MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter - 2022
Subject: Hydraulics

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	b) Ans.	Calculate the weight density and specific gravity of liquid, if 600 ml liquid weighs 6 N .		
		Given data: $\begin{aligned} \mathrm{V} & =600 \mathrm{ml}=\frac{600}{1000}=0.6 \text { lit }=0.6 \times 10^{-3} \mathrm{~m}^{3} \\ \mathrm{~W} & =6 \mathrm{~N}\end{aligned}$		
		i) Weight density γ_{l} $\begin{aligned} \gamma_{\mathrm{L}} & =\frac{\mathrm{W}}{\mathrm{~V}} \\ & =\frac{6}{0.6 \times 10^{-3}}=10 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3} \end{aligned}$	$1 / 2$ $1 / 2$	
		$\text { ii) } \begin{aligned} \text { Specific gravity } \mathrm{S}_{\mathrm{L}} & =\frac{\gamma_{\mathrm{L}}}{\gamma_{\mathrm{W}}} \\ & =\frac{10 \times 10^{3}}{9810}=1.02 \end{aligned}$	$1 / 2$ $1 / 2$	2
	c) Ans.	Define pressure and It's S.I. units.		
		Pressure: The ratio of force to the cross sectional area is known as pressure. $P=\text { force } / \text { area }$	1	
		SI unit - $\mathrm{N} / \mathrm{m}^{2}$ or Pascal	1	2
	d) Ans.	State Bernoullis theorem.		
		It states that in a steady ,ideal flow of an incompressible fluid, the total energy at any point of the fluid is always constant. Total energy $=$ Constant Pressure energy + Kinetic energy + Potential energy $=$ Constant	2	2
	e) Ans.	Define Hydraulic gradient line (H.G.L.) and Total Energy Line (T.E.L.).		
		Hydraulic Gradient Line (H.G.L.) is defined as the line which gives the sum of pressure head and datum head of a flowing fluid in a pipe with respect to some reference line.	1	
		Total Energy Line (T.E.L.) is defined as the line which gives the sum of pressure head, datum head and velocity head of a flowing fluid in a pipe with respect to some reference line.	1	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter-2022

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	b)			
		Given data: $\mathrm{h}_{1}=0.05 \mathrm{~m}, \mathrm{~S}_{1}=0.85$		
	Ans.	$\mathrm{h}_{2}=50+80=130 \mathrm{~mm}=0.13 \mathrm{~m}, \mathrm{~S}_{2}=13.6$	1	
		$\mathrm{P}_{\mathrm{A}}+\gamma_{1} \mathrm{~h}_{1}=\gamma_{2} \mathrm{~h}_{2}$	1	
		$\mathrm{P}_{\mathrm{A}}+\mathrm{pgh}_{1}=\mathrm{pgh}_{2}$	1	
		$\mathrm{P}_{\mathrm{A}}+1000 \times 0.85 \times 9.81 \times 0.05=1000 \times 13.6 \times 9.81 \times 0.13$	1/2	
		$\mathrm{P}_{\mathrm{A}}=16.93 \mathrm{KPa}$	1/2	
		OR	OR	4
		$\mathrm{h}_{\mathrm{A}}=\mathrm{S}_{2} \mathrm{~h}_{2}-\mathrm{S}_{1} \mathrm{~h}_{1}$	1	
		$\mathrm{h}_{\text {A }}=13.6 \times 0.13-0.85 \times 0.05$		
		$\mathrm{h}_{\mathrm{A}}=1.725 \mathrm{~m}$	1	
		$\mathrm{P}_{\mathrm{A}}=\gamma_{\mathrm{L}} \mathrm{h}$	1	
		$\mathrm{P}_{\mathrm{A}}=\mathrm{S}_{\mathrm{L}} \times \gamma_{\mathrm{w}} \times \mathrm{h}_{\mathrm{A}}$	1/2	
		$\mathrm{P}_{\mathrm{A}}=1 \times 9.81 \times 1.725$	1/2	
		$\mathrm{Pa}_{\mathrm{A}}=16.92 \mathrm{KPa}$		
	c)	A circular plate of 4 m diameter is immersed in water such that its greatest and least depth below the free surface of water are $\mathbf{5 m}$ and 3 m respectively. Calculate i) Total pressure on one face of plate ii) The position of center of pressure		
	Ans.			
		$\begin{aligned} & \mathrm{A}=\frac{\pi}{4} \times 4^{2} \\ & \mathrm{~A}=4 \times \pi \end{aligned}$		
		$\mathrm{A}=12.566 \mathrm{~m}^{2}$	1/2	
		$-5+3$		
		$y=\frac{5}{2}$		
		$\overline{\mathrm{y}}=4 \mathrm{~m}$	1/2	
		$\sin \theta=\frac{2}{4}$		
		$\theta=\sin ^{-1}\left(\frac{1}{2}\right)$		
		$\theta=30^{\circ}$	1/2	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3		Attempt any THREE of the following:		(12)
	a)	Explain the concept of pressure diagram with neat sketches and explain the use of pressure diagram.		
	Ans.	Pressure diagram is defined as "It is the graphical representation of variation of pressure on the surface with depth". The total pressure per unit length is the area of pressure diagram. The position of center of the pressure is the position of center of gravity of the pressure diagram.	1	
			1	
		Uses: i) To Calculate pressure exerted by liquid on the one side of surface. ii) To Calculate pressure due to liquid on both the side of surface iii) To Calculate pressure on vertical and inclined faces of dam. iv) To Calculate pressure on sluice gate, side and bottom of water tank. v) To find position of centre of pressure.	1 each (any two)	4
	b)	A horizontal pipe carrying water tapers from 20 cm diameter at \mathbf{A} and 10 cm diameter at B in length of 2 m . The pressure at ' A ' is $100 \mathrm{~N} / \mathrm{cm}^{2}$. If the discharge $400 \mathrm{lit} / \mathrm{min}$. Calculate pressure at ' B ' in $\mathrm{N} / \mathrm{cm}^{2}$. If the loss of head from A to B is 10 cm .		
	Ans.			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2013 Certified)

Model Answer: Winter - 2022

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	b) Ans.	Explain the major and minor losses in pipe with their expression. Major loss: The major loss of head is caused due to friction when fluid flow through a pipe. $\mathrm{h}_{\mathrm{f}}=\frac{f \mathrm{~L} \mathrm{~V}^{2}}{2 g d}$ Minor loss: The minor loss of head is caused due to change in velocity of flowing fluid either in magnitude or direction i) Loss of head at the entrance. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ ii) Loss of head due to sudden expansion. $\mathrm{H}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{1}-V_{2}\right)^{2}}{2 \mathrm{~g}}$ iii) Loss of head due to sudden contraction. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ iv)Loss of head at exit. $\mathrm{H}_{\mathrm{L}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$ v) Loss of head due to obstruction. $\mathrm{H}_{\mathrm{L}}=\left[\frac{\mathrm{A}}{\mathrm{C}_{\mathrm{c}} \times \mathrm{a}}-1\right]^{2} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ vi)Loss of head due to pipe fitting. $\mathrm{H}_{\mathrm{L}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ vii) Loss of head due to bend. $\mathrm{H}_{\mathrm{L}}=\mathrm{K} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$	1 each (any six)	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	c)	A pipe 20 cm diameter is 20 m long and velocity in pipe is $\mathbf{8 m} / \mathrm{sec}$. What loss of head would be saved. If the last 5 m length of pipe is replaced by 30 cm diameter pipe, the change in section being sudden? Assume $F=0.04$, for both pipes. Neglect entry and exit losses. $\begin{aligned} & \text { Given data: } \mathrm{L}=20 \mathrm{~m}, \mathrm{~V}_{1}=8 \mathrm{~m} / \mathrm{sec}, \mathrm{~F}=0.04 \\ & \qquad \mathrm{~d}_{1}=20 \mathrm{~cm}=0.2 \mathrm{~m}, \mathrm{~d}_{2}=30 \mathrm{~cm}=0.3 \mathrm{~m} \\ & \mathrm{~L}_{1}=15 \mathrm{~m}, \mathrm{~L}_{2}=5 \mathrm{~m} \\ & \mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1} \\ & \mathrm{Q}=\frac{\pi}{4} \times 0.2^{2} \times 8=0.25 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$ Now, $\mathrm{Q}=\mathrm{A}_{2} \mathrm{~V}_{2}$ $\begin{aligned} 0.25 & =\frac{\pi}{4} \times 0.3^{2} \times \mathrm{V}_{2} \\ \mathrm{~V}_{2} & =3.54 \mathrm{~m} / \mathrm{sec} \end{aligned}$ Case i) head loss for full length of pipe $\begin{aligned} & \mathrm{h}_{\mathrm{L}}=\frac{\mathrm{FLV}^{2}}{2 \mathrm{gD}} \\ & \mathrm{~h}_{\mathrm{L}}=\frac{0.04 \times 20 \times 8^{2}}{2 \times 9.81 \times 0.2} \\ & \mathrm{~h}_{\mathrm{L}}=13.047 \mathrm{~m} \end{aligned}$ Case ii)) head loss for sudden expansion $\begin{aligned} & h_{\mathrm{L}}=\left(\frac{\mathrm{FL}_{1} \mathrm{~V}_{1}^{2}}{2 \mathrm{gd}_{1}}\right)+\left(\frac{\mathrm{FL}_{2} \mathrm{~V}_{2}^{2}}{2 \mathrm{gd}_{2}}\right)+\left(\frac{\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}}{2 \mathrm{~g}}\right) \\ & \mathrm{h}_{\mathrm{L}}=\left(\frac{0.04 \times 15 \times 8^{2}}{2 \times 9.81 \times 0.2}\right)+\left(\frac{0.04 \times 5 \times 3.54^{2}}{2 \times 9.81 \times 0.3}\right)+\left(\frac{(8-3.54)^{2}}{2 \times 9.81}\right) \\ & \mathrm{h}_{\mathrm{L}}=11.22 \mathrm{~m} \end{aligned}$ Head loss Saved $=13.047-11.22=1.82 \mathrm{~m}$	$1 / 2$ $1 / 2$ $1 / 2$ 1 1 1 1 $1 / 2$	6

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answer \& Marks \& Total Marks \\
\hline \multirow[t]{6}{*}{Q. 6} \& \& Attempt any TWO of the following: \& \& (12) \\
\hline \& \begin{tabular}{l}
a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Explain hydraulic coefficients of an orifice with their expression and show relation between them. \\
i) Coefficient of discharge \(\left(\mathrm{C}_{\mathrm{d}}\right)\) :
\end{tabular} \& \& \\
\hline \& \& The ratio of the actual discharge to the theoretical discharge is called as the coefficient of discharge. \& 1 \& \\
\hline \& \& \[
\mathrm{C}_{\mathrm{d}}=\frac{\mathrm{Q}_{\text {actual }}}{\mathrm{Q}_{\text {theoretical }}}
\] \& 1/2 \& \\
\hline \& \& \begin{tabular}{l}
ii) Coefficient of contraction (\(\mathrm{C}_{\mathrm{c}}\)): \\
The ratio of the cross-sectional area of the jet at vena contracta to the cross-sectional area of the orifice is called coefficient of contraction.
\[
\mathrm{C}_{\mathrm{c}}=\frac{\text { area of jet at vena contracta }}{\text { area of orifice }}=\frac{\mathrm{a}}{\mathrm{~A}}
\]
\end{tabular} \& \[
\begin{gathered}
1 \\
1 / 2
\end{gathered}
\] \& \\
\hline \& \& \begin{tabular}{l}
iii) Coefficient of velocity \(\left(\mathrm{C}_{\mathbf{v}}\right)\) : \\
The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity
\[
\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{X}}{\sqrt{4 \mathrm{yh}}} \text { or } \mathrm{C}_{\mathrm{v}}=\frac{\mathrm{V}}{\sqrt{2 \mathrm{gh}}}
\] \\
Relation between \(\mathrm{Cc}, \mathrm{Cv}\) and Cd :
\[
\mathrm{C}_{\mathrm{d}}=\mathrm{C}_{\mathrm{v}} \times \mathrm{C}_{\mathrm{c}}
\]
\end{tabular} \& 1
\(11 / 2\)

1112 \& 6

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c) Ans.	Find the discharge over following notches for a head of 20 cm . i) Triangular notch with $\theta=60^{0}$ and $\mathrm{C}_{\mathrm{d}}=0.62$ ii) Rectangular notch 1.2 m long and $\mathrm{C}_{\mathrm{d}}=0.6$ $\text { Given data: } \begin{aligned} \mathrm{H} & =20 \mathrm{~cm}=0.2 \mathrm{~m}, \\ \theta & =60^{\circ}, \mathrm{C}_{\mathrm{d}}=0.62-\text { for triangular notch } \\ \mathrm{L} & =1.2 \mathrm{~m}, \mathrm{C}_{\mathrm{d}}=0.6-\text { for rectangular notch } \end{aligned}$ i) Discharge through triangular notch $\begin{aligned} & \mathrm{Q}=\frac{8}{15} \times \mathrm{C}_{\mathrm{d}} \sqrt{2 \mathrm{~g}} \tan \frac{\theta}{2} \mathrm{H}^{5 / 2} \\ & \mathrm{Q}=\frac{8}{15} \times 0.62 \sqrt{2 \times 9.81} \tan \frac{60}{2} 0.20^{5 / 2} \\ & \mathrm{Q}=0.014 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$ ii) Discharge through rectangular notch $\begin{aligned} & \mathrm{Q}=\frac{2}{3} \times \mathrm{C}_{\mathrm{d}} \mathrm{~L} \sqrt{2 \mathrm{~g}} \mathrm{H}^{3 / 2} \\ & \mathrm{Q}=\frac{2}{3} \times 0.6 \times 1.2 \sqrt{2 \times 9.81} 0.20^{3 / 2} \\ & \mathrm{Q}=0.190 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$		6

