

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1		Attempt any <u>FIVE</u> of the following:		(10)
	a)	State Pascal's law of fluid pressure.		
	Ans.	Pascal's Law: It states that the pressure intensity or pressure at a		
		point in a static fluid is equal in all directions.		
	b)	Draw pressure diagram for inclined immersed surface.	2	2
	Ans.	Free Liquid Surface	2	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	c)	Define uniform flow and non-uniform flow.		IVILLI IND
	Ans.	i) Uniform flow: If the depth of flow, the discharge and mean	1	
		velocity flow at a given instant do not change along the length of		2
		channel, the flow is called as Uniform flow.		
		ii) Non-uniform flow: If the depth of flow, the discharge and mean	1	
		velocity flow at a given instant changes along the length of channel,		
		the flow is called as Non-uniform flow.		
	d)	Write the use of Moody's Diagram.		
	Ans.	i) It is used to find relative roughness.	1	
		ii) It is used to find friction factor.	each	2
		iii) It can be used for finding pressure drop or flow rate down such a	(any	
		pipe.	two)	
		iv) It is in the selection of a diameter for a pipe for some purpose.		
	e)	Define hydraulic coefficients of orifice.		
	Ans.	i) Coefficient of discharge (C _d):		
		The ratio of the actual discharge to the theoretical discharge is called		
		as the coefficient of discharge.	1	
		ii) Coefficient of contraction (C _c):	each	2
		The ratio of the cross-sectional area of the jet at vena contracta to the	(any	
		cross-sectional area of the orifice is called coefficient of contraction.	two)	
		iii) Coefficient of velocity (C _v):		
		The ratio of actual velocity of the jet at vena contracta to the		
		theoretical velocity of the jet is called coefficient of velocity.		
	f)	State the principle of working of Pitot tube.		
	Ans.	Principle: If the velocity of flow at a point become zero, the		
		pressure is increased due to conversion of kinetic energy into pressure	2	2
		energy.		
		Static pressure V Station pressure stagnation point		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	g)	Define static head and manometric head of centrifugal pump.		
	Ans.	Static Head: It is the sum of suction head and delivery head, it	1	
		represent the vertical distance between the top surface level of sump to		
		discharge level in delivery tank.		2
		Static head = Suction head + Delivery head		
		Manometric head: The manometric head is defined as the minimum		
		amount of head against which the pump has to work to deliver the	1	
		required discharge.		
		Manometric = Suction + Delivery + Major losses and minor		
		Head Head Head losses in the system.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2		Attempt any <u>THREE</u> of the following:		(12)
	a)	Define capillarity. Derive an expression for capillary rise.		
	Ans.	Capillarity: The phenomenon of rise or fall of liquid level in the		
		capillary tube is called capillarity. The rise of liquid surface is known		
		as capillary rise relative to the adjacent general level of liquid when	1	
		the tube is held vertically in the liquid. The rise of liquid surface is		
		known as capillary rise.		
		$(c) \theta < 90^{\circ}$ $(d) \theta > 90^{\circ}$		
		Let h be the capillary rise or fall in a tube of diameter'd' centre		
		surface tension force in upward direction.	1	4
		$P = \pi d \sigma \cos \theta$		
		Weight of liquid column = $V.\gamma$		
		$=(\frac{\pi}{4}d^2 \times h)\gamma$		
		Where γ = specific weight of liquid		
		under equilibrium ,	2	
		the weight of liquid column will be balanced	_	
		by surface tension force ' σ '		
		Weight of liquid = Surface tension force		
		$\frac{\pi}{4}d^2h\gamma = \pi d\sigma \cos\theta$		
		$h = \frac{4\sigma cos\theta}{\gamma d}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Model Answer: Summer - 2022

Subject: Hydraulics

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	b)	U tube differential mercury manometer is connected to horizontal		
		pipe carrying water at two points A and B. The difference in levels		
		of mercury in the two limbs is 0.35 m. Calculate pressure		
		difference at A and B in kN/m ² .		
	Ans.			
		Water S1 = 1.0 A A A A A A A A	1	
		$h_{A} + h_{1}S_{1} = h_{2}S_{2} + h_{3}S_{3} + h_{B}$ $h_{A} - h_{B} = h_{2}S_{2} + h_{3}S_{3} - h_{1}S_{1}$	1/2	4
		$h_A - h_B = (0.35 \times 13.6) + (X - 0.35) \times 1 - (X \times 1.0)$		
		$h_{A} - h_{B} = 4.76 + X - 0.35 - X$	1	
		$\frac{\mathbf{h}_{A} - \mathbf{h}_{B} = 4.41 \mathrm{m}}{\frac{\mathbf{P}_{A}}{\gamma_{L}} - \frac{\mathbf{P}_{B}}{\gamma_{L}}} = \mathbf{h}_{A} - \mathbf{h}_{B}$	1/2	
		$P_A - P_B = (h_A - h_B) \times \gamma_L$, -	
		$\frac{P_A - P_B}{P_A - P_B} = 4.41 \times 9.81$ $\frac{P_A - P_B}{P_B} = 43.26 \text{kN/m}^2$	1	
	c)	An isosceles triangular plate of base 4m and height 4m is		
		immersed vertically in an oil of specific gravity 0.9. The base of		
		triangular plate is touching the surface and the plate is immersed		
		with apex in downward position. Find the total pressure and		
		centre of pressure on the plate.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	c)			
×	, , , , , , , , , , , , , , , , , , ,			
	Ans.	b = 4m		
		= = 1 ▼ \ / T		
		s = 0.9 h = 4m		
		G		
		Given data:		
		Base width $(b) = 4m$		
		Height $(h) = 4m$		
		Specific gravity of oil (S)= 0.9		
		Solution:		
		i) Weight density of oil $\gamma_{oil} = S_{oil} \times \gamma_{water}$		
		$\gamma_{ m oil} = 0.9 imes 9.81$	1/2	
		$\gamma_{\rm oil} = 8.829 \ {\rm kN/m^3}$	72	
		ii) Depth of centroid from free surface $\bar{x} = \frac{h}{3} = \frac{4}{3} = 1.33 \text{m}$	1⁄2	
		iii) Area of plate A= $\frac{1}{2} \times b \times h$		
			1/2	
		$=\frac{1}{2}\times4\times4=8m^2$		
		2	1/2	4
		iv) Moment of inertia I = $\frac{bh^3}{36} = \frac{4 \times 4^3}{36} = 7.11m^4$,2	•
		v) Total Pressure $P = \gamma_{oil} \times A \times \bar{x}$		
		$P = 8.829 \times 8 \times 1.33$	1	
		P = 93.94 kN		
		vi) Centre of Pressure $\bar{h} = \bar{x} + \frac{I}{\bar{x}}$		
		$A\bar{x}$		
		$\bar{h} = 1.33 + \frac{7.11}{(8 \times 1.33)}$		
			1	
		$\bar{h}=2m$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	d)	Define total hydrostatic pressure and centre of pressure. Mention		
		two application of it.		
	Ans.	Total hydrostatic pressure: It is the force exerted by a static fluid on	1	
		a surface plane or curved. This force is always perpendicular to the		
		surface.		
		OR		
		When Static mass of Fluid is at rest, the force exerted by the fluid on a		
		surface in contact with fluid may be plane or curved is called total	1	
		hydrostatic pressure. This force is always perpendicular to the surface.		
		Centre of pressure: It is the point at which total pressure acts on the		
		surface.		4
		Application:		
		i) To determine intensity of pressure at any point on the wall or		
		surface.	1	
		ii) To determine location of total pressure.	each	
		iii) To calculate resultant pressure acting due to one, two or three	(any	
		liquids filled in a tank.	two)	
		iv) To calculate total pressure due to liquid and its direction.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3		Attempt any <u>THREE</u> of the following:		(12)
	a)	A partition wall 2m long divides a storage tank. On one side there		
		is turpentine of specific gravity 0.87 upto a depth of 3m. On the		
		other side there is paraffin oil of specific gravity 0.82 stored to a		
		depth of 2m. Determine the resultant pressure on partition wall		
		and the position of it.		
	Ans.	$P_{2} = \frac{h_{2}}{f_{2}} = \frac{h_{2}}{f_{2}} = \frac{h_{2}}{f_{3}} = $	1	
		Pressure due to turpentine= P_1 =Area of triangle ABC × L		
		$P_1 = \frac{1}{2} \times b \times h \times L$		
		$\mathbf{P}_{1} = \frac{1}{2} \times \gamma \times \mathbf{h}_{1} \times \mathbf{h}_{1} \times \mathbf{L}$		
		$\mathbf{P}_{1} = \frac{1}{2} \times \gamma \times \mathbf{h}^{2}_{1} \times \mathbf{L}$		
		$P_1 = \frac{1}{2} \times (0.87 \times 9.81 \times 3^2) \times 2$	1	
		$\frac{2}{P_1 = 76.812 \text{kN}}$		
		Pressure due to paraffin oil = P_2 =Area of triangle ABD × L		4
		$\mathbf{P}_2 = \frac{1}{2} \times \mathbf{b} \times \mathbf{h} \times \mathbf{L}$		
		$\mathbf{P}_2 = \frac{1}{2} \times \gamma \times \mathbf{h}_2 \times \mathbf{h}_2 \times \mathbf{L}$		
		$P_2 = \frac{1}{2} \times \gamma \times h^2_2 \times L$		
		$P_2 = \frac{1}{2} \times (0.82 \times 9.81 \times 2^2) \times 2$		
		$P_2 = 32.177 kN$	1	
		Pressure $P = P_1 - P_2 = 76.812-32.177$		
		P = 44.635 kN		
		Position of P ₁ from base = $y_1 = \frac{1}{3} \times 3 = 1m$		
		Position of P ₂ from base = $y_2 = \frac{1}{3} \times 2 = 0.667$ m		
		Position of resultant Pressure y		
		$P \times y = (P_1 \times y_1) - (P_2 \times y_2)$		
		$44.635 \times y = (76.812 \times 1) \cdot (32.177 \times 0.667)$	1	
		y = 1.242m		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	<u>b</u>)	Explain simple U tube manometer with a neat sketch.		
	Ans.	x x	2	4
		Simple U tube manometer:		
		It is the simplest form of manometer. It consists of thin glass tube of		
		uniform diameter bent into U-shape. It's one end is connected to a		
		point whose pressure is to be measured and other end open to	2	
		atmosphere. The U-tube manometer contains the manometric liquid		
		whose specific gravity should be greater than the specific gravity of		
		liquid to whose pressure is to be measured.		
		$\mathbf{h} = \mathbf{h}_2 \mathbf{S}_2 - \mathbf{h}_1 \mathbf{S}_1 \text{ (m of water)}$		
		$\mathbf{P} = \gamma \mathbf{h}$		
	c)	Calculate the specific weight, density, specific volume and specific		
		gravity of 1.5 liters of fluid which weighs 6N.		
	Ans.	Given data:		
		Weight = 6N , Volume = $1.5 \times 10^{-3} \text{m}^3$		
		i) Specific Weight $\gamma = \frac{W}{V} = \frac{6}{1.5 \times 10^{-3}} = 4000 \text{N/m}^3$	1	
		ii) Specific Gravity S = $\frac{\gamma_L}{\gamma_w} = \frac{4000}{9810} = 0.408$	1	4
		iii) Density $\rho_L = S \times \rho_w = 0.408 \times 1000 = 408 \text{kg/m}^3$	1	-
		iv) Specific volume $V_s = \frac{1}{\rho_L} = \frac{1}{408} = 2.451 \times 10^{-3} \text{ m}^3/\text{kg}$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Que.	Sub.	Model Answer	Marks	Total
No.	Que.	Water flows with velocity 2 m/s through a pipeline which		Marks
Q.3	d)			
		gradually reduces from 450mm diameter at A to 300mm diameter		
		at B and then from B branches into 2 pipes. One branch being150		
		mm diameter discharging at C and the other branch 225 mm		
		diameter discharging at D. If the velocity at D is 4m/s. What will		
		be the discharge at C and D?		
	Ans.	Given data : $V_A = 2m/s$, $V_D = 4m/s$		
		$d_A = 0.45m$ $A_A = \frac{\pi}{4} \times 0.45^2 = 0.159m^2$		
		$d_{\rm B} = 0.30 {\rm m}$ $A_{\rm B} = \frac{\pi}{4} \times 0.30^2 = 0.071 {\rm m}^2$		
		$d_{\rm C} = 0.15 {\rm m}$ $A_{\rm C} = \frac{\pi}{4} \times 0.15^2 = 0.017 {\rm m}^2$	1	
		$d_{\rm D} = 0.22 \text{m}$ $A_{\rm D} = \frac{\pi}{4} \times 0.22^2 = 0.039 \text{m}^2$		
		By using continuity equation between A and B		
		$A_A V_A = A_B V_B$		
		$V_{\rm B} = \frac{A_{\rm A}}{A_{\rm B}} V_{\rm A} = \frac{0.159}{0.071} \times 2$	1	
		$V_{\rm B} = 4.479 {\rm m/s}$		4
		Dischrage at $B = Q_B = A_B V_B$		•
		$Q_{\rm B} = 0.071 \times 4.479$		
		$Q_{\rm B} = 0.318 {\rm m}^3 {\rm /s}$		
		Dischrage at $D = Q_D = A_D V_D$		
		$Q_{\rm D} = 0.039 \times 4$	1	
		$Q_{\rm D} = 0.156 {\rm m}^3/{\rm s}$		
		Dischrage at $C = Q_c = Q_B - Q_D$		
		$Q_{\rm C} = 0.318 - 0.156$		
		$Q_{\rm C} = 0.160 {\rm m}^3 {\rm /s}$	1	
		$Q_{\rm C} = 0.100 {\rm m} / {\rm s}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4		Attempt any <u>THREE</u> of the following:		(12)
	a)	State Bernoulli's theorem .Write the limitation of Bernoulli's		
		theorem.		
	Ans.	Bernoulli's theorem:		
		It states that in an ideal incompressible fluid when the flow is steady		
		and continuous, the total energy of each particle of the fluid is the		
		same. (Provided that no external energy enters or leaves the system at	2	
		any point). $ \frac{P_1}{\gamma_L} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma_L} + \frac{V_2^2}{2g} + Z_2 $		4
		Where, $\frac{P_1}{\gamma_L}$ and $\frac{P_2}{\gamma_L}$ = Pressure head or Pressure Energy per unit weight at section 1-1 and 2-2 $\frac{V_1^2}{2g}$ and $\frac{V_2^2}{2g}$ = Velocity head or kinetic energy per unit weight at section 1-1 and 2-2 Z_1 and Z_2 = Datum head or Potential Energy per unit weight at section 1-1 and 2-2 Limitations of Bernoulli's theorem:		
		 i) Velocity of every liquid particle, across any cross section of pipe is not uniform. ii) Bernoulli's equation is not applicable for fluid with unsteady flow. iii) Bernoulli's theorem is applicable for fluid with zero viscosity. iv) Bernoulli's equation has been derived under the assumption that there is no loss of energy of the liquid particle while flowing v) If liquid is flowing in curved path, the energy due to centrifugal force should also be taken into account. 	¹ / ₂ each (any four)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_ _

Sub. Code: 22401

)ue. No.	Sub.		Model Answ	ver	Marks	Total Marks
$\frac{NO.}{Q.4}$	Que. b)	Determin	e the diameter of uniform pi	pe to replace a compound		Mark
		pipeline l	or 1500 m length. 40 cm			
		diameter	pipe for 1000 m length and 3	5 cm diameter pipe for		
		1200m le	ngth. The total length of unif	orm pipe should remain the		
		same.				
А	Ans.	Given dat	ta :			
		$d_1 = 0.50r$	n $L_1 = 1500 m$			
		$d_2 = 0.401$	m $L_2 = 1000 m$		1	
		$d_3 = 0.351$	m $L_3 = 1200m$		_	
		Total leng	gth of uniform pipe			
		$\mathbf{L} = \mathbf{L}_1 +$			1	
			+1000+1200 = 3700m		1	4
		Using Du		4		
		$\frac{L}{D^5} = \frac{L_1}{d_1^5}$	-			
			1			
		$\overline{D^5} = \overline{0}$	$\frac{500}{.5^5} + \frac{1000}{0.4^5} + \frac{1200}{0.35^5}$			
		$D^5 = \frac{3}{374}$	700			
					1	
		D = 0.39	<u>72m</u>			
		Different	iate between triangular notcl	and rectangular notch		
	c) Ans.	Sr. No.	Triangular Notch	Rectangular Notch		
	Alls.			Kectangular Noten		
		i.	Triangular notch gives more	Rectangular notch does not		
			accurate results for low	gives more accurate results		
				f 1 1' 1		
			discharge.	for low discharge.		
		ii.	discharge. Ventilation of triangular	Ventilation of rectangular	1	
		ii.			1 each	
		ii. 	Ventilation of triangular	Ventilation of rectangular	each (any	4
			Ventilation of triangular notch is not necessary.	Ventilation of rectangular notch is necessary.	each	4
			Ventilation of triangular notch is not necessary. In triangular notch only	Ventilation of rectangular notch is necessary. In rectangular notch width	each (any	4
			Ventilation of triangular notch is not necessary. In triangular notch only height is measured.	Ventilation of rectangular notch is necessary. In rectangular notch width and height is measured. In most of the cases of flow	each (any	4
			Ventilation of triangular notch is not necessary. In triangular notch only height is measured. In most of the cases of flow	Ventilation of rectangular notch is necessary. In rectangular notch width and height is measured.	each (any	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	c) d)	v. $Q = \frac{8}{15}C_d\sqrt{2g}\tan\frac{\theta}{2}H^{\frac{5}{2}}$ $Q = \frac{2}{3}C_dL\sqrt{2g}H^{\frac{3}{2}}$ A rectangular channel carries water at the rate of 500 litres/secwhen bed slope is 1 in 3000. Find the most economical dimension		
		of the channel if $C = 60$.		
	Ans.	Given data: $Q = 500 \text{lps} = 500 \times 10^{-3} = 0.5 \text{m}^{3}/\text{s}$ $S = 1 \text{in } 3000 = \frac{1}{3000}$ $C = 60$ For most economical rectangular section conditions are i) b=2d ii) R=d/2	1	
		Area= A=b×d=2d×d A=2d ² by using Chezy's equation $V=C\sqrt{RS}$ $V=60\sqrt{d/2\times(1/3000)}$ $V=0.775\times d^2$ Q=AV	1	4
		$0.5=2d^{2}\times0.775d^{1/2}$ $0.5=1.55d^{5/2}$ d = 0.636m $b = 2\times0.636$	1	
		b = 1.272m	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	e)	Calculate the power required for the pump with following data.		
		Static lift=20m		
		Length of delivery pipe = 50m		
		Head lost in suction pipe =1m		
		Diameter of delivery pipe=10cm		
		f for delivery pipe = 0.04.		
		$\mathbf{Q} = 20$ lit/sec.		
	A	$\eta = 70\%$		
	Ans.	Given data:		
		Static lift = $H_s = 20m$		
		Length of delivery pipe $= 50m$		
		Diameter of delivery pipe $= 0.10$ m		
		Head loss in suction pipe $= 1$ m		
		f for delivery pipe $= 0.04$		
		Discharge = $Q = 20 \text{ lit/sec} = 0.02 \text{m}^3/\text{s}$		
		Efficiency = η =0.7		
		Solution :		
		Head lost in delivery pipe		
		$hf_{d} = \frac{flQ^2}{12.1d^5}$	1	
		$hf_{d} = \frac{0.04 \times 50 \times 0.02^{2}}{12.1 \times 0.1^{5}}$		
		$hf_{d} = 6.612m$		
		$\mathbf{h}_{\mathrm{major}} = \mathbf{h}\mathbf{f}_{\mathrm{s}} + \mathbf{h}\mathbf{f}_{\mathrm{d}}$		
		$h_{major} = 1 + 6.612 = 7.612m$	1	
		$h_{minor} = 10\% h_{major}$		
		$h_{\text{minor}} = \frac{10}{100} \times 7.612 = 0.761 \text{ m}$		4
		$H_{\rm L} = h_{\rm major} + h_{\rm minor}$		
		$H_{\rm L} = 7.612 + 0.761$		
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		Manometric head $H_m = H_s + H_L$		
		$H_{\rm m} = 20 + 8.373$	1	
		$H_{\rm m} = 28.373 {\rm m}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	e)	Power P = $\frac{\gamma Q H_m}{n}$		
	Ans.	$P = \frac{\eta}{\frac{9.81 \times 0.02 \times 28.373}{0.7}}$ $P = 7.94 \text{ kW}$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. Sub. No. Que.	Model Answer	Marks	Total Marks
Q.5 a)	v. Foot Valve: It is fitted at the lower end of suction pipe and it		
	is submerged under water up to 45 to 60 cm depth because		
	when water surface in the well is lowered, the foot valve may		
	suck the air and de-priming of the pump takes place.		
b)	A horizontal pipeline 50m long starts from reservoir. The head		
	above inlet is 8 m. The pipeline discharges freely at other end.		
	The diameter of first 25m length is 15 cm. and for remaining		
	length is 30cm . Calculate the discharge through pipeline taking		
	F = 0.04 for both the lengths of the pipe.		
Ans.	Given, L=50m, H= 8m, f= 0.04 L ₁ =25m, d ₁ =0.15m L ₂ =25m, d ₂ =0.30m Assuming $P_A = P_B = 0$ By using contunity equation $A_1V_1=A_2V_2$ $\frac{\pi}{4}(d_1)^2 \times V_1 = \frac{\pi}{4}(d_2)^2 \times V_2$ $(0.15)^2 \times V_1 = (0.3)^2 \times V_2$ $V_1 = 4 \times V_2$ $H_L = \frac{0.5(4V_2)^2}{2 \times 9.81} + \frac{(0.04 \times 25 \times (4V_2)^2}{2 \times 9.81 \times 0.15} + \frac{(4V_2 - V_2)^2}{2 \times 9.81} + \frac{0.04 \times 25 \times (V_2)^2}{2 \times 9.81 \times 0.3} + \frac{(V_2)^2}{2 \times 9.81}$ $8 = 0.407(V_2)^2 + 5.436(V_2)^2 + 0.458(V_2)^2 + 0.17(V_2)^2 + 0.05(V_2)^2$ $\boxed{V_2 = 1.105m/s}$ $Q = \frac{\pi}{4}(0.3)^2 \times 1.105$ $\boxed{Q = 0.078m^3/sec}$	1 1 1 1 1	6

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics -----

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	c)	A sloping pipe line has diameter of 1 m at higher end and 50 cm at		
		lower end . It carries liquid at specific gravity 0.75 at 4800 lpm.		
		The length of pipe is 350 m and it is laid on slope of 1 in 100. The		
		pressure at lower end is 1200 kN/m ² .Determine pressure at		
		higher end.		
	Ans.	Given data:		
		$d_1 = 1m, d_2 = 0.5m, Z_1 = \frac{1}{100} \times 350 = 3.5m$		
		Q= 4800lpm = $\frac{4800 \times 10^{-3}}{60}$ = 0.08m ³ /sec.		
		$P_1 = 1200 \text{ kN/m}^2 = 1.2 \times 10^6 \text{ N/m}^2$		
		P ₂ =Find		
		By using continuity equation	1	
		$\mathbf{Q} = \mathbf{A}_1 \mathbf{V}_1 = \mathbf{A}_2 \mathbf{V}_2$		
		$0.08 = \frac{\pi}{4}(1)^2 \times V_1$		
		$V_1 = 0.102 \text{ m/s}$	1	
		$0.08 = \frac{\pi}{4} (0.5)^2 \times V_2$	1	6
		V ₂ =0.408m/s		
		$\boxed{\frac{P_{1}}{\gamma_{L}} + \frac{(V_{1})^{2}}{2g} + Z_{1}} = \frac{P_{2}}{\gamma_{L}} + \frac{(V_{2})^{2}}{2g} + Z_{2}$	1	
		$\frac{P_{L}}{\gamma_{L}} + \frac{(V_{1})^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{L}} + \frac{(V_{2})^{2}}{2g} + Z_{2}$	1	
		$\gamma_L 2g \qquad \gamma_L 2g$		
		$\frac{P_1}{0.75 \times 9810} + \frac{(0.102)^2}{2 \times 9.81} + 3.5 = \frac{1.2 \times 10^6}{0.75 \times 9810} + \frac{(0.408)^2}{2 \times 9.81} + 0$	1	
		$P_1 = 1.1 \text{ x } 10^6 \text{kN/m}^2$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics _____

_.

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6		Attempt any <u>TWO</u> of the following:		(12)
	a)	Water discharges at the rate of 0.0982 m ³ /sec. through a 12cm		
		diameter vertical sharp edges orifice placed under a constant		
		head of 10m . A point on the jet measured from vena contracta of		
		the jet has co-ordinate 4.5 m horizontal and 0.54 m vertical .Find		
		the coefficients C_c , C_d , C_v of the orifice.		
	Ans.	Given:		
		$Q_a = 0.0982 m^3 / s$		
		d = 12cm = 0.12m		
		h = 10 m		
		x = 4.5m		
		y = 0.54 m		
		$A = \frac{\pi}{4} \times d^2$		
		$A = \frac{\pi}{4} \times d^{2}$ $= \frac{\pi}{4} \times (0.12)^{2}$		
		$A = 11.30 \times 10^{-3} m^2$		
		$C_{d} = \frac{Q_{a}}{Q_{t}}$	1	
		$=\frac{0.0982}{\mathrm{A}\times\sqrt{(2gh)}}$		
		$=\frac{0.0982}{\left(11.3\times10^{-3}\times\sqrt{(2\times9.81\times10)}\right)}$		6
		$C_{d} = 0.62$	1	
		$C_v = \frac{x}{\sqrt{(4hy)}}$	1	
		$=\frac{4.5}{\sqrt{(4\times10\times0.54)}}$		
		$C_v = 0.968$	1	
		$C_d = C_c \times C_v$	1	
		$C_{c} = \frac{C_{d}}{C_{v}} = \frac{0.62}{0.968}$		
		$C_{c} = 0.640$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics

Sub. Code: 22401

Que. No.	Sub. Oue.	Model Answer	Marks	Total Marks
	c)	Given:		
Que. No. Q.6	Que.	Given: Q = 6 m ³ /sec V = 0.667 m/s N = 1.5/1 We know Q = A.V 6 = A x 0.667 A = 9 m ² Area of trapezoidal A = bd + nd ² 9 = d(b + nd)(1) Manning's equation is, $V = \frac{1}{N} R^{\frac{2}{3}} S^{\frac{1}{2}}$ 0.667 = $\frac{1}{0.025} \times R^{\frac{2}{3}} \times (\frac{1}{3600})^{\frac{1}{2}}$ $R^{\frac{2}{3}} = 1$ R = 1 But, $R = \frac{A}{p}$ 1 = $\frac{9}{p}$ P = 9 But, $P = b + 2d\sqrt{1 + n^2}$ 9 = $b + 2d\sqrt{1 + 1.5^2}$ 9 = $b + 3.6d$ b = 9 - 3.6d(2) Putting value of b from equation 2 in equation 1 d (9 - 3.6d + 1.5d) = 9 d (9-2.1 d) = 9 9d - 2.1 d ² = 9 2.1d ² - 9d + 9 = 0 d = $\frac{9 \pm \sqrt{9^2 - 4 \times 2.1 \times 9}}{2 \times 2.1}$ d = 2.68 m or d = 1.595 But if we put d = 2.68 in equation 2 becomes negative	Marks 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total Marks
		But if we put $d = 2.68$ in equation 2 becomes negative d=1.595 m $b = 1.8 \times 1.595 = 3.25$ m		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Summer - 2022

Subject: Hydraulics _____

_

Sub. Code: 22401

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	c)	OR		
	Ans.	Given data:		
		$Q = 6m^3/sec$		
		V=0.667m/s		
		$n = \frac{1.5}{1} = 1.5, N = 0.025$		
		N=0.025		
		For economical trapezoidal section		
		$R = \frac{d}{2}$	1	
		Sloping side = half the top width	1	
		$d\sqrt{n^{2}} + 1 = \frac{b+2nd}{2}$ $d\sqrt{1.5^{2}} + 1 = \frac{b+2\times1.5d}{2}$	1	
		2d(1.8) = b+3d		
		b = 0.6d	1	
		Area for trapezoidal section is	I	
		$A = bd + nd^2$		6
		but,		
		Q = AV		
		$6 = A \times 0.667$		
		$A = 9m^2$	1	
		$9 = 0.6d \times d + 1.5d^2$		
		d = 2.06m	1	
		b = 0.6d	1	
		b = 1.24 m	1	
		(Note: Base width to depth ratio is not given in numerical, therefore students may solve the problem by considering most economical channel section. Considering this give appropriate marks.)		