ mm}$	
h	Solution: Given data \Rightarrow 9 = 20 kW = 20×10 ² W N = 700 x p·m Ts = 40 MPa = 40 N/mm ² = $\sum_{k=1}^{2} \sum_{k=1}^{2} \sum_{k=1}^{$	
b	GERE = 110 N/mm2	
	C = 10 N/mm2, 6 = 6ck = 100 N/mm2, n = 6	
	The power transmitted by shaft, $P = 2\pi NT/60$	
	$Totque, T = \frac{P \times 60}{271N} = \frac{20 \times 10^{3} \times 60}{271 \times 700} = 272.84 \text{ N-m}$	
	$2\pi N$ $2\pi \times 700$ $T = 272.84 \times 10^3 N-mm$	
		1
	We know that, torque transmitted by shaft is given by, $T = \frac{II}{16} \times Z_S \times d^3$	
	$\therefore 272.84 \times 10^{3} = \frac{11}{10} \times 40 \times d^{3}$	
	: d = 32.6290 mm ≈ 33 mm (say)	
	:. Diameter of shaft, d = 33 mm	1
	Step I: Design of Hub	
	usual proportions ste, D = Outer diameter of his	
	$L = Length - ef hub = 1.5d = 1.5 \times 33 = 44.5 \text{ min}$	
	$k = \frac{d}{D} = \frac{33}{66} = 0.5$	1
	Considering hub as a hallow shaft transmitting the same torque as that	
	of the shaft, we have,	
	$T = \frac{\pi}{16} \times Cci \times D^{2} (1 - k^{4})$	
	$\therefore 272.84 \times 10^{3} = \frac{\pi}{16} \times \mathbb{Z}_{6} \times (66)^{3} \times \left[1 - (0.5)^{4}\right]$	
	:. Zci = 5.15 N/mm2 < 10 N/mm2	1
	Thus, the induced shear stress in the cost iron hub is less than	
	the given permissible shear stress Hence, the design is sefe.	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME

Model Answer

Subject Code: 17610

Step-II: Design of flange Take, t1 = d = 33 = 16.5 mm While teansmitting the toeque, the flange is under shear. T = Circumference of hub x Thickness of flange x Shear stress x Radius of hub T = (TIXD) x tx x Zx x D 272.84×103 = TX66×16.5× Z1× 66 : Tf = 2.42 N/mm2 < 10 N/mm2 Thus, induced shear stress is less than given permissible shear stress for flange material. Huna, design is safe. The other proportions are, $D_2 = 4d = 4 \times 33 = 132 \text{ mm}$ & thickness of protective circumferential plange, tp = 0.25 d = 0.25 x 33 = 8.25 mm Step-II :- Design of botts The botts are subjected to shear steers due to lorgue transmitted. ... Load on each bott = $\frac{\pi}{4} \times (dc)^2 \times \zeta_b$.. Total load on all both = n x II x (dc)2 x Tb ... Torque transmitted = Load x radius = $n \times \frac{\pi}{4} \times (dc)^2 \times \frac{D_1}{2}$ Jaking, $D_1 = 3d = 3(33) = 99 \text{ mm}$ 2 m = 6 (given), the above equation becomes, 1 $\therefore 272.84 \times 10^3 = 6 \times \frac{\pi}{4} \times (4c)^2 \times 40 \times \frac{99}{3}$: dc = 5.407 mm We have, dc = 0.84 x do $do = \frac{dc}{0.84} = \frac{5.407}{0.84} = 6.428 \text{ mm} \approx 8 \text{ mm} (sa)$.. We can use M8 botts. For safety reasons, we 1 can increase the size of botts upto M16.

c. Define stress concentration. What are the causes of stress concentration? State any four methods of reducing stress concentration with neat sketches.

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: DME <u>Model Answer</u> Subject Code: 17610

Stress concentration: Whenever a machine component changes the shape of its cross section, the simple stress distribution no longer holds good and the neighbourhood of the discontinuity is different. This irregularity in the stress distribution caused by abrupt changes of form is called 'stress concentration'.

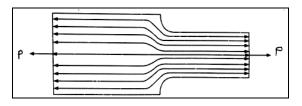


Fig. Stress concentration

Causes of stress concentration

The various causes of stress concentration are as follows:

- (i) Abrupt change of cross section
- (ii) Poor surface finish
- (iii) Localized loading
- (iv) Variation in the material properties

Methods of reducing stress concentration

The presence of stresses concentration cannot be totally eliminated but it can be reduced, so following are the remedial measures to control the effects of stress concentration.

- 1. Provide additional notches and holes in tension members.
 - a) Use of multiple notches.
 - b) Drilling additional holes.
- 2. Fillet radius, undercutting and notch for member in bending.
- 3. Reduction of stress concentration in threaded member.
- 4. Provide taper cross-section to the sharp corner of member.

1

1

1

1

2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

		(i) Poor (ii) Good (i) Poor (ii) Good (iii) Preferred (ii) Freferred (ii) Good (iii) Preferred (ii) Good (iii) Preferred (ii) Good (iii) Preferred (iii) Good (iii) Preferred	2 for sketch
4		Solve any Two of the following	
	a)	Given Data: Tension In slack side = $T_2 = 5000 \text{ N}$, Tension In Tight side = $T_1 = 10000 \text{ N}$	
		Safe stress $G_{t=60}$ N/mm ² ,L1= 60 mm , L2= 120 mm , e = 250 mm Total Tension in pulley is acting downward direction = $T = T_1 + T_2$	
		=10000+5000= 15000 N Bracket will try to tilt about edge due to tension in belt	1M
		Tilting moment = $M = T X e = 15000 x 250 = 365 x 10^4 N$ -mmEq(1) Let w be the load in each bolt per unit distance from tilting edge. Assume bracket with 4 Bolts	1M
		Total resisting moment = $2 \text{ w } [\text{L1}^2 + \text{L2}^2] = 2 \text{ X W X } [60^2 + 120^2] = 36000 \text{ w } \dots \text{Eq(2)}$ Equating eq (1) & (2)	1M
		$365 \times 10^4 \text{ N-mm} = 36000 \text{ w}$ Therefor W= 101.39 N The maximum tensile load will be in the bolt at a distance L2 Wt max=w L2 = 101.39 N X 120 = 12.166 KN	2M
		SIZE OF BOLT: $6t = \frac{LOAD}{C/SAREA},60 \text{ N/mm2} = \frac{12.166 \times 10^{8}}{\frac{\pi}{4}dc^{2}} dc = 16.067 \text{ mm}$	2M
		Do= 16.07/0.84 = 19.13 say 20 mm	1M
		Size of bolt = M20	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

b	Design of spring	
	Given Data:LOAD W= 500N , $\delta = 25 \text{ mm}$ C= 8 $\tau = 350 \text{ MPa} = 350 \text{ N/m}$	
	$G=85 \times 10^{3} \text{ N/mm}^2$	
	$Kw = \frac{4C-1}{4C-4} + \frac{0.615}{C}Kw = \frac{4x8-1}{4x8-4} + \frac{0.615}{8} = 1.184$	2 M
	$\frac{1}{4C-4}$ $\frac{1}{C}$ $\frac{1}{4x}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{1004}$	
	$\tau = Kw \frac{8 W C}{\pi d^2}$ 350 = 1.184 $\frac{8 X500X8}{\pi d^2}$	2M
		1 M
	$d = 5.87 \ mm \text{ say } 6 \text{ mm}$	1 141
	$\delta = \frac{8 \ W \ C^2 \ n}{G \ d} \cdot 25 = \frac{8 \ x \ 500 \ 8^2 \ n}{85 \ x \ 10^3 \ x6} \ n = 6.15 \ say 7$	2M
	$G = \frac{1}{G d}$ 23 - $\frac{1}{85 \times 10^3 \times 6}$ n = 6.13 say /	2111
		1 M
	Number of active turns of spring = 7	
С	Design of screw jack	
	W Handle length	
	Cup	
	$\rightarrow D_4 \mid \bullet $	
	Handle	
	H	
	D_3 Head	
	\uparrow \uparrow \uparrow \downarrow	
	$h \xrightarrow{L_1} D_5$	Diagram
	ig Body	2 M
	Body Body Grant	
	Base	
	t_2 D_7 D_6	
	Design of Screw:	
	1)Consider the screw under pure compression to find diameter of screw	
	W	1M
	$\sigma c =$	
	$\pi_{V(da)^2}$	
	$\frac{\pi}{4} X (dc)^2$	
	As screw is subjected to twisting moment, higher value of screw is selected.	
	Select The dimension of d _c w.r.t pitch	
	Mean diameter d= do- p/2	
	2) Torque required to overcome the friction (T_1)	
	Helix angle $\alpha = tan^{-1} \frac{p}{\pi x d}$	
	$\emptyset = tan^{-1}\mu$	
		1M
	Torque required lifting the load	

WINTER-17 EXAMINATION

Subject Name: DME <u>Model Answer</u> Subject Code: 17610

T1= W. tan ($\alpha + \emptyset$)	d	+ Ø)	α	tan (W.	T1=
-------------------------------------	---	-------	---	-------	----	-----

As collar friction is Neglecting, T₂=0

Total Torque required to lift the load = T_1

For Checking:

Direct compressive stress in screw:

$$\sigma c = \frac{W}{\frac{\pi}{4} X (dc)^2}$$

1M

1 M

Torsional shear stress τ , $\tau = \frac{16\,T1}{\pi\,\text{X}\,(\text{dc})^3}$

According to Maximum shear stress theory, the maximum shear stress in the screw

$$\tau_{\text{max}} = 1/2\sqrt{\sigma c^2 + 4 \tau^2}$$

Permissible shear stress for a screw $\tau = \sigma c/2$

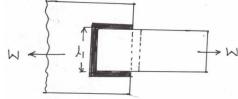
 $\underline{\tau_{max}} = \underline{a_{llowable}}$, So screw is safe

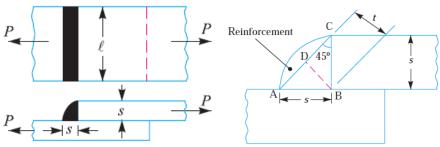
1M

Design of Nut:

The bearing pressure between the thread

$$Pb = \frac{W}{\frac{\pi}{4}X(do^2 - dc^2) n}$$
, Height of Nut: H= n X P


1M


Check: Shear stress induced in the screw thread

$$\tau = \frac{W}{\pi X (dc) X t \ n} \text{ as } t = p/2$$

 $au_{ ext{calculated} < } au_{ ext{allowable}}$, So screw is safe

5 A Equation: Parallel and transverse Weld

SKETCH

2 M

Let t = Throat thickness (BD), s = Leg or size of weld, t = Thickness of plate, and l = Length of weld,

, we find that the throat thickness,

$$t = s \times \sin 45^\circ = 0.707 \ s$$

1M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

		1
	um area of the weld or throat area,	
	at thickness ×Length of weld = $t \times l = 0.707 \text{ s} \times l$	1M
	e allowable tensile stress for the weld metal, then the tensile strength	43.5
	nt for single fillet weld,	1M
	at area \times Allowable tensile stress = 0.707 $s \times l \times \sigma t$	
	nsile strength of the joint for double fillet weld,	
	$707 \text{ s} \times l \times \sigma t = 1.414 \text{ s} \times l \times \sigma t$	1M
fillet weld		1M
	at area × Allowable shear stress = $0.707 \ s \times l \times \tau$	
and shear	strength of the joint for double parallel fillet weld ,	
	$P = 2 \times 0.707 \times s \times l \times \tau = 1.414 s \times l \times \tau \qquad \dots$	
	gth of the joint is given by the sum of strengths of single transverse and double parallel fillet athematically,	1M
	$P = 0.707s \times l1 \times \sigma t + 1.414 s \times l2 \times \tau \qquad \dots$	
	rew: Given Data	
b) Do= 100	mm, W = 300 KN = 300 X 10^3 N, P=12 mm, $\mu = \mu 1 = 0.15$	
Since,Scr	ew is double start, Lead of screw = $2 p = 2 \times 12 = 24 \text{ mm}$	
dc= do-P	=100-12 =88	
Mean dia	meter $d = (do+dc)/2 = (100+88)/2 = 94 \text{ mm}$	1M
	$\frac{\textit{Lead}}{\textit{nd}} = \frac{2p}{\textit{nd}} \qquad , \qquad \alpha = tan^{-1} \left(\frac{2p}{\textit{nd}}\right)$	1M
$\alpha = tan$	$-1\frac{24}{\pi x 94} = 4.64^{\circ}$	
	$n^{-1}\mu = tan^{-1}x \ 0.15 = 8.53^{\circ}$	2M
Torque R	equired to lift the load, T1= W.tan $(\alpha + \emptyset)^{\frac{d}{2}}$	
	$(x 10^{3} x \tan (4.64^{\circ} + 8.53^{\circ}))^{\frac{94}{2}} = 3301.15 \times 10^{3} \text{ N.mm}$	1 M
Т	otal Torque =Tt=T1+T2	13.7
	$x \cdot 10^3 + 0 = 3301.15 \times 10^3$ N.mm	1M
Efficienc	y of screw:	
$\mathbf{n} = \frac{tan}{tan} \ (\circ$	$\frac{1}{(1+0)} = \frac{\tan 4.64}{\tan (4.64 + 8.53)} = 0.347$ i.e 34.71 %	2M
c Hollow si	naft:	
	Given data: $P=20 \text{ kw} = 20 \text{ x } 10^3 \text{ W}, \text{ N=200 rpm, out} = 360 \text{ Mpa, F.O.S} = 8, k=0.5$	
1 1	$\sigma_{SS} = \frac{\sigma ut}{fos} = \frac{360}{8} = 45 \text{ MPa} = 45 \text{ N/mm}^2$	
Shear stra	00 0T3 1411 (1 -T3 14/111111	
Shear stre	jos o	21/
Shear stre	jos «	2M

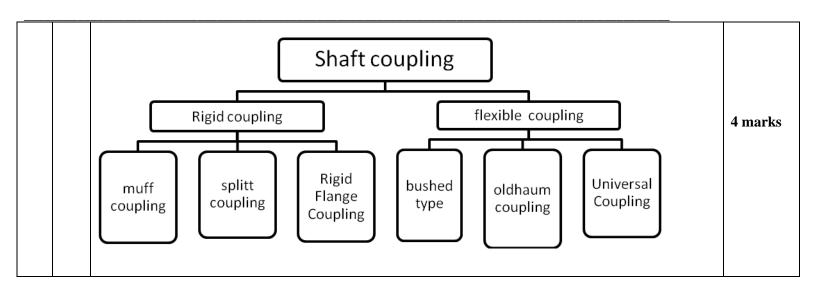
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 17 EXAMINATION

		Power transmitted = $P = \frac{2\pi NT}{60}$, $20 \times 10^3 = \frac{2\pi X200 XT}{60}$	
		$T=954.929 \text{ N.m} = 954.929 \text{ x } 10^{-3} \text{ N.mm}$	2 M
		$Do^{3} = \frac{\pi}{16} T do^{3} (1-0.5^{4})$	
		do =48.66 mm Outer Dia of Hollow shaft do =48.66 mm	2M
		$\frac{di}{do} = 0.5$	2M
		Inner Dia of Hollow shaft $di=0.5 \times 48.66 = 24.33 \text{ mm}$	ZIVI
6		Attempt any Two of the following	
		Effect of Keyway on strength of shaft:	
	a.i)	The keyway is a slot machined either on the shaft or in hub to accommodate the key. It is cut by	
		vertical or horizontal milling cutter.	
		A little consideration will show that the keyway cut into the shaft reduces the load carrying capacity	
		of the shaft.	Correct
		This is due to the stress concentration near the corners of the keyway and reduction in the cross -	Explanati
		sectional area of the shaft. It other words, the torsional strength of the shaft is reduced.	on
		The following relation for the weakening effect of the keyway is based on the experimental results by	4 M
		H.F. Moore. $e = 1 - 0.2 \left(\frac{w}{d}\right) - 1.1 \left(\frac{h}{d}\right)$	
		where $e = \text{Shaft strength factor}$.	
		w = Width of keyway,	
		d = Diameter of shaft, and	
		h = Depth of keyway = Thickness of key (t)/2	
		It is usually assumed that the strength of the keyed shaft is 75% of the solid shaft, which is somewhat	
		higher than the value obtained by the above relation.	
		In case the keyway is too long and the key is of sliding type, then the angle of twist is increased in the	
		<u>ratio</u> <u>Ke</u> as given by the following relation	
		$K\Theta = 1 + 0.4 \left(\frac{w}{d}\right) - 0.7 \left(\frac{h}{d}\right)$	
	::\	where $k = \text{Reduction factor for angular twist.}$	
	ii)	The different CAUSES of gear teeth failure:	ANY 4
		1. Bending failure.	CAUSES
		2. Pitting.	2 Marks
		3. Scoring. 4. Abrasive wear.	& Its
		4. Abrasive wear. 5. Corrosive wear	Explanati
		1. Bending failure.	on
		Gear tooth behave like a cantilever beam subjected to repetitive bending stress. The tooth may crack due	2M
		to repetitive bending stress	2171
		In order to avoid such failure, the module and face width of the gear is adjusted so that the beam strength	
		is greater than the dynamic load.	
		2. Pitting.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 17 EXAMINATION


	It is a surface fatigue failure due to repetitive contact stresses. Pitting starts when total load acting on the gear tooth exceeds the wear strength of the gear.	
	In order to avoid the pitting, the dynamic load between the gear tooth should be less than the wear strength of the gear tooth.	
	3. Scoring. It is lubrication failure. Inadequate lubrication along with high tooth load & poor surface finish results in breakdown of oil film and causes metal to metal contact.	
	This type of failure can be avoided by properly designing the parameters such as speed, pressure and proper flow of the lubricant, so that the temperature at the rubbing faces is within the permissible limits. 4. Abrasive wear.	
	It is a surface damage caused by particles trapped in between the matting teeth surfaces. This type of failure can be avoided by providing filters for the lubricating oil or by using high viscosity	
	lubricant oil which enables the formation of thicker oil film and hence permits easy passage of such particles without damaging the gear surface.	
	5. Corrosive wear It is due to chemical action by the improper lubricant or sometimes it may be due to surrounding atmosphere which may be corrosive nature. In order to avoid this type of wear, proper anti-corrosive additives should be used.	
b.i)	Material & composition:	
	A) X10C _r 18 Ni9 Mo 4 Si 2 : High Alloy steel	1M
	having carbon 0.10%, chromium 18%, nickel 9%, Molybdenum 4% & silicon 2%	1M
	B) XT72W18Cr4V1: high speed tool steel	1M
	having carbon 0.72% ,chromium 4% , tungsten 18% , vanadium 1%	1M
ii)	Design consideration while designing the spur Gear	:(Any
/	1) The power to be transmitted	FOUI
	2) The velocity ration or speed of gear drive.	1 M
	3) The central distance between the two shafts	EACH
	4) Input speed of the driving gear. 5) Wear shows a taristics of the gear tooth for a long satisfactory life.	
	5) Wear characteristics of the gear tooth for a long satisfactory life.6) The use of space & material should be economical.	
	7) Efficiency & speed ratio	
	8) Cost	
c)	1	1
c) i)	Application of spring:	
	Application of spring: 1) To cushion, absorb or control energy to external load: Car springs, Railway buffers	Any f
		Any fo
	1) To cushion, absorb or control energy to external load : Car springs, Railway buffers	
	 To cushion, absorb or control energy to external load : Car springs, Railway buffers To store Energy : Watches Toys 	
	 To cushion, absorb or control energy to external load : Car springs, Railway buffers To store Energy : Watches Toys To Measure forces : Spring Balances, Gauges ,Engines 	Any fo

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

