1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any FIVE of the following:		(10)
	a) Ans.	Define force system and state its classification. Force System: When two or more forces are acting on a body, then the formed arrangement is known as Force System.	1	
		Classification of Force System: 1. Coplanar force system: a. Co-planner collinear force system. b. Co-planner concurrent force system. c. Co-planner non-concurrent force system. d. Co-planner parallel force system. 2. Non-coplanar force system: a. Non-co-planner collinear force system. b. Non-co-planner concurrent force system. c. Non-co-planner non-concurrent force system. d. Non-co-planner parallel force system.	1	2
	b) Ans.	State the meaning of reversible machine and state condition for reversibility. Reversible machine: When the machine moves in reverse direction after removal of applied effort, then the machine is said to be reversible machine. Condition for reversibility: When the machine has efficiency more than 50%, machine is said to be reversible.	1 1	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	c)	State Polygon Law of forces.		
	Ans.	Polygon Law of forces: If any number of coplanar concurrent forces can be represented in magnitude and direction by the sides of a polygon taken in order; then their resultant will be represented by the closing side of the polygon taken in opposite order.	2	2
	d)	State analytical conditions of equilibrium for coplanar nonconcurrent force system.		
	Ans.	1. $\Sigma F x=0 \quad$ i. e. Algebraic sum of all the forces along X -axis must be equal to zero. 2. $\Sigma \mathrm{Fy}=0$ i. e. Algebraic sum of all the forces along Y-axis must be equal to zero. 3. $\Sigma \mathrm{M}_{\mathrm{A}}=0$ i. e. Algebraic sum of moments all the forces about any point (say point A)must be equal to zero.	2	2
	e)	State relation between co-efficient of friction (μ) and angle of friction (Φ).		
	Ans.	Relation between co-efficient of friction (μ) and angle of friction (ϕ) : $\mu=\tan \phi$	2	2
	f)	Show the position of centroid of a quarter circle of radius ' R ' with a neat sketch.		
	Ans.			
			2	2
	g)	Calculate reaction and reactive moment for a cantilever beam loaded as shown in Fig. No. 1.		
	Ans.	Find: $\mathrm{R}_{\mathrm{A}}=$?; $\mathrm{M}_{\mathrm{A}}=$? Solution:Reaction at point A		
		$\sum \mathrm{Fy}=0-\uparrow+\mathrm{ve} ; \downarrow-\mathrm{ve}$	1	
		$\mathrm{R}_{\mathrm{A}}=-(4 \times 2)=-8 \mathrm{kN}$		2
		Reactive moment at point A $\sum M_{\mathrm{A}}=0$		
		$\sum M_{\mathrm{A}}=-\left(4 \times 2 \times \frac{2}{2}\right)=-8 \mathrm{kN} . \mathrm{m}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	c) Ans.	Determine the support reactions of a beam loaded as shown in Fig. No. 4. Find: $\mathrm{R}_{\mathrm{A}}=$?; $\mathrm{R}_{\mathrm{B}}=$? Solution: $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & +\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}-20=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=20 \mathrm{kN}----(1) \end{aligned}$ $\begin{aligned} & \sum \mathrm{M}_{\mathrm{B}}=0 \\ & +(20 \times 5)-\left(\mathrm{R}_{\mathrm{B}} \times 4\right)=0 \\ & +100=+4 \mathrm{R}_{\mathrm{B}} \\ & \therefore \mathrm{R}_{\mathrm{B}}=\frac{100}{4} \\ & \mathrm{R}_{\mathrm{B}}=25 \mathrm{kN}(\uparrow) \end{aligned}$ Putting value of R_{B} in equation (1) $\begin{aligned} & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=20 \\ & \mathrm{R}_{\mathrm{A}}+25=20 \\ & \mathrm{R}_{\mathrm{A}}=20-25 \end{aligned}$ $\mathrm{R}_{\mathrm{A}}=-5 \mathrm{kN}$ (-ve sign indicates R_{A} is acting downwards) $\mathrm{R}_{\mathrm{A}}=5 \mathrm{kN}(\downarrow)$	1 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	d)	A body weighing 10 kN is placed in rough horizontal plane for which $\mu=\mathbf{0 . 6 0}$. Calculate normal reaction, limiting force of friction, horizontal force required just to move it and angle of friction. Given: $\mathrm{W}=10 \mathrm{kN}, \mu=0.60$ Find: $\mathrm{R}=$? $; \mathrm{F}=?$; $\mathrm{P}=$? Solution: $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0(\uparrow+\mathrm{ve}, \downarrow \text {-ve }) \\ & +\mathrm{R}-\mathrm{W}=0 \\ & +\mathrm{R}-10=0 \\ & \mathrm{R}=10 \mathrm{kN} \end{aligned}$ $\begin{aligned} & \mathrm{F}=\mu \times \mathrm{R} \\ & \mathrm{~F}=0.6 \times 10 \\ & \mathrm{~F}=6 \mathrm{kN} \end{aligned}$ $\begin{aligned} & \sum_{\mathrm{F}}=0 \quad(\rightarrow+\mathrm{ve}, \leftarrow-\mathrm{ve}) \\ & +\mathrm{P}-\mathrm{F}=0 \\ & \mathrm{P}=\mathrm{F} \\ & \mathrm{P}=6 \mathrm{kN} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	e) Ans.	Calculate analytically the support reactions of the beam loaded as shown in Fig. No.5. Find: $\mathrm{R}_{\mathrm{A}}=? ; \mathrm{R}_{\mathrm{B}}=$? Solution: $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & +\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}-40=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=40 \mathrm{kN}---(1) \\ & \sum \mathrm{M}_{\mathrm{B}}=0 \\ & +(40 \times 2)+48-\left(\mathrm{R}_{\mathrm{B}} \times 8\right)=0 \\ & +128=+8 \mathrm{R}_{\mathrm{B}} \\ & \therefore \mathrm{R}_{\mathrm{B}}=\frac{128}{8} \\ & \mathrm{R}_{\mathrm{B}}=16 \mathrm{kN}(\uparrow) \end{aligned}$ Putting value of R_{B} in equation (1) $\begin{aligned} & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=20 \\ & \mathrm{R}_{\mathrm{A}}+16=40 \\ & \mathrm{R}_{\mathrm{A}}=40-16 \\ & \mathrm{R}_{\mathrm{A}}=24 \mathrm{kN}(\uparrow) \end{aligned}$	1 1 1 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	a) Ans.	Attempt any TWO of the following: Calculate centroidal position of the lamina of negligible uniform thickness shown in Fig. No. 8. Find: $\mathrm{G}(\overline{\mathrm{x}}, \bar{y})=$? Solution: . Calculation of areas: $\begin{aligned} & \mathrm{A}_{1}=\mathrm{L} \times \mathrm{B}=600 \times 200=120000 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{2}=\frac{1}{2} \times b \times h=\frac{1}{2} \times 300 \times 600=90000 \mathrm{~mm}^{2} \end{aligned}$ Calculation of horizontal distances of centroids from Y-axis: $\begin{aligned} & x_{1}=\frac{B}{2}=\frac{200}{2}=100 \mathrm{~mm} \\ & x_{2}=200+\frac{b}{3}=200+\frac{300}{3}=300 \mathrm{~mm} \end{aligned}$ Calculation of vertical distances of centroids from X-axis: $\begin{aligned} & y_{1}=\frac{\mathrm{L}}{2}=\frac{600}{2}=300 \mathrm{~mm} \\ & y_{2}=\frac{\mathrm{h}}{3}=\frac{600}{3}=200 \mathrm{~mm} \end{aligned}$ Calculation of \bar{x} : $\begin{aligned} & \overline{\mathrm{x}}=\frac{\left(\mathrm{A}_{1} \times \mathrm{x}_{1}\right)+\left(\mathrm{A}_{2} \times \mathrm{x}_{2}\right)}{\mathrm{A}_{1}+\mathrm{A}_{2}}=\frac{(120000 \times 100)+(90000 \times 300)}{120000+90000} \\ & \overline{\mathrm{x}}=185.71 \mathrm{~mm} \end{aligned}$ Calculation of \bar{y} : $\begin{aligned} & \bar{y}=\frac{\left(\mathrm{A}_{1} \times \mathrm{y}_{1}\right)+\left(\mathrm{A}_{2} \times \mathrm{y}_{2}\right)}{\mathrm{A}_{1}+\mathrm{A}_{2}}=\frac{(120000 \times 300)+(90000 \times 200)}{120000+90000} \\ & \overline{\mathrm{y}}=257.14 \mathrm{~mm} \end{aligned}$	1	(12)
			1	
			1	
			1	
			1	
			1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	b) Ans.	Locate the centroid of the composite area shown in Fig. No. 9. Find: $\mathrm{G}(\overline{\mathrm{x}}, \bar{y})=$? Solution: . Calculation of areas : $\begin{aligned} & \mathrm{A}_{1}=\frac{1}{2} \times b \times h=\frac{1}{2} \times 450 \times 300=67500 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{2}=\frac{\pi R^{2}}{2}=\frac{\pi \times 150^{2}}{2}=35342.91 \mathrm{~mm}^{2} \end{aligned}$ Calculation of horizontal distances of centroids from Y-axis : $\begin{aligned} & x_{1}=\frac{2 . b}{3}=\frac{2 \times 450}{2}=300 \mathrm{~mm} \\ & x_{2}=450+\frac{4 . \mathrm{R}}{3 . \pi}=450+\frac{4 \times 150}{3 . \pi}=513.66 \mathrm{~mm} \end{aligned}$ Calculation of vertical distances of centroids from X-axis : $\begin{aligned} & y_{1}=\frac{\mathrm{h}}{3}=\frac{300}{3}=100 \mathrm{~mm} \\ & y_{2}=\frac{\mathrm{D}}{2}=\frac{300}{2}=150 \mathrm{~mm} \end{aligned}$ Calculation of $\overline{\mathrm{x}}$: $\begin{aligned} & \overline{\mathrm{x}}=\frac{\left(\mathrm{A}_{1} \times \mathrm{x}_{1}\right)+\left(\mathrm{A}_{2} \times \mathrm{x}_{2}\right)}{\mathrm{A}_{1}+\mathrm{A}_{2}}=\frac{(67500 \times 300)+(35342.91 \times 513.66)}{67500+35342.91} \\ & \overline{\mathrm{x}}=373.42 \mathrm{~mm} \end{aligned}$ Calculation of y : $\begin{aligned} & \bar{y}=\frac{\left(\mathrm{A}_{1} \times \mathrm{y}_{1}\right)+\left(\mathrm{A}_{2} \times \mathrm{y}_{2}\right)}{\mathrm{A}_{1}+\mathrm{A}_{2}}=\frac{(67500 \times 100)+(35342.91 \times 150)}{67500+35342.91} \\ & \overline{\mathrm{y}}=117.18 \mathrm{~mm} \end{aligned}$	1	6
			1	
			1	
			1	
			1	
			1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	c) Ans.	Calculate position of center of gravity of the frustum of cone as shown in Fig. No. 10. Find: $\mathrm{G}(\overline{\mathrm{x}}, \bar{y})=$? Solution: Assuming frustum cut from right circular cone as shown. To find h; from similar triangles, $\frac{760}{\mathrm{~h}+500}=\frac{400}{\mathrm{~h}}$ \therefore on solving we get, $\mathrm{h}=555.55 \mathrm{~mm}$ $\therefore \mathrm{H}=\mathrm{h}+500=555.55+500=1055.55 \mathrm{~mm}$ Calculation of \bar{x} : As given section is symmetrical @ Y-Y axis, $\begin{aligned} & \bar{x}=\text { Base diameter }=\frac{760}{2}=380 \mathrm{~mm} \\ & \overline{\mathrm{x}}=380 \mathrm{~mm} \text { from Y-Yaxis } \end{aligned}$ To find \bar{y} : Calculation of volume: $\begin{aligned} & \mathrm{V}_{1}=\frac{1}{3} \times \pi \times R^{2} \times H=\frac{1}{3} \times \pi \times 380^{2} \times 1055.55=159.615 \times 10^{6} \mathrm{~mm}^{3} \\ & \mathrm{~V}_{2}=\frac{1}{3} \times \pi \times r^{2} \times h=\frac{1}{3} \times \pi \times 200^{2} \times 555.55=23.270 \times 10^{6} \mathrm{~mm}^{3} \end{aligned}$ Calculation of vertical distances of centroids from X-axis: $\begin{aligned} & y_{1}=\frac{h}{4}=\frac{1055.55}{4}=263.88 \mathrm{~mm} \\ & y_{2}=500+\left(\frac{h}{4}\right)=500+\left(\frac{555.55}{4}\right)=638.88 \mathrm{~mm} \end{aligned}$ Calculation of \bar{y} : $\begin{aligned} & \bar{y}=\frac{\left(V_{1} \times y_{1}\right)-\left(V_{2} \times y_{2}\right)}{V_{1}-V_{2}}=\frac{\left(159.615 \times 10^{6} \times 263.88\right)-\left(23.270 \times 10^{6} \times 638.88\right)}{\left(159.615 \times 10^{6}\right)-\left(23.270 \times 10^{6}\right)} \\ & \bar{y}=199.87 \mathrm{~mm} \text { from X-axis } \end{aligned}$	1	6

