MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Summer - 2022
Subject: Hydraulics

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	a) Ans.	Attempt any FIVE of the following: State Pascal's law of fluid pressure. Pascal's Law: It states that the pressure intensity or pressure at a point in a static fluid is equal in all directions. Draw pressure diagram for inclined immersed surface.	2	(10)
	b)			
	Ans.			
				2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Summer - 2022

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	b) Ans. c)	U tube differential mercury manometer is connected to horizontal pipe carrying water at two points A and B. The difference in levels of mercury in the two limbs is 0.35 m . Calculate pressure difference at A and B in $\mathbf{k N} / \mathrm{m}^{\mathbf{2}}$. $\begin{aligned} & \mathrm{h}_{\mathrm{A}}+\mathrm{h}_{1} \mathrm{~S}_{\mathrm{l}}=\mathrm{h}_{2} \mathrm{~S}_{2}+\mathrm{h}_{3} \mathrm{~S}_{3}+\mathrm{h}_{\mathrm{B}} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\mathrm{h}_{2} \mathrm{~S}_{2}+\mathrm{h}_{3} \mathrm{~S}_{3}-\mathrm{h}_{1} \mathrm{~S}_{1} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=(0.35 \times 13.6)+(\mathrm{X}-0.35) \times 1-(\mathrm{X} \times 1.0) \\ & \mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=4.76+\mathrm{X}-0.35-\mathrm{X} \\ & \mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=4.41 \mathrm{~m} \\ & \frac{\mathrm{P}_{\mathrm{A}}}{\gamma_{\mathrm{L}}}-\frac{\mathrm{P}_{\mathrm{B}}}{\gamma_{\mathrm{L}}}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}} \\ & \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=\left(\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}\right) \times \gamma_{\mathrm{L}} \\ & \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=4.41 \times 9.81 \\ & \mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=43.26 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$ An isosceles triangular plate of base $\mathbf{4 m}$ and height $\mathbf{4 m}$ is immersed vertically in an oil of specific gravity 0.9 . The base of triangular plate is touching the surface and the plate is immersed with apex in downward position. Find the total pressure and centre of pressure on the plate.	1	4

Model Answer: Summer - 2022

| Que.
 No. | Sub.
 Que. | Motal Answer
 Marks |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Ans. | | |

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline Q. 3 \& \begin{tabular}{l}
d) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Water flows with velocity \(\mathbf{2} \mathbf{m} / \mathrm{s}\) through a pipeline which gradually reduces from 450 mm diameter at \(A\) to 300 mm diameter at \(B\) and then from \(B\) branches into 2 pipes. One branch being150 mm diameter discharging at \(C\) and the other branch 225 mm diameter discharging at \(D\). If the velocity at \(D\) is \(4 \mathrm{~m} / \mathrm{s}\). What will be the discharge at \(C\) and \(D\) ?
\[
\begin{aligned}
\& \text { Given data: } \mathrm{V}_{\mathrm{A}}=2 \mathrm{~m} / \mathrm{s}, \mathrm{~V}_{\mathrm{D}}=4 \mathrm{~m} / \mathrm{s} \\
\& \mathrm{~d}_{\mathrm{A}}=0.45 \mathrm{~m} \quad A_{A}=\frac{\pi}{4} \times 0.45^{2}=0.159 \mathrm{~m}^{2} \\
\& \mathrm{~d}_{\mathrm{B}}=0.30 \mathrm{~m} \quad \mathrm{~A}_{\mathrm{B}}=\frac{\pi}{4} \times 0.30^{2}=0.071 \mathrm{~m}^{2} \\
\& \mathrm{~d}_{\mathrm{C}}=0.15 \mathrm{~m} \quad \mathrm{~A}_{\mathrm{C}}=\frac{\pi}{4} \times 0.15^{2}=0.017 \mathrm{~m}^{2} \\
\& \mathrm{~d}_{\mathrm{D}}=0.22 \mathrm{~m}
\end{aligned} \mathrm{~A}_{\mathrm{D}}=\frac{\pi}{4} \times 0.22^{2}=0.039 \mathrm{~m}^{2} .
\] \\
By using continuity equation between A and B
\[
\begin{aligned}
\& \mathrm{A}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}=\mathrm{A}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}} \\
\& \mathrm{~V}_{\mathrm{B}}=\frac{\mathrm{A}_{\mathrm{A}}}{\mathrm{~A}_{\mathrm{B}}} \mathrm{~V}_{\mathrm{A}}=\frac{0.159}{0.071} \times 2 \\
\& \mathrm{~V}_{\mathrm{B}}=4.479 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \\
Dischrage at \(B=Q_{B}=A_{B} V_{B}\)
\[
\begin{gathered}
\mathrm{Q}_{\mathrm{B}}=0.071 \times 4.479 \\
\mathrm{Q}_{\mathrm{B}}=0.318 \mathrm{~m}^{3} / \mathrm{s}
\end{gathered}
\] \\
Dischrage at \(D=Q_{D}=A_{D} V_{D}\)
\[
\begin{gathered}
\mathrm{Q}_{\mathrm{D}}=0.039 \times 4 \\
\mathrm{Q}_{\mathrm{D}}=0.156 \mathrm{~m}^{3} / \mathrm{s}
\end{gathered}
\] \\
Dischrage at \(C=Q_{C}=Q_{B}-Q_{D}\)
\[
\begin{aligned}
\& \mathrm{Q}_{\mathrm{C}}=0.318-0.156 \\
\& \mathrm{Q}_{\mathrm{C}}=0.160 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
\]
\end{tabular} \& 1

1
1

1
1
1 \& 4 \\
\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	a) Ans.	Attempt any THREE of the following: State Bernoulli's theorem .Write the limitation of Bernoulli's theorem. Bernoulli's theorem: It states that in an ideal incompressible fluid when the flow is steady and continuous, the total energy of each particle of the fluid is the same. (Provided that no external energy enters or leaves the system at any point). $\frac{\mathrm{P}_{1}}{\gamma_{\mathrm{L}}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\gamma_{\mathrm{L}}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}$ Where, $\frac{P_{1}}{\gamma_{L}}$ and $\frac{P_{2}}{\gamma_{L}}=$ Pressure head or Pressure Energy per unit weight at section 1-1 and 2-2 $\frac{\mathrm{V}_{1}{ }^{2}}{2 \mathrm{~g}}$ and $\frac{\mathrm{V}_{2}{ }^{2}}{2 \mathrm{~g}}=$ Velocity head or kinetic energy per unit weight at section 1-1 and 2-2 Z_{1} and $Z_{2}=$ Datum head or Potential Energy per unit weight at section 1-1 and 2-2 Limitations of Bernoulli's theorem: i) Velocity of every liquid particle, across any cross section of pipe is not uniform. ii) Bernoulli's equation is not applicable for fluid with unsteady flow. iii) Bernoulli's theorem is applicable for fluid with zero viscosity. iv) Bernoulli's equation has been derived under the assumption that there is no loss of energy of the liquid particle while flowing v) If liquid is flowing in curved path, the energy due to centrifugal force should also be taken into account.		(12)

			Model Answer		Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks	
Q.	e)	Power $\mathrm{P}=\frac{\gamma \mathrm{QH}_{\mathrm{m}}}{\eta}$	$\mathrm{P}=\frac{9.81 \times 0.02 \times 28.373}{0.7}$	$\mathbf{1}$	
			$\mathrm{P}=7.94 \mathrm{~kW}$		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	a) Ans.	Attempt any TWO of the following: Explain the main component part of centrifugal pump with neat sketch. Centrifugal Pump (Note: 1 mark for sketch and 1 mark for labeling.) Parts of Centrifugal Pump: i. Impeller: It is wheel or rotor which is provided with series of backward curved blades or vanes. It is mounted on shaft which is coupled to an electric motor which rotates the impeller. It is classified as closed, semi open and open impeller. ii. Casing: It is an air tight chamber which surrounds the impeller. iii. Suction Pipe: It is the pipe which is connected at its upper end to the inlet of the pump or to the centre of the impeller i.e eye. The lower end of the suction pipe dips into liquid in a suction tank. iv. Delivery Pipe: It is a pipe which is connected at its lower end to the outlet of the pump and it delivers the liquid to the required height. On delivery pipe delivery valve is provided to control the flow from the pump into delivery pipe.	eac(anfou	(12)

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	b)	Explain working of cup type of current meter with a neat sketch.		
	c)	Cup Type Current Meter (Note: 1 mark for sketch and 1 mark for labeling.) Working: i. In a cup type current meter the wheel or revolving element has the form of a series of conical cups, mounted on a spindle. Spindle is held vertical at right angle to the direction of flow. ii. Current meter is used to find out velocity of water. Current meter consist of a wheel containing blades on cups. iii. These cups are vertically immersed in stream of water. The thrust exerted by water on the cups. iv. The number of revolutions of the wheel per unit time is proportional to the velocity of flow. v. The revolution counter operated by dry cell. The counter is calibrated or a calibration curve is provided to read velocity. Design a section of an unlined channel to carry a discharge of 6 $\mathrm{m}^{3} / \mathrm{sec}$. with a bed slope of 1 in 3600 and side slope 1.5 H to 1 V . The average velocity of flow is not to exceed $0.667 \mathrm{~m} / \mathrm{s}$. take manning's $\mathbf{N}=\mathbf{0 . 0 2 5}$.	2	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c) Ans.	Given: $\begin{aligned} & \mathrm{Q}=6 \mathrm{~m}^{3} / \mathrm{sec} \quad \mathrm{~V}=0.667 \mathrm{~m} / \mathrm{s} \quad \mathrm{~N}=1.5 / 1 \\ & \text { We know } \mathrm{Q}=\mathrm{A} . \mathrm{V} \\ & 6=\mathrm{A} x 0.667 \\ & \mathrm{~A} \end{aligned}=9 \mathrm{~m}^{2} \mathrm{l}$ Area of trapezoidal $\mathrm{A}=\mathrm{bd}+\mathrm{nd}^{2}$ $\begin{equation*} 9=d(b+n d) \tag{1} \end{equation*}$ Manning's equation is, $\begin{aligned} & V=\frac{1}{N} R^{\frac{2}{3}} S^{\frac{1}{2}} \\ & 0.667=\frac{1}{0.025} \times R^{\frac{2}{3}} \times\left(\frac{1}{3600}\right)^{\frac{1}{2}} \\ & R^{\frac{2}{3}}=1 \\ & \mathrm{R}=1 \end{aligned}$ But, $\begin{aligned} & R=\frac{A}{P} \\ & 1=\frac{9}{P} \\ & \mathrm{P}=9 \end{aligned}$ But, $\begin{aligned} & P=b+2 d \sqrt{1+n^{2}} \\ & 9=b+2 d \sqrt{1+1.5^{2}} \\ & 9=b+3.6 d \end{aligned}$ $\begin{equation*} \mathrm{b}=9-3.6 \mathrm{~d} . . \tag{2} \end{equation*}$ Putting value of b from equation 2 in equation 1 $d(9-3.6 d+1.5 d)=9$ $d(9-2.1 d)=9$ $9 \mathrm{~d}-2.1 \mathrm{~d}^{2}=9$ $2.1 \mathrm{~d}^{2}-9 \mathrm{~d}+9=0$ $d=\frac{9 \pm \sqrt{9^{2}-4 \times 2.1 \times 9}}{2 \times 2.1}$ $\mathrm{d}=2.68 \mathrm{~m} \quad$ or $\mathrm{d}=1.595$ But if we put $\mathrm{d}=2.68$ in equation 2 becomes negative $\mathrm{d}=1.595 \mathrm{~m}$ $\mathrm{b}=1.8 \times 1.595=3.25 \mathrm{~m}$	1 1 1 1 1 1	6

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c) Ans.	Given data: $\begin{aligned} & \mathrm{Q}=6 \mathrm{~m}^{3} / \mathrm{sec} \\ & \mathrm{~V}=0.667 \mathrm{~m} / \mathrm{s} \\ & \mathrm{n}=\frac{1.5}{1}=1.5, \mathrm{~N}=0.025 \\ & \mathrm{~N}=0.025 \end{aligned}$ For economical trapezoidal section $\mathrm{R}=\frac{\mathrm{d}}{2}$ Sloping side $=$ half the top width $\begin{aligned} & \mathrm{d} \sqrt{\mathrm{n}^{2}}+1=\frac{\mathrm{b}+2 \mathrm{nd}}{2} \\ & \mathrm{~d} \sqrt{1.5^{2}}+1=\frac{\mathrm{b}+2 \times 1.5 \mathrm{~d}}{2} \\ & 2 \mathrm{~d}(1.8)=\mathrm{b}+3 \mathrm{~d} \\ & \mathrm{~b}=0.6 \mathrm{~d} \end{aligned}$ Area for trapezoidal section is $\mathrm{A}=\mathrm{bd}+\mathrm{nd} \mathrm{~d}^{2}$ but, $\begin{aligned} & \mathrm{Q}=\mathrm{AV} \\ & 6=\mathrm{A} \times 0.667 \\ & \mathrm{~A}=9 \mathrm{~m}^{2} \\ & 9=0.6 \mathrm{~d} \times \mathrm{d}+1.5 \mathrm{~d}^{2} \\ & \mathrm{~d}=2.06 \mathrm{~m} \\ & \mathrm{~b}=0.6 \mathrm{~d} \\ & \mathrm{~b}=1.24 \mathrm{~m} \end{aligned}$ (Note: Base width to depth ratio is not given in numerical, therefore students may solve the problem by considering most economical channel section. Considering this give appropriate marks.)	1 1 1 1 1 1	6

