

#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

**Model Answer: Winter - 2022** 

Subject: Hydraulics
Sub. Code: 22401

#### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                  | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------|-------|----------------|
| Q.1         | ~            | Attempt any <u>FIVE</u> of the following:                                     |       | (10)           |
|             | a)           | Define specific mass and specific volume.                                     |       |                |
|             | Ans.         | i) Mass density or Specific mass: It is defined as the mass per unit          |       |                |
|             |              | volume.                                                                       | 1     |                |
|             |              | $\rho = \frac{\text{Mass}}{\text{Volume}} = \frac{\text{m}}{\text{V}}$        |       |                |
|             |              | S.I. Unit: kg/m <sup>3</sup>                                                  |       |                |
|             |              | ii) <b>Specific Volume:</b> It is the volume occupied by unit mass of liquid. | 1     | 2              |
|             |              | $V_s = \frac{\text{Volume}}{\text{Mass}} = \frac{V}{m}$                       |       |                |
|             |              | S.I. Unit: m <sup>3</sup> /kg                                                 |       |                |
|             |              |                                                                               |       |                |
|             |              |                                                                               |       |                |
|             |              |                                                                               |       |                |
|             |              |                                                                               |       |                |
|             |              |                                                                               |       |                |



#### **Model Answer: Winter - 2022**

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                               | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.1         | <b>b</b> )   | Calculate the weight density and specific gravity of liquid, if 600ml liquid weighs 6N.                                                                                                                                    |       |                |
|             | Ans.         | Given data: $V = 600 \text{ ml} = \frac{600}{1000} = 0.6 \text{ lit} = 0.6 \times 10^{-3} \text{ m}^3$                                                                                                                     |       |                |
|             |              | W = 6N                                                                                                                                                                                                                     |       |                |
|             |              | i) Weight density $\gamma_L = \frac{W}{V}$                                                                                                                                                                                 | 1/2   |                |
|             |              | $= \frac{6}{0.6 \times 10^{-3}} = 10 \times 10^{3} \text{ N/m}^{3}$                                                                                                                                                        | 1/2   |                |
|             |              | ii) Specific gravity $S_L = \frac{\gamma_L}{\gamma_L}$                                                                                                                                                                     | 1/2   |                |
|             |              | $=\frac{10\times10^3}{9810}=\boxed{1.02}$                                                                                                                                                                                  | 1/2   | 2              |
|             | c)           | Define pressure and It's S.I. units.                                                                                                                                                                                       |       |                |
|             | Ans.         | <b>Pressure:</b> The ratio of force to the cross sectional area is known as pressure.                                                                                                                                      | 1     |                |
|             |              | P = force / area                                                                                                                                                                                                           |       |                |
|             |              | SI unit – N/m <sup>2</sup> or Pascal                                                                                                                                                                                       | 1     | 2              |
|             | d)           | State Bernoullis theorem.                                                                                                                                                                                                  |       |                |
|             | Ans.         | It states that in a steady ,ideal flow of an incompressible fluid, the total energy at any point of the fluid is always constant.  Total energy = Constant  Pressure energy + Kinetic energy + Potential energy = Constant | 2     | 2              |
|             | <b>e</b> )   | Define Hydraulic gradient line (H.G.L.) and Total Energy Line (T.E.L.).                                                                                                                                                    |       |                |
|             | Ans.         | <b>Hydraulic Gradient Line (H.G.L.)</b> is defined as the line which gives the sum of pressure head and datum head of a flowing fluid in a pipe with respect to some reference line.                                       | 1     |                |
|             |              | <b>Total Energy Line (T.E.L.)</b> is defined as the line which gives the sum of pressure head, datum head and velocity head of a flowing fluid in a pipe with respect to some reference line.                              | 1     | 2              |
|             |              |                                                                                                                                                                                                                            |       |                |



**Model Answer: Winter - 2022** 

| Que. | Sub.       |                                                                                                                                                                                  |                           | Total |
|------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|
| No.  | Que.       | Model Answer                                                                                                                                                                     | Marks                     | Marks |
| Q.1  | f)         | Describe uniform and Non-uniform flow.                                                                                                                                           |                           |       |
|      | Ans.       | i) Uniform flow: If the depth of flow, the discharge and mean velocity flow at a given instant do not change along the length of channel, the flow is called as Uniform flow.    | 1                         |       |
|      |            | ii) Non-uniform flow: If the depth of flow, the discharge and mean velocity flow at a given instant changes along the length of channel, the flow is called as non-uniform flow. | 1                         | 2     |
|      | <b>g</b> ) | Enlist any two discharge measuring devices.                                                                                                                                      |                           |       |
|      | Ans.       | i) Venturimeter ii) Orifice iii) Notch                                                                                                                                           | 1<br>each<br>(any<br>two) | 2     |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |
|      |            |                                                                                                                                                                                  |                           |       |



**Model Answer: Winter - 2022** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks                               | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|
| Q.2         |              | Attempt any <u>THREE</u> of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | (12)           |
|             | a)           | Give Importance of Hydraulics with respect to Irrigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                |
|             | Ans.         | Engineering and Environmental Engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                |
|             | Alls.        | Applications of hydraulics with respect to Irrigation Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                |
|             |              | are as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                |
|             |              | i) To calculate discharge flowing through canal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/                                  |                |
|             |              | ii) For distribution of equal water for city or agriculture purpose using water meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>1</sup> / <sub>2</sub><br>each |                |
|             |              | iii) To determine velocity of flow at a point in open channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (any                                |                |
|             |              | iv) The total pressure and Centre of pressure acting on the wall of dam can be determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | four)                               |                |
|             |              | v) Spillway can also designed to pass off water on D/S of a dam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                |
|             |              | Applications of hydraulics with respect to Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                |
|             |              | <ul><li>Engineering are as follows:</li><li>i) To design the pipe line system for water supply and drainage.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2                                 |                |
|             |              | ii) To find the pressure acting on the side and bottom of the tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | each                                |                |
|             |              | iii) To determine the discharge through the pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (any                                |                |
|             |              | iv) To determine the power of the pump required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | four)                               | 4              |
|             |              | v) To design water treatment plant and sewage treatment plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                |
|             | <b>b</b> )   | An oil of specific gravity 0.85 is flowing through a pipe. A simple manometer is connected to the pipe containing mercury. The deflection of mercury level in left limb from center of pipe is 50mm, whereas right limb (from center of pipe), it is 80mm. Calculate the pressure in KPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                |
|             | Ans.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                |
|             |              | $a_{1}(s_{1})=0.85$ $a_{1}(s_{2})=0.85$ $a_{1}(s_{3})=0.85$ $a_{1}(s_{2})=0.85$ $a_{2}=130$ $a_{3}=130$ $a_{4}=130$ $a_{4}=130$ $a_{5}=130$ |                                     |                |



#### **Model Answer: Winter - 2022**

**Subject:** Hydraulics

**Sub. Code: 22401** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                     | Marks  | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------|--------|----------------|
| Q.2         | <b>b</b> )   |                                                                                                  |        |                |
|             |              | Given data: $h_1 = 0.05 \text{m}$ , $S_1 = 0.85$                                                 |        |                |
|             | Ans.         | $h_2 = 50+80 = 130 \text{mm} = 0.13 \text{m}, S_2 = 13.6$<br>$P_A + \gamma_1 h_1 = \gamma_2 h_2$ | 1      |                |
|             |              | $P_{A} + \gamma_{1}\Pi_{1} - \gamma_{2}\Pi_{2}$ $P_{A} + \rho g h_{1} = \rho g h_{2}$            | 1<br>1 |                |
|             |              | $P_A + 1000 \times 0.85 \times 9.81 \times 0.05 = 1000 \times 13.6 \times 9.81 \times 0.13$      | 1/2    |                |
|             |              | $P_{A} = 16.93 \text{ KPa}$                                                                      | 1/2    |                |
|             |              | OR                                                                                               | OR     | 4              |
|             |              | $h_A = S_2 h_2 - S_1 h_1$                                                                        | 1      |                |
|             |              | $h_A = 13.6 \times 0.13 - 0.85 \times 0.05$                                                      |        |                |
|             |              | h <sub>A</sub> =1.725m                                                                           | 1      |                |
|             |              | $P_{A} = \gamma_{L} h$ $P_{A} = S_{L} \times \gamma_{w} \times h_{A}$                            | 1 1/2  |                |
|             |              | $P_{A} = S_{L} \wedge \gamma_{w} \wedge H_{A}$ $P_{A} = 1 \times 9.81 \times 1.725$              | 1/2    |                |
|             |              | $P_{A} = 16.92 \text{KPa}$                                                                       | / 2    |                |
|             |              |                                                                                                  |        |                |
|             |              |                                                                                                  |        |                |
|             |              | A circular plate of 4m diameter is immersed in water such that its                               |        |                |
|             | <b>c</b> )   | greatest and least depth below the free surface of water are 5m                                  |        |                |
|             |              | and 3m respectively. Calculate i) Total pressure on one face of plate                            |        |                |
|             |              | ii) The position of center of pressure                                                           |        |                |
|             |              |                                                                                                  |        |                |
|             |              |                                                                                                  |        |                |
|             | Ans.         | <del>-</del>                                                                                     |        |                |
|             |              | 3 m 5 m 7 h                                                                                      |        |                |
|             |              |                                                                                                  |        |                |
|             |              |                                                                                                  |        |                |
|             |              | 4 m                                                                                              |        |                |
|             |              |                                                                                                  |        |                |
|             |              |                                                                                                  |        |                |
|             |              | $A = \frac{\pi}{4} \times 4^2$                                                                   |        |                |
|             |              | $A=4\times\pi$                                                                                   |        |                |
|             |              |                                                                                                  | 1/2    |                |
|             |              | $A=12.566 \text{ m}^2$                                                                           | 72     |                |
|             |              | $y = \frac{5+3}{2}$                                                                              |        |                |
|             |              |                                                                                                  |        |                |
|             |              | $\overline{y} = 4m$                                                                              | 1/2    |                |
|             |              | 2                                                                                                |        |                |
|             |              | $\sin\theta = \frac{2}{4}$                                                                       |        |                |
|             |              |                                                                                                  |        |                |
|             |              | $\theta = \sin^{-1}(\frac{1}{2})$                                                                |        |                |
|             |              | $\theta = 30^{\circ}$                                                                            | 1/2    |                |



#### **Model Answer: Winter - 2022**

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                | Marks | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------|-------|----------------|
| Q.2         | c)<br>Ans.   | $I_{G} = \frac{\pi}{64} \times D^{4}$ $I_{G} = \frac{\pi}{64} \times 4^{4}$ |       |                |
|             |              | $I_{\rm G} = 12.57  {\rm m}^4$                                              | 1/2   |                |
|             |              | $P = \gamma_w \times A \times \overline{y}$                                 | 1/2   |                |
|             |              | $P = 9.81 \times 12.566 \times 4$ $P = 493.10kN$                            | 1/2   |                |
|             |              | $\overline{h} = \frac{I_G \sin^2 \theta}{A \overline{y}} + \overline{y}$    | 1/2   |                |
|             |              | $\overline{h} = \frac{12.57 \times \sin^2 30^0}{12.566 \times 4} + 4$       |       |                |
|             |              | $\boxed{\overline{h} = 4.0625m}$                                            | 1/2   | 4              |
|             | d)           | State Pascal's Law of fluid pressure. Enlist any four applications of it.   |       |                |
|             | Ans.         | Pascal's Law: It states that the pressure intensity or pressure at a        |       |                |
|             |              | point in a static fluid is equal in all directions.                         | 2     |                |
|             |              | P P P P Stationary fluid                                                    |       |                |
|             |              |                                                                             |       |                |



**Model Answer: Winter - 2022** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                         | Marks        | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------|--------------|----------------|
| Q.2         | d) Ans.      | Applications:                                                        |              |                |
|             | 1445         | Pascal's Law is applied in the construction of machines and used for |              |                |
|             |              | multiple purposes.                                                   |              |                |
|             |              | i) Hydraulic Jacks                                                   |              |                |
|             |              | ii) Hydraulic Press                                                  |              |                |
|             |              | iii) Hydraulic Lifts                                                 |              |                |
|             |              | iv) Hydraulic Crane                                                  | 1/2          |                |
|             |              | v) Braking system of motor                                           | each<br>(any | 4              |
|             |              | vi) Artesian well                                                    | four)        |                |
|             |              | vii) Dam                                                             |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |
|             |              |                                                                      |              |                |



**Model Answer: Winter - 2022** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                                                                                                 | Marks          | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| Q.3         |              | Attempt any <u>THREE</u> of the following:                                                                                                                                                                                                                                                                                                                                                   |                | (12)           |
|             | a)           | Explain the concept of pressure diagram with neat sketches and explain the use of pressure diagram.                                                                                                                                                                                                                                                                                          |                |                |
|             | Ans.         | Pressure diagram is defined as "It is the graphical representation of variation of pressure on the surface with depth". The total pressure per unit length is the area of pressure diagram. The position of center of the pressure is the position of center of gravity of the pressure diagram.                                                                                             | 1              |                |
|             |              | $\frac{2}{3}H$ (a) $\frac{2}{3}H$ (b)                                                                                                                                                                                                                                                                                                                                                        | 1              |                |
|             |              | <ul> <li>Uses: <ol> <li>To Calculate pressure exerted by liquid on the one side of surface.</li> <li>To Calculate pressure due to liquid on both the side of surface iii) To Calculate pressure on vertical and inclined faces of dam.</li> <li>To Calculate pressure on sluice gate, side and bottom of water tank.</li> </ol> </li> <li>To find position of centre of pressure.</li> </ul> | each (any two) | 4              |
|             | <b>b</b> )   | A horizontal pipe carrying water tapers from 20cm diameter at A and 10cm diameter at B in length of 2m. The pressure at 'A' is 100N/cm². If the discharge 400 lit/min. Calculate pressure at 'B' in N/cm². If the loss of head from A to B is 10cm.                                                                                                                                          |                |                |
|             | Ans.         | Q= 400 lit/min VA VB  A 2m                                                                                                                                                                                                                                                                                                                                                                   |                |                |



### **Model Answer: Winter - 2022**

**Subject:** Hydraulics

**Sub. Code: 22401** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                       | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.3         | b)           |                                                                                                                                    |       | Wiai Ks        |
|             | Ama          | Given data: diameter at $A = 0.2$ m, diameter at $B = 0.10$ m                                                                      |       |                |
|             | Ans.         | $P_A = 100 \text{N/cm}^2 = \frac{100}{(10^{-2})^2} = 100 \times 10^4 \text{ N/m}^2$                                                | 1/2   |                |
|             |              | Q= 400 lit/min = $\frac{400 \times 10^{-3}}{60}$ = 6.67×10 <sup>-3</sup> m <sup>3</sup> /sec                                       | 1/2   |                |
|             |              | $h_{L} = 10cm = 0.1m$                                                                                                              |       |                |
|             |              | by using continuity equation                                                                                                       | 1/    |                |
|             |              | $Q = A_A \times V_A$                                                                                                               | 1/2   |                |
|             |              | $6.67 \times 10^{-3} = \frac{\pi}{4} (0.2)^2 \times V_A$                                                                           |       |                |
|             |              | $V_A = 0.21 \text{ m/s}$                                                                                                           | 1/2   |                |
|             |              | $Q = A_B \times V_B$                                                                                                               | 1/    | 4              |
|             |              | $6.67 \times 10^{-3} = \frac{\pi}{4} (0.10)^2 \times V_B$                                                                          | 1/2   |                |
|             |              | 7                                                                                                                                  | 1/2   |                |
|             |              | $V_B = 0.85 \text{ m/s}$ Applying bernaulli's thereom: assuming flow from A to B                                                   |       |                |
|             |              | $\frac{P_A}{\gamma_L} + \frac{V_A^2}{2g} + Z_A = \frac{P_B}{\gamma_L} + \frac{V_B^2}{2g} + Z_B + h_L$                              | 1/2   |                |
|             |              | $\frac{100 \times 10^4}{9810} + \frac{(0.21)^2}{2 \times 9.81} + 0 = \frac{P_B}{9810} + \frac{(0.85)^2}{2 \times 9.81} + 0 + 0.10$ |       |                |
|             |              | $101.93 + 2.24 \times 10^{-3} = \frac{P_B}{9810} + 0.0368 + 0.10$                                                                  |       |                |
|             |              | $P_{\rm B} = 998.613 \times 10^3  \text{N/m}^2$                                                                                    | 1/2   |                |
|             | c)           | Draw a neat sketch of cup type current meter and explain it's working.                                                             |       |                |
|             | Ans.         | Fish tail  Wire to connect to counter  Direction of flow  Cups  Vertical axis  Frame                                               | 2     |                |
|             |              | (Note: 1 mark for sketch and 1 mark for labeling.)                                                                                 |       |                |



#### **Model Answer: Winter - 2022**

| Que. | Sub. |                                                                                                                                                                                                   |       | Total |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model Answer                                                                                                                                                                                      | Marks | Marks |
| Q.3  | c)   |                                                                                                                                                                                                   |       |       |
|      | Ans. | Working:                                                                                                                                                                                          |       |       |
|      |      | i) In a cup type current meter the wheel or revolving element has the form of a series of conical cups, mounted on a spindle. Spindle is held vertical at right angle to the direction of flow.   |       |       |
|      |      | ii) Current meter is used to find out velocity of water. Current meter consists of a wheel containing blades on cups.                                                                             | 2     | 4     |
|      |      | iii) These cups are vertically immersed in stream of water. The thrust exerted by water on the cups.                                                                                              |       |       |
|      |      | iv) The number of revolutions of the wheel per unit time is proportional to the velocity of flow.                                                                                                 |       |       |
|      |      | v) The revolution counter operated by dry cell. The counter is calibrated or a calibration curve is provided to read velocity.                                                                    |       |       |
|      | d)   | A circular plate of 2m diameter immersed vertically in a liquid having specific gravity 0.8, so that center of plate is 3.5m below free surface. Determine total pressure and center of pressure. |       |       |
|      | Ans. | Given data: $d = 2 \text{ m}, s = 0.8, \overline{y} = 3.5 \text{ m}$                                                                                                                              |       |       |
|      |      | Area of plate A = $\frac{\pi}{4}d^2 = \frac{\pi}{4}2^2 = 3.14 \text{ m}^2$                                                                                                                        | 1/2   |       |
|      |      | $I_{G} = \frac{\pi}{64} d^{4} = \frac{\pi}{64} 2^{4} = 0.78m^{4}$                                                                                                                                 | 1/2   |       |
|      |      | $P=\gamma_L\times A\times \overline{y}$                                                                                                                                                           |       |       |
|      |      | $P = 0.8 \times 9810 \times 3.14 \times 3.5$                                                                                                                                                      | 1/2   | 4     |
|      |      | $P = 86.24 \times 10^3 \text{ N}$                                                                                                                                                                 | 1     | -     |
|      |      | $\overline{\overline{\mathrm{h}}} = rac{\mathrm{I}_{\mathrm{G}}}{\mathrm{A}	imes\overline{\mathrm{y}}} + \overline{\mathrm{y}}$                                                                  | 1/2   |       |
|      |      | $=\frac{0.78}{3.14\times3.5}+3.5$                                                                                                                                                                 |       |       |
|      |      | $\overline{\overline{h}} = 3.57 \text{ m}$                                                                                                                                                        | 1     |       |
|      |      |                                                                                                                                                                                                   |       |       |
|      |      |                                                                                                                                                                                                   |       |       |
|      |      |                                                                                                                                                                                                   |       |       |
|      |      |                                                                                                                                                                                                   |       |       |



**Model Answer: Winter - 2022** 

| ½<br>each | (12)         |
|-----------|--------------|
|           |              |
|           |              |
|           |              |
| each      |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
| 1/2       | 4            |
|           |              |
|           |              |
|           |              |
|           |              |
| 1         |              |
| 1         |              |
| each      |              |
| two)      |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           |              |
|           | (any<br>two) |



**Model Answer: Winter - 2022** 

| Que.<br>No. | Sub.<br>Que. |                                       | Model A                                                  | Marks                                                          | Total<br>Marks |   |
|-------------|--------------|---------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------|---|
|             | <b>b</b> )   |                                       | rentiate between centrifugal p                           | oump and reciprocating pump.                                   |                |   |
|             | Ans.         | Sr.<br>No.                            | Centrifugal pump                                         | Reciprocating pump                                             |                |   |
|             |              | 1                                     | For Centrifugal pump discharge is continuous.            | For Reciprocating pump discharge is fluctuating.               |                |   |
|             |              | 2                                     | Suitable for large discharge and small heads.            | Suitable for less discharge and higher heads.                  |                |   |
|             |              | 3                                     | Simple in construction due to less number of parts.      | Complicated in construction because of more number of parts.   | 1<br>each      | 4 |
|             |              | 4                                     | It has rotating elements so there is less wear and tear. | It has reciprocating element, there is more wear and tear.     | (any           |   |
|             |              | 5                                     | It can run at high speed.                                | It cannot run at high speed.                                   | four)          |   |
|             |              | 6                                     | Air vessels are not required.                            | Air vessels are required.                                      |                |   |
|             |              | 7                                     | Starting torque is more.                                 | Starting torque is less.                                       |                |   |
|             |              | 8                                     | It has less efficiency.                                  | It has more efficiency.                                        |                |   |
|             |              | 9                                     | It can handle dirty water.                               | It can not handle dirty water.                                 |                |   |
|             |              | 10                                    | Requires less floor area and simple foundation.          | Requires more floor area and requires heavy foundation.        |                |   |
|             | c) Ans.      |                                       | neat sketch of centrifugal pu                            |                                                                |                |   |
|             |              |                                       | h <sub>d</sub>                                           | Overhead tank  Delivery pipe                                   |                |   |
|             |              |                                       | Primin H <sub>m</sub> Suction gauge                      | Pressure gauge  Eye of pump  Centre line of the pump  Impeller |                |   |
|             |              |                                       | Sump well  Sump well  V <sub>S</sub> /2g  Foo            | t valve with strainer                                          |                | 4 |
|             |              | · · · · · · · · · · · · · · · · · · · | (Note: 2 mark for sketch a                               | nd 2 mark for labeling.)                                       |                |   |



#### **Model Answer: Winter - 2022**

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                       | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
|             | d)           | Explain Reynolds number with its equation and give its                                                                                                                                             |       |                |
|             | Ans.         | significance.  The Reynolds number is defined as the ratio of inertia force to viscous force. Reynolds number is dimensionless number. It is used to determine the laminar or turbulent flow type. | 1     |                |
|             |              | Re = $\frac{\text{inertial force}}{\text{viscous force}} = \frac{F_i}{F_v}$<br>Re = $\frac{\rho \ V \ d}{\mu}$ OR Re = $\frac{V \ d}{\theta}$                                                      | 1     |                |
|             |              | where,                                                                                                                                                                                             |       |                |
|             |              | Re= Reynolds number                                                                                                                                                                                |       |                |
|             |              | $\rho = \text{Mass density of fluid in } \left( \text{kg/m}^3 \right)$                                                                                                                             |       |                |
|             |              | V = Velocity of flow in (m/sec)                                                                                                                                                                    | 1     |                |
|             |              | d = Diameter of pipe in (m)                                                                                                                                                                        |       |                |
|             |              | $\mu = \text{Dynamic viscosity}(\text{ N-s/m}^3)$                                                                                                                                                  |       |                |
|             |              | $\theta = \text{Kinematic viscosity} \left( \frac{14-5}{11} \right)$ $\theta = \text{Kinematic viscosity} \left( \frac{1}{14-5} \right)$                                                           |       |                |
|             |              | Significance: Using value of Reynold's number the type of flow can be identified.  If Re < 2000, Flow is laminar flow  If 2000 < Re < 4000, Flow is in transition state                            | 1     | 4              |
|             | e) Ans.      | A centrifugal pump is required to pump 20 lit/sec against a head of 40m. Find the power required by pump if efficiency of pump is 70%.  Given data:                                                |       |                |
|             |              | Discharge (Q) = $20 \text{ lit/sec} = 20 \times 10^{-3} \text{ m}^3 / \text{sec}$                                                                                                                  | 1     |                |
|             |              | Head $(H_m) = 40m$ ,                                                                                                                                                                               | 1     |                |
|             |              | Efficiency $(\eta) = 70\% = 0.70$                                                                                                                                                                  |       |                |
|             |              | $P = rac{\gamma_{ m w} \ Q \ H_{ m m}}{\eta}$                                                                                                                                                     | 1     |                |
|             |              | $P = \frac{9.810 \times 20 \times 10^{-3} \times 40}{0.70}$                                                                                                                                        |       |                |
|             |              |                                                                                                                                                                                                    | 1     |                |
|             |              | P = 11.21  kW                                                                                                                                                                                      | 1     | 4              |
|             |              |                                                                                                                                                                                                    |       |                |



#### **Model Answer: Winter - 2022**

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                      | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.5         |              | Attempt any <u>TWO</u> of the following:                                                                                                                                                                                                                                                                          |       | (12)           |
|             | a)           | Calculate loss of head and direction of flow for pipe 400m long having slope of 1 in 200. It tapers from 1.4m diameter at higher end to 0.6m diameter at lower end. Discharge of water flowing through pipe is 800lit/sec. Pressure at higher end is 8N/cm <sup>2</sup> and at lower end is 10N/cm <sup>2</sup> . |       |                |
|             | Ans.         | Given data:                                                                                                                                                                                                                                                                                                       |       |                |
|             |              | $L = 400 \text{m}, d_1 = 0.6 \text{m}, d_2 = 1.4 \text{m},$                                                                                                                                                                                                                                                       | 1/    |                |
|             |              | $Q = 800 \text{ lit/sec} = 800 \times 10^{-3} \text{ m}^3/\text{sec},$                                                                                                                                                                                                                                            | 1/2   |                |
|             |              | Slope = $1$ in 200,                                                                                                                                                                                                                                                                                               |       |                |
|             |              | $P_1 = 10 \text{ N/cm}^2 = 100 \text{ kN/m}^2,$                                                                                                                                                                                                                                                                   | 1/2   |                |
|             |              | $P_2 = 8 \text{ N/cm}^2 = 80 \text{ kN/m}^2$                                                                                                                                                                                                                                                                      | 72    |                |
|             |              | $Z_1 = 0, Z_2 = \frac{400}{200} = 2m$                                                                                                                                                                                                                                                                             |       |                |
|             |              | $Q = A_1 V_1$                                                                                                                                                                                                                                                                                                     | 1/2   |                |
|             |              | $O = 800 \times 10^{-3}$                                                                                                                                                                                                                                                                                          |       |                |
|             |              | $V_1 = \frac{Q}{A_1} = \frac{800 \times 10^{-3}}{\frac{\pi}{4} \times (0.6)^2} = 2.83 \text{ m/sec}$                                                                                                                                                                                                              | 1/2   |                |
|             |              | by using continuity equation,                                                                                                                                                                                                                                                                                     |       |                |
|             |              | $A_1V_1 = A_2V_2$                                                                                                                                                                                                                                                                                                 | 1/2   |                |
|             |              | $0.28 \times 2.83 = 1.54 \times V_2$                                                                                                                                                                                                                                                                              | 1/2   |                |
|             |              | $V_2 = 0.514 \text{ m/sec}$                                                                                                                                                                                                                                                                                       |       |                |
|             |              | now, total head at section 1-1                                                                                                                                                                                                                                                                                    |       |                |
|             |              | $E_{1} = \frac{P_{1}}{\gamma_{L}} + \frac{V_{1}^{2}}{2g} + Z_{1}$                                                                                                                                                                                                                                                 | 1/2   |                |
|             |              | $E_{1} = \frac{100}{9.81} + \frac{2.23^{2}}{2 \times 9.81} + 0$ $E_{1} = 10.601 \text{m}$                                                                                                                                                                                                                         | 1/2   |                |
|             |              | $\frac{L_1}{L_2} = 10.00  \text{fm}$<br>now, total head at section 2-2                                                                                                                                                                                                                                            |       |                |
|             |              | $E_{2} = \frac{P_{2}}{\gamma_{L}} + \frac{V_{2}^{2}}{2g} + Z_{2}$                                                                                                                                                                                                                                                 | 1/2   |                |
|             |              | $E_2 = \frac{80}{9.81} + \frac{0.514^2}{2 \times 9.81} + 2$                                                                                                                                                                                                                                                       | 1/2   |                |
|             |              | $E_2 = 10.168 \text{m}$                                                                                                                                                                                                                                                                                           |       |                |
|             |              | Loss of head $(h_L) = E_1 - E_2 = 10.601-10.168$                                                                                                                                                                                                                                                                  |       |                |
|             |              | $h_{\rm L} = 0.432 \rm m$                                                                                                                                                                                                                                                                                         | 1/2   |                |
|             |              | Total head at section 1-1 is greater than section 2-2                                                                                                                                                                                                                                                             | 1.4   | 4              |
|             |              | :. flow of water is from section 1-1 to section 2-2 i.e. in upward direction.                                                                                                                                                                                                                                     | 1/2   | 6              |
|             |              |                                                                                                                                                                                                                                                                                                                   |       |                |



#### **Model Answer: Winter - 2022**

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                    | Marks                | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|
| Q.5         | b)           | Explain the major and minor losses in pipe with their expression.                                                               |                      | 11.100.110     |
|             | Ans.         | <b>Major loss:</b> The major loss of head is caused due to friction when fluid flow through a pipe. $h_f = \frac{f L V^2}{2gd}$ |                      |                |
|             |              | Minor loss: The minor loss of head is caused due to change in velocity of flowing fluid either in magnitude or direction        |                      |                |
|             |              | i) Loss of head at the entrance. $H_L = \frac{0.5V^2}{2g}$                                                                      |                      |                |
|             |              | ii) Loss of head due to sudden expansion.                                                                                       |                      |                |
|             |              | $H_{L} = \frac{\left(V_{1} - V_{2}\right)^{2}}{2g}$                                                                             |                      |                |
|             |              | iii) Loss of head due to sudden contraction. $H_L = \frac{0.5V^2}{2g}$                                                          | 1                    | 6              |
|             |              | iv)Loss of head at exit. $H_L = \frac{V^2}{2g}$                                                                                 | each<br>(any<br>six) |                |
|             |              | v) Loss of head due to obstruction. $H_{L} = \left[\frac{A}{C_{c} \times a} - 1\right]^{2} \frac{V^{2}}{2g}$                    |                      |                |
|             |              | vi)Loss of head due to pipe fitting. $H_L = K \frac{V^2}{2g}$                                                                   |                      |                |
|             |              | vii) Loss of head due to bend. $H_L = K \frac{V^2}{2g}$                                                                         |                      |                |
|             |              |                                                                                                                                 |                      |                |



### **Model Answer: Winter - 2022**

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                               | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.5         | c)           | A pipe 20cm diameter is 20m long and velocity in pipe is 8m/sec. What loss of head would be saved. If the last 5m length of pipe is replaced by 30cm diameter pipe, the change in section being sudden? Assume $F = 0.04$ , for both pipes. Neglect entry and exit losses. |       |                |
|             | Ans.         | d <sub>1</sub> = 0.2 m  15 m  20 m                                                                                                                                                                                                                                         | 1/2   |                |
|             |              | Given data: $L = 20m$ , $V_1 = 8m/sec$ , $F = 0.04$ , $d_1 = 20cm = 0.2 \text{ m}$ , $d_2 = 30cm = 0.3m$ , $L_1 = 15m$ , $L_2 = 5m$                                                                                                                                        |       |                |
|             |              | $Q = A_1 V_1$ $Q = \frac{\pi}{4} \times 0.2^2 \times 8 = 0.25 \text{m}^3/\text{sec}$                                                                                                                                                                                       | 1/2   |                |
|             |              | Now, $Q = A_2 V_2$                                                                                                                                                                                                                                                         | 1/2   |                |
|             |              | $0.25 = \frac{\pi}{4} \times 0.3^2 \times V_2$                                                                                                                                                                                                                             | 1     |                |
|             |              | $V_2 = 3.54m / \sec$                                                                                                                                                                                                                                                       |       |                |
|             |              | Case i) head loss for full length of pipe $h_L = \frac{FLV^2}{2gD}$                                                                                                                                                                                                        | 1     |                |
|             |              | $h_{L} = \frac{0.04 \times 20 \times 8^{2}}{2 \times 9.81 \times 0.2}$ $h_{L} = 13.047 \text{m}$                                                                                                                                                                           | 1     | 6              |
|             |              | Case ii)) head loss for sudden expansion $h_{L} = \left(\frac{FL_{1}V_{1}^{2}}{2gd_{1}}\right) + \left(\frac{FL_{2}V_{2}^{2}}{2gd_{2}}\right) + \left(\frac{\left(V_{1}-V_{2}\right)^{2}}{2g}\right)$                                                                      |       |                |
|             |              | $\mathbf{h}_{L} = \left(\frac{0.04 \times 15 \times 8^{2}}{2 \times 9.81 \times 0.2}\right) + \left(\frac{0.04 \times 5 \times 3.54^{2}}{2 \times 9.81 \times 0.3}\right) + \left(\frac{\left(8-3.54\right)^{2}}{2 \times 9.81}\right)$                                    | 1     |                |
|             |              | $h_L = 11.22m$ Head loss Saved = 13.047-11.22 = 1.82m                                                                                                                                                                                                                      | 1/2   |                |



#### **Model Answer: Winter - 2022**

| Que.    | Sub.    | Model Answer                                                                                                                                                                                                                 | Marks | Total      |
|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| No. Q.6 | Que.    | Attempt any <u>TWO</u> of the following:                                                                                                                                                                                     |       | Marks (12) |
|         | a) Ans. | Explain hydraulic coefficients of an orifice with their expression and show relation between them.  i) Coefficient of discharge (C <sub>d</sub> ):  The ratio of the actual discharge to the theoretical discharge is called |       |            |
|         |         | as the coefficient of discharge.                                                                                                                                                                                             | 1     |            |
|         |         | $C_{ m d} = rac{Q_{ m actual}}{Q_{ m theoretical}}$                                                                                                                                                                         | 1/2   |            |
|         |         | ii)Coefficient of contraction (C <sub>c</sub> ): The ratio of the cross-sectional area of the jet at vena contracta to the                                                                                                   | 1     |            |
|         |         | cross-sectional area of the orifice is called coefficient of contraction. $C_c = \frac{\text{area of jet at vena contracta}}{\text{area of orifice}} = \frac{a}{A}$                                                          | 1/2   |            |
|         |         | iii)Coefficient of velocity ( $C_v$ ):  The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity $C = X  \text{or } C = V$                         | 1 1/2 |            |
|         |         | $C_{v} = \frac{X}{\sqrt{4yh}} \text{ or } C_{v} = \frac{V}{\sqrt{2gh}}$ Relation between Cc, Cv and Cd: $C_{d} = C_{v} \times C_{c}$                                                                                         |       |            |
|         |         |                                                                                                                                                                                                                              | 1 1/2 | 6          |
|         |         |                                                                                                                                                                                                                              |       |            |
|         |         |                                                                                                                                                                                                                              |       |            |
|         |         |                                                                                                                                                                                                                              |       |            |
|         |         |                                                                                                                                                                                                                              |       |            |



#### **Model Answer: Winter - 2022**

| Que. | Sub.       |                                                                                                                                                                                                            |       | Total |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que.       | Model Answer                                                                                                                                                                                               | Marks | Marks |
| Q.6  | <b>b</b> ) | Design a trapezoidal most economical channel section having side slope 1.5 H: 1V it is required to discharge of 20m³/sec with a bed slope of 1:6000 design section using Mannings formula, Take N = 0.015. |       |       |
|      | Ans.       | Given data:                                                                                                                                                                                                |       |       |
|      |            | $Q = 20 \text{ m}^3 / \text{sec}$                                                                                                                                                                          |       |       |
|      |            | Bed slope (S) = $\frac{1}{6000}$ , Side slope (n) = $\frac{1.5}{1}$ = 1.5                                                                                                                                  |       |       |
|      |            | Manning's constant $(N) = 0.015$                                                                                                                                                                           |       |       |
|      |            | Most economical condition for trapezoidal section having following condition                                                                                                                               |       |       |
|      |            | i) $R = \frac{d}{2}$ ii) $\frac{(b+2nd)}{2} = d\sqrt{(1+n^2)}$                                                                                                                                             | 1     |       |
|      |            | $\frac{\text{(b+2nd)}}{2} = d \times \sqrt{(1+n^2)}$                                                                                                                                                       |       |       |
|      |            | $b + (2 \times 1.5 \times d) = 2 \times d\sqrt{(1 + 1.5^2)}$                                                                                                                                               |       |       |
|      |            | b+3d = 3.606 d                                                                                                                                                                                             |       |       |
|      |            | b = 0.606d                                                                                                                                                                                                 | 1     |       |
|      |            | $A = bd + nd^2$                                                                                                                                                                                            |       |       |
|      |            | $= (0.606d) \times d + 1.5d^2$                                                                                                                                                                             |       |       |
|      |            | $A = 2.106 d^2$                                                                                                                                                                                            | 1     |       |
|      |            | by using Manning formula,                                                                                                                                                                                  |       |       |
|      |            | $Q = A \times \frac{1}{N} \times (R)^{\frac{2}{3}} \times (S)^{\frac{1}{2}}$                                                                                                                               | 1     |       |
|      |            | $20 = 2.106d^{2} \times \frac{1}{0.015} \times \left(\frac{d}{2}\right)^{\frac{2}{3}} \times \left(\frac{1}{6000}\right)^{\frac{1}{2}}$                                                                    |       |       |
|      |            | $20 = 2.106 \times d^2 \times 66.67 \times 0.629 \times d^{\frac{2}{3}} \times 0.0129$                                                                                                                     |       |       |
|      |            | d = 2.92  m                                                                                                                                                                                                | 1     |       |
|      |            | b=0.606d                                                                                                                                                                                                   | 1     |       |
|      |            | b=1.77m                                                                                                                                                                                                    | 1     | 6     |
|      |            |                                                                                                                                                                                                            |       |       |
|      |            |                                                                                                                                                                                                            |       |       |
|      |            |                                                                                                                                                                                                            |       |       |



**Model Answer: Winter - 2022** 

| Que. | Sub.<br>Que. | Model Answer                                                                                                                                                            | Marks | Total<br>Marks |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.6  | c)           | Find the discharge over following notches for a head of 20cm. i) Triangular notch with $\theta=60^{0}$ and $C_{d}=0.62$ ii) Rectangular notch 1.2m long and $C_{d}=0.6$ |       | 1124211        |
|      | Ans.         | Given data: $H = 20cm = 0.2m$ ,                                                                                                                                         |       |                |
|      |              | $\theta = 60^{\circ}$ , $C_d = 0.62$ - for triangular notch                                                                                                             |       |                |
|      |              | $L = 1.2m$ , $C_d = 0.6$ - for rectangular notch                                                                                                                        |       |                |
|      |              | i) Discharge through triangular notch                                                                                                                                   |       |                |
|      |              | $Q = \frac{8}{15} \times C_d \sqrt{2g} \tan \frac{\theta}{2} H^{5/2}$                                                                                                   | 1     |                |
|      |              | $Q = \frac{8}{15} \times 0.62 \sqrt{2 \times 9.81} \tan \frac{60}{2} \ 0.20^{5/2}$                                                                                      | 1     |                |
|      |              |                                                                                                                                                                         | 1     |                |
|      |              | Q=0.014m <sup>3</sup> /s                                                                                                                                                |       |                |
|      |              | ii) Discharge through rectangular notch                                                                                                                                 | 4     |                |
|      |              | $Q = \frac{2}{3} \times C_d L \sqrt{2g H^{3/2}}$                                                                                                                        | 1     |                |
|      |              | $Q = \frac{2}{3} \times C_{d} L \sqrt{2g} H^{3/2}$ $Q = \frac{2}{3} \times 0.6 \times 1.2 \sqrt{2 \times 9.81} 0.20^{3/2}$                                              | 1     |                |
|      |              | $Q=0.190 \text{m}^3/\text{s}$                                                                                                                                           | 1     | 6              |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |
|      |              |                                                                                                                                                                         |       |                |