WINTER - 2022 EXAMINATION
 Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. N.	Sub Q.N .	Answer	Marking Scheme
$\mathbf{1 .}$		Attempt any Five of the following	$\mathbf{1 0} \mathbf{M}$
	a)	Define Input offset voltage and Input bias current.	$\mathbf{2 M}$
	Ans	Inputs offset voltage: A small input voltage is required to be applied to an OpAmp in order to make its output zero called as Inputs offset voltage Input bias current: It is defined as the average of the currents flowing into the two input terminals of the OpAmp Ib=Ib1+Ib2	$\mathbf{1}$ Mark for each definition
	b)	Draw the circuit diagram of voltage follower.	$\mathbf{2 M}$

\qquad

WINTER - 2022 EXAMINATION
Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

WINTER - 2022 EXAMINATION
Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:

		3. Rectifiers 4. Comparators	(any two)
	f)	Draw circuit diagram of I to V converter.	2M
	Ans		2 Mark for correct diagram
	g)	State two merits of active filters over passive filters.	2M
	Ans	Merits 1) Flexibility in gain and frequency adjustment. 2)No loading problem 3) Low cost 4) No insertion loss 5) pass band gain 6) Small component size 7) Use of inductor can be avoided	1 Mark each merit (any two)
2.		Attempt Any THREE of the following	12M
	a)	Describe the operation of PLL as FM demodulator.	4M

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:
22423

\qquad

WINTER - 2022 EXAMINATION

Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

	assume $c=0.001 \mathrm{llf}$. $\begin{aligned} & \text { ume } c=0.001 \text { llf. } \\ & \text { But } f_{c}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \times R \times 0.001 \times 10^{-6}} \\ & \therefore R=\frac{1}{2 \pi \times 15 \times 10^{3} \times 0.001 \times 10^{-6}} \\ & \therefore R=10.60 \mathrm{k} \Omega \end{aligned}$ $\begin{aligned} & R F=10 \mathrm{k} \Omega \\ & R_{1}=10 \mathrm{k} \Omega \\ & R=10.60 \mathrm{k} \Omega \\ & C=0.001 \mathrm{er} . \end{aligned}$	1 M for calculation of \mathbf{C}
c)	In op-amp based Schmitt trigger, $R_{2}=200 \Omega, R_{1}=50 \Omega$, Vin $=500 \mathrm{mV}_{\mathrm{pp}}$ sinewave, saturation voltage $= \pm$ is v. Determine threshold Voltage $V_{U T P}$, $V_{\text {LTP }}$.	4M
Ans	$\begin{aligned} V_{\text {UTP }} & =\frac{R_{2}}{R_{1}+R_{2}} \times(+ \text { Vsat }) \\ & =\frac{200}{(50+200)^{2}} \times(+15) \\ & =0.8 \times(+15) \\ V_{\text {UTP }} & =+12 V \\ V_{L T P} & =\frac{R_{2}}{\left.R_{1}+R_{2}\right)^{x}} \times(-V \text { Sat }) \\ & =\frac{200}{50+200)^{x}(-15)} \\ & =(5.8 \times(-15) \\ V_{L T P} & =-12 V \end{aligned}$	2 Mark for UTP and 2Mark for LTP

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:
22423

	d)	Draw ideal and practical voltage transfer curve of op-amp.	4M
	Ans	 a) b) Ideal voltage transfer curve	2 M each
Q. 3		Attempt any THREE of the following.	12 M
	a)	Draw block diagram of OPAMP and state function of each block.	4M
	Ans	Fig: Block diagram of OP- AMP Explanation: Input stage: It is the dual input, balanced output differential amplifier. This stage generally provides most of the voltage gain of the amplifier and also establishes the input resistance of the op-amp. Intermediate stage: It is usually another differential amplifier, which is driven by the output of the first stage. In most amplifiers, the intermediate stage is dual input and unbalanced(single-ended) output. Because direct coupling is used, the dc voltage at the output of the intermediate stage as well above ground potential. Level translator: It is used after the intermediate stage to shift the dc level at the output of the intermediate stage downward to zero volts with respect to the ground. Output stage: The final output stage is usually a push-pull complementary amplifier output stage. The output stage increases the output voltage swing and raises the current-supplying capability of the op-amp.It also provides low output resistance.	2M Block diagram, Explanatio n of 4 blocks $1 / 2$ M each block

\qquad

WINTER - 2022 EXAMINATION

Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

b)	Draw the circuit of basic differentiator and derive output expression	4M
Ans	Circuit diagram of Differentiator: Derivation of output expression : When the input is a positive-going voltage, a current I flows into the capacitor C 1 , as shown in the figure. Since the current flowing into the op-amp's internal circuit is zero, effectively all of the current "I "flows through the resistor Rf. The output voltage is, $\text { Vout }=-(\mathbf{I} * \mathbf{R})$ Here, this output voltage is directly proportional to the rate of change of the input voltage. From the figure, node ' X ' is virtually grounded and node ' Y ' is also at ground potential i.e., $\mathbf{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{Y}}=\mathbf{0} .$ From the input side, the current I can be given as: $\mathbf{I}=\mathbf{C}_{1}\left\{\mathbf{d}\left(\mathbf{V}_{\mathrm{in}}-\mathbf{V}_{\mathrm{x}}\right) / \mathbf{d t}\right\}=\mathbf{C} 1\left\{\mathbf{d}\left(\mathbf{V}_{\mathrm{in}}\right) / \mathbf{d t}\right\}$ From the output side, the current I is given as: $\mathbf{I}=-\left\{\left(\mathbf{V}_{\text {out }}-\mathbf{V}_{\mathbf{x}}\right) / \mathbf{R}_{i}\right\}=-\left\{\mathbf{V}_{\text {out }} / \mathbf{R}_{i}\right\}$ Equating the above two equations of current we get: $\begin{aligned} & C_{1}\left\{d\left(V_{\text {in }}\right) / d t\right\}=-V_{\text {out }} / R_{r} \\ & V_{\text {out }}=-C_{1} \operatorname{Rf}\left\{d\left(V_{\text {in }}\right) / d d t\right\} \end{aligned}$ Above equation indicates that the output is $\mathrm{C}_{1} \mathrm{Rf}$ times the differentiation of the input voltage. The product $\mathrm{C}_{1} \mathrm{Rf}$ is called as the RC time constant of the differentiator circuit. The negative sign indicates the output is out of phase by 180° with respect to the input.	Diagram 2M, Derivation 2M
c)	Draw a neat circuit diagram of analog divider using log- antilog amplifiers and explain its operation.	4M

\qquad

WINTER - 2022 EXAMINATION

Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:

Ans	Analog divider using log-anti log amplifiers: Explanation: Analog Divider using log antilog amplifiers $\frac{V_{i n}}{I_{0}}$ Hence Vo \propto V1/V2	Diagram 2M, Explanatio n 2M
d)	Draw filter circuit for the following response. (Refer Fig.1) Fig. No. 1	4M

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:
22423

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:
22423

Diagram
2M, Explanati on 2M

Explanation:

1) To make output voltage zero, input voltage should be zero, but we get minimum (less) output voltage called output offset voltage due to the presence of input offset at the input side.
2) This input offset voltage is present even when, both the input terminals are grounded.
3) Hence, a technique is used to make output offset voltage zero.This technique is called as offset nulling technique.

In this technique, a $10 \mathrm{k} \Omega$ potentiometer is connected between the offset null pins of IC74I i.e. pin no. 1 and pin. 5 and the wiper of potentiometer is connected to pin no. 4 (i.e.-VEE).

The wiper of the potentiometer is varied in such a way that input offset voltage becomes zero.

Once input becomes zero, then output offset voltage also becomes zero. Thus, the op-amp is said to be nulled or balanced.
c) Design the circuit to get the output voltage.
$\mathrm{V}_{0}=3 \mathrm{~V}_{1}+2 \mathrm{~V}_{2}$ where
V_{1} and V_{2} are input voltages.
\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:
22423

Ans	Design using. $V_{0}=3 V_{1}+2 V_{2}$ $\text { Deisign using . } \quad=\frac{-R_{f}}{R_{1}}\left(V_{1}\right)+\left(-\frac{R_{f}}{R_{1}} \cdot V_{2}\right)$ Note: the values of $R_{F}, R_{1} \& R_{2}$ can be selected as any value to adjust gain ratio as given in the output equation.	4M
d)	Explain phase shift oscillator using IC 741 with neat diagram.	4M
Ans	Circuit diagram:	

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:

	Ans	Explanation: R-C phase shift oscillator using op-amp uses an op-amp in inverting amplifier mode. Thus it introduces the phase shift of 180° between input and output. The feedback network consists of 3-RC sections each producing 60° phase shift. Such an RC phase shift oscillator using op-amp is shown in Figure. The output of the amplifier is given to the feedback network. The output of the feedback network drives the amplifier. The total phase shift around a loop is 180° of the amplifier and 180° due to $3-\mathrm{RC}$ section, thus 360°. This satisfies the required condition for positive feedback and circuit works as an oscillator.	
	e)	Explain the working of astable multi-vibrator using IC 555.	4M
	Ans	Circuit diagram: Explanation: In the 555 Oscillator circuit above, pin 2 and pin 6 are connected together allowing the circuit to re-trigger itself on each and every cycle allowing it to operate as a free running oscillator.	Diagram 2M, Explanati on 2M, waveform optional

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:
22423

		During each cycle capacitor, C charges up through both timing resistors, R_{1} and R_{2} but discharges itself only through resistor, R_{2} as the other side of R_{2} is connected to the discharge terminal, pin 7. Then the capacitor charges up to $2 / 3 \mathrm{Vcc}$ (the upper comparator limit) which is determined by the $0.693\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C}$ combination and discharges itself down to $1 / 3 \mathrm{Vcc}$ (the lower comparator limit) determined by the $0.693\left(\mathrm{R}_{2}{ }^{*} \mathrm{C}\right)$ combination. This results in an output waveform whose voltage level is approximately equal to Vcc 1.5 V and whose output "ON" and "OFF" time periods are determined by the capacitor and resistors combinations. The individual times required to complete one charge and discharge cycle of the output is therefore given as: $t_{1}=0.693\left(R_{1}+R_{2}\right) C \& t_{2}=0.693\left(R_{2} * C\right)$ Where, R is in Ω and C in Farads. When connected as an astable multivibrator, the output from the $\mathbf{5 5 5}$ Oscillator will continue indefinitely charging and discharging between $2 / 3 \mathrm{Vcc}$ and $1 / 3 \mathrm{Vcc}$ until the power supply is removed.	
Q. 5		Attempt any TWO of the following:	12M
	a)	Draw a circuit diagram of V-I converter of floating load. Derive expression for its output. List any two applications.	6M
	Ans	Figure :Voltage to Current converter with floating load	2M Diagram 2M Expression for output 2M Application s

\qquad

WINTER - 2022 EXAMINATION
 Model Answer

Subject Name: Linear Integrated Circuits.
Subject Code:

	Writing KVL for the input loop, Voltage $\mathrm{V}_{\mathrm{id}}=\mathrm{V}_{f}$ and $\mathrm{I}_{\mathrm{B}}=0$, vi= $\mathrm{R}_{\mathrm{L}} \mathrm{i}_{0}=$ where $=\mathrm{i}_{0}=\mathrm{v}_{\mathrm{i}} / \mathrm{R}_{\mathrm{L}}$ From the figure 2.2.1 input voltage Vin is converted into output current of $\mathrm{V}_{\mathrm{in}} / \mathrm{R}_{\mathrm{L}}\left[\mathrm{V}_{\mathrm{in}}->\right.$ i_{0}]. In other words, input volt appears across R_{1}. If R_{L} is a precision resistor, the output current ($i_{0}=V_{\text {in }} / R_{1}$) will be precisely fixed Applications : 1. Low voltage ac and dc voltmeters 2. Diode match finders 3. LED and Zener diode testers.	
b)	Sketch input and output waveform for 2 V peak to peak size wave for Inverting ZCD and active Integrator.	6M
Ans	(a) (b) Fig: (a) ZCD Circuit (b)Input and Output waveforms Fig- 2.41 Sirne vave input and cosime output	3M each for correct input and output waveform

\qquad

WINTER - 2022 EXAMINATION

Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

	c)	Design second order high pass Butterworth filter with higher cutoff frequency of 1.5 kHz . Draw circuit with component values.	6M
	Ans	Given Data:- cut off freg $\left(f_{L}\right)=1.5 \mathrm{kHz}$ so1", Let $R_{2}=R_{3}=R$ $c_{2}=c_{3}=C=0.1 \mu \mathrm{~F}$ or (any other value Now $R=\frac{1}{2 \pi f_{L} C}=\frac{1 \quad \text { between } 0.1 \mu \mathrm{~F} \text { to } 1 \mu \mathrm{~F})}{2 \pi \times 1.5 \times 10^{3} \times 0.1 \times 10^{-6}}$ $\therefore R=1061.032 \Omega$ since $A_{v f}=1+\frac{R_{f}}{R_{1}}=1.586$ $\therefore R_{F}=0.586 R_{1}$ choose $R_{1}=10 \mathrm{~kJ}$ $\begin{aligned} \therefore R f & =0.586 \times 10 \times 10^{3} \\ & =5.86 \mathrm{k} \Omega \end{aligned}$ Hence the desijned circuit component Values are $\begin{aligned} & c_{2}=c_{3}=0.1 \mu \mathrm{~F} \\ & R_{1}=10 \mathrm{~kJ}, \quad R_{F}=5.86 \mathrm{k} \Omega \\ & R_{2}=R_{3}=1061.032 \Omega \end{aligned}$ Designed circuit:- (4M)	1M for calculation of \mathbf{R} 1M for calculation of RF 4M for Designed circuit with component values
Q . 6		Attempt Any TWO of the following:	12M
	a)	Calculate output voltage for open loop non-inverting amplifier. If Vin $=\mathbf{1 0}$ mv de, also draw input and output waveform and draw circuit diagram .	6M

\qquad

WINTER - 2022 EXAMINATION

Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

Ans		2M for calculatio n 2M for input output waveform 2M for circuit diagram
b)	Explain operation of Instrumentation amplifier with two op-amp with neat diagram.	6M
Ans	Two Op-Amp Instrumentation Amplifier: Circuit Diagram:	3M Diagram and 3M Explanati on

\qquad

WINTER - 2022 EXAMINATION

Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

	Derivation: Op amp A, is in non-tnverting mode, $\therefore v_{01}=\left(1+\frac{R_{4}}{R_{3}}\right) v_{2}-\text { (1) }$ $A=O P-\operatorname{amp} A_{2}$ is a differential amptifier or subtracter $\therefore v_{0}=v_{01}+v_{01}$ $\therefore \quad v_{01}=-\frac{R_{2}}{R_{1}} \times v_{01}$ $v_{01}^{\prime \prime}-\left(1+\frac{R_{2}}{R_{1}}\right) v_{1}$ $\therefore V_{0}=-\frac{R_{2}}{R_{1}} V_{01}+\left(1+\frac{R_{2}}{R_{1}}\right) V_{1}-\ll$ Putting equation (1) \& (2) we get, $\begin{aligned} & V_{0}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{1}}{R_{3}}\right) V_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) V_{1} \\ & \\ & A=s \text { uming } \\ & R_{1}-R_{1} R_{2}-R_{2} \\ & V_{0}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{1}}{R_{2}}\right) v_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) v_{1} \\ & \therefore \quad \\ & V_{0}=-\left(1+\frac{R_{2}}{R_{1}}\right) v_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) v_{1} \\ & \therefore \quad \\ & \quad V_{0}-\left(1+\frac{R_{2}}{R_{1}}\right)\left(v_{1}-v_{2}\right) \end{aligned}$ $G_{\text {ain }}=A_{V}=\frac{V_{0}}{V_{1}-V_{2}}=1+\frac{R_{2}}{R_{1}}$	
c)	From the circuit diagram given in Fig. 2, identify the name of the circuit and calculate cut off frequency and pass band gain Fig. No. 2	6M
Ans	Given circuit is Second order low pass Butterworth filter	2M for Identificat ion of circuit Calculatio n of cutoff

\qquad

WINTER - 2022 EXAMINATION
Model Answer
Subject Name: Linear Integrated Circuits.
Subject Code:
22423

$$
\text { cut off frog }\left(f_{0}\right)=\frac{1}{2 \Pi \sqrt{R_{2} R_{3} C_{2} C_{3}}}
$$

$$
\text { But since } R_{2}=R_{3}=R \text { and } C_{2}=C_{3}=C \text { we get }
$$

$$
f_{0}=\frac{1}{2 \pi R C}
$$

$$
=\frac{1}{2 \pi \times 33 \times 10^{3} \times 0.0047 \times 10^{-6}}
$$

$$
=1026.144 \mathrm{~Hz}
$$

Passhand voltage gain $k=1+\frac{R F}{R 1}$
$=1+\frac{20 \times 10^{3}}{27 \times 10^{3}}$
$y=1+\frac{20}{27}$
$=1.74$
\qquad

