

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

Model Answer

22428

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q.	Sub	Answers	Markin
No.	Q.		g
	N.		Scheme
1	(A)	Attempt any <u>FIVE</u> of the following:	10-
			Total

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

2
~

		Marks
(a)	Define the terms:	2M
	i) Bit rate	
	ii) Baud rate	
Ans:	(i)Bit rate: - Bit rate is simply the number of bits transmitted during one second and is expressed in bits per second (bps).	1M each
	Mathematically bit rate is given by:- $Rb = 1 / Tb$ where Tb is time interval of one bit	
	(ii)Baud rate: - Baud is the unit of symbol rate. Baud rate is the number of symbols transmitted during one second and is expressed in symbols per second or baud.	
	Baud rate is expressed as, $Rs = 1 / Ts$ Where, baud rate = symbol rate (symbols per second) and $Ts = time$ interval of one symbol	
(b)	State Shannon Hartley theorem.	2M
Ans:	Shannon's Hartley theorem: The channel capacity of a white, band limited Gaussian channel is given By	2M
	$C = B \log_2(1 + S/N)$	
	, Where, $B = Channel Bandwidth S = Signal Power N = Noise within the channel bandwidth$	
(c)	State minimum sampling rate using Nyquist criteria.	2M

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Ans:	This is also known as the uniform sampling theorem. The sampling rate of 2 W samples per	Any
	second for a signal bandwidth W Hz is called the Nyquist rate.	defina
	OD	on 2M
	UK CK	
	minimum sampling rate (Fs)= 2W	
(d)	List the Digital Modulation Schemes.	2M
Ans:	List of Different Digital Modulation technique:-	ANY 4
	(i) Amplitude shift keying -ASK	2M
	(ii) Phase shift keying - PSK	
	(iii) Frequency shift keying - FSK	
	(iv) Quadrature Phase shift keying - QPSK	
	(v) Differential Phase shift keying -DPSK	
	(vi) Quadrature amplitude modulation- QAM	
e)	State the types of Multiplexing techniques.	2M
Ans:	Frequency-division multiplexing (FDM)	ANY 4
	Wavelength-division multiplexing (WDM)	2M
	Time-division multiplexing (TDM)	
	Code-division multiplexing (CDM)	
	Space-division multiplexing (SDM)	
	State the need of Multiplexing.	2M
f)		
f) Ans:	Need of multiplexing	2M

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

```
22428
```

4

Γ

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Model Answer

Q.	Sub	Answers		
No.	Q.		g	
	N.		Scheme	
2		Attempt any <u>THREE</u> of the following:	12-Total	
			Marks	
	a)	Draw the basic block diagram of Digital communication system. State the function of	4M	
		source encoder and channel encoder.		
	Ans:			
		Block diagram of digital communication system.	diagram	
		block diagram of digital communication system	= 2 M ,	
			Explana	
		DISCRETE SOURCE CHANNEL DIGITAL DIGITAL	tion =	
			2M	
		Noise Channel		
		Receiver		
		DESTINATION SOURCE CHANNEL DIGITAL DECODER DECODER DECODER		
		OR		

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Model Answer

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Model Answer

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

			1
Q.	Sub	Answers	Markin
No.	Q.		g
	N.		Scheme
3		Attempt any <u>THREE</u> of the following:	12-
			Total
			Marks
	a)	Define and state the expression of	4M
		i) Entropy ii) Information rate	
	Ans:	i) Entropy: Entropy is defined as the average number of bits per symbol needed to	1M
		encode long sequences of symbols emitted by the source. Its unit is bits/symbol.	definitio
		$H = \sum_{i=1}^{M} p_i \log_2 (1/p_i) $ bits/symbol	n & 1M
		i=1 = $n_1 \log_1(1/n_1) + n_2 \log_2(1/n_2) + \dots + n_{n_1} \log_2(1/n_n)$	expressi
		ii) Information rate: It is defined as the average number hits per second needed to	on each
		encode the source output. It is represented by R	
		$\mathbf{R} = \mathbf{r} * \mathbf{H}$	
		Where $r = number of messages or symbols per second$	
		H = average information per message or symbol	
	b)	Draw the block diagram of DPCM transmitter and explain its working	4M
	Ans:	Block diagram of DPCM transmitter:	Block

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Model Answer

	2. FDM does n	ot need synchronization between its	transmitter and receiver for prope	er ges & 2
	operation.			disadva
	3. Demodulation	n of FDM is easy.		ntages
	4. Due to slow r	arrow band fading only a single channe	els gets affected.	1M each
	Disadvantages o	f FDM:		
	1. The commun	ication channel must have a very large	bandwidth	
	2. Intermodulati	on distortion takes place.		
	3. Large number	r of modulators and filters are required.		
	4. FDM suffers	from the problem of crosstalk's.		
	5. All the FDM	channels get affected due to wideband	fading	
-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	a) Guard ba c) Codewo	and b) Guard time ord d) Synchronization		
	a) Guard ba c) Codewo	and b) Guard time ord d) Synchronization		
Ans:	a) Guard ba c) Codewo Parameter	and b) Guard time ord d) Synchronization TDMA	CDMA	1M each
Ans:	a) Guard ba c) Codewo Parameter <i>Guard band</i>	and b) Guard time ord d) Synchronization TDMA Guard band between adjacent	CDMA <i>Guard bands are required</i> if it	1M each
Ans:	a) Guard ba c) Codewo Parameter <i>Guard band</i>	and b) Guard time ord d) Synchronization TDMA Guard band between adjacent time slots are not required	CDMA <i>Guard bands are required</i> if it uses FDMA also. Otherwise	1M each
Ans:	a) Guard ba c) Codewo Parameter <i>Guard band</i>	b) Guard time ord d) Synchronization TDMA Guard band between adjacent time slots are not required	CDMA <i>Guard bands are required</i> if it uses FDMA also. Otherwise not required.	1M each
Ans:	a) Guard ba c) Codewo Parameter <i>Guard band</i> Guard time	and b) Guard time ord d) Synchronization TDMA Guard band between adjacent time slots are not required Guard time between adjacent time	CDMAGuard bands are required if ituses FDMA also. Otherwisenot required.Guard times are required if it	1M each
Ans:	a) Guard ba c) Codewo Parameter <i>Guard band</i> Guard time	and b) Guard time ord d) Synchronization TDMA Guard band between adjacent time slots are not required Guard time between adjacent time slots are required	CDMAGuard bands are required if ituses FDMA also. Otherwisenot required.Guard times are required if ituses TDMA also. Otherwise	1M each
Ans:	a) Guard ba c) Codewo Parameter <i>Guard band</i> Guard time	b) Guard time ord d) Synchronization FDMA Guard band between adjacent time slots are not required Guard time between adjacent time slots are required	CDMAGuard bands are required if ituses FDMA also. Otherwisenot required.Guard times are required if ituses TDMA also. Otherwisenot required.	1M each
Ans:	a) Guard ba c) Codewo Parameter Guard band Guard time Code word	b) Guard time ord d) Synchronization TDMA Guard band between adjacent time slots are not required Guard time between adjacent time slots are required Code word is not required	CDMAGuard bands are required if ituses FDMA also. Otherwisenot required.Guard times are required if ituses TDMA also. Otherwisenot required.Code words are required	1M each

Subject Name: Digital Communication System.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2022 EXAMINATION

Subject Code:

22428

Model Answer

		Synchronization	Time synchronization is essential.	Code Synchronization is	
				required.	
				requiredi	
-					
Q.	Sub		Answers		Markin
No.	Q .				g
	N.				Scheme
4		Attempt any THR	EE of the following:		12-
•		<u></u>	the following.		Total
					Morks
	(a)	State the advantag	es of Digital communication.		4M
					4.3.6
	Ans:	Advantages of Dig	ital communication:		1 M
		1. Digital signals a	re better suited than analog signals f	or procession and combining	each
		using technique	called multiplexing.		Any 4
		2. Digital transmis	sion systems are more resistant to an	alog systems to additive noise	
		because they use	e signal regeneration rather than sign	al amplification.	
		3. Digital signals a	re simpler to measure and evaluate t	han analog signals.	
		4. In digital system	ns transmission errors can be corrected	ed and detected more	
		accurately.			
		5. Using data encry	yption only permuted receivers can b	be allowed to detect the transmission	
		data.			
		6. Wide dynamic r	ange.		
		7. Because of the a	dvances of IC technologies and high	speed computers, digital	
		communication	systems are simpler and cheaper.		
		8. Digital commun	ication is adaptive to other advance	branches of data processing	
		such as digital		r8	
		saon as digital.			

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

(b)	Explain the need of Companding.	4M
Ans:	1. The process of compression of the signal at the transmitter and expansion at the receiver is	Explana
	called as companding (compression and expansion).	tion 4M
	2. The use of companding allows signals with a large dynamic range to be transmitted	
	over facilities that have a smaller dynamic range capability.	
	3. Companding is done in order to improve SNR of weak signals.	
	4. Companding is employed in telephony and other audio applications such as professional	
	wireless microphones and analog recording.	
(c)	Explain Synchronous time – division multiplexing using block diagram.	4 M
Ans:	SYNCHRONOUS TDM:	Diagra
	1. In synchronous TDM the term synchronous means that the multiplexer always allocates	m 2M &
	the same time slot to each device whether a device has anything to transmit.	Explana
	2. For example, time slot 1 is assigned to device 1 alone and cannot be used by any other	tion 2M
	device. Each time its allocated time slot comes up, a device can send a portion of its data.	
	If a device is unable to transmit or does not have data to send, its time slot remains empty.	
	3. Time slots are grouped into frames. In a system with "n" input lines (devices), each frame	
	has at least "n" time slots, with each slot allocated to carrying data from a specific device.	
	Thus, the time slots dedicated to a given device occupy the same location in each frame	
	and constitute that device's channel.	
	Block diagram:	
	A3 A2 A1 B3 B2 B1 MUX Frame 3 Frame 2 Frame 1	

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

(d)	Diffe specti	rentiate the Direct Sequence Spread spe rum techniques.	ectrum with frequency hopping spread	4M
Ans:	SR.	DSSS	FHSS	Any 4
	No			Points
	1	Definition: PN sequence of large	Definition: Data bits are transmitted	1M ea
		bandwidth is multiplied with a narrow band information signal.	in different frequency slots which are	
			Changed by PN sequence.	
	2	Modulation technique: BPSK.	Modulation technique: M-ary FSK	
	3	Long acquisition time.	Short acquisition time.	
	4	DSSS is distance dependent.	In FHSS, effect of distance is less.	
	5	Processing gain is less.	Processing gain is higher.	
	6	Bandwidth required is less than FHSS System.	Bandwidth of FHSS system is too high.	
	7	DSSS radios encounter more randomly distributed errors that are continuous and lower level.	Slow Frequency Hopping suffers from strong burst error.	
	8	For commercial applications implementation of DSSS radios with large gap can also be costly due to the	Implementation of FHSS radio can be Costly and complex due to the need of high speed frequency synthesizers.	
		need of high speed circuits.		
(e)	Gene	rate the Hamming code for the data (11	001001).	4M

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Model Answer

Ans:	(g+ e) Data and in 11001001	Structur
	Number of party bits : 4 parity . Even (Assum	e of
	Structure of codeword is as to 1 + 3 + 1	code
	1 1 0 0 1 0 0 1 P2 P2 P3 P2 P2 P2 P2 P1	word
	1) select P. : Consider the bits 1,3,5,7,9,11, The bits are	1M, 4
	$P_{j}P_{3}P_{5}P_{4}P_{3}P_{11}$	steps ½
	Seed P, for even parity 1: P = 1	M each,
	2) seed P2 consider the bits 2,3,6,7,10,11 The bits are	correct
	$P_{z} P_{z} P_{z} P_{z} P_{z} P_{y} P_{y}$	hammin
	spect P2 for even party 1. 12	g code
	3) Better By the bits \$1,5,6,7,12 The bits and	1M(Not
	$\begin{array}{c} P_{+} P_{5} P_{c} P_{+} P_{2} \\ P_{c} \circ \circ 1 \\ P_{c} \circ \circ 1 \\ \end{array} \qquad \qquad$	e: any
	select P4 for over the his gre	Parity
	(1) Conjector the bits 8,3,10,11,12 inc the Conjector the bits 8,3,10,11,12 inc the	(even /
	award the for even parity P8 = 0	odd can
	5) Construct Hamming Codeword :- Pa Pa Pa P.	assume
		and
		solve)

16

Subject Code:

SUMMER - 2022 EXAMINATION

Subject Code:

Subject Name: Digital Communication System.

Model Answer

(ISO/IEC - 27001 - 2013 Certified)

17

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Q.	Sub	Answers	Markin
No.	Q.		g
	N.		Scheme
_			10
5.		Attempt any <u>TWO</u> of the following:	12-
			Total
			Marks
	a)	Draw data formate for bit stream (11000110):	6M
		i) Manchester	
		ii) Polar Quaternary	
		iii) Bipolar RZ	
		iv) Unipolar NR	
		v) AMI	
		vi) Unipolar NRZ	
	Ans:	Note:Unipolar NR line code does not exit,Kindly consider it as Uniploar RZ & draw	1M for
		waveform.	each
			correct
			wavefor
			m

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Subject Name: Digital Communication System.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER - 2022 EXAMINATION

Subject Code:

```
22428
```

Model Answer

SUMMER - 2022 EXAMINATION

Subject Code:

22428

Subject Name: Digital Communication System.

Model Answer

SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

		(ADM).	
Q.	Sub	Answers	Markin
No.	Q.		g
	N.		Scheme
6.		Attempt any <u>TWO</u> of the following :	12-
			Total
			Marks
	a)	State the Bandwidth requirement of (i) BPSK (ii) BFSK (iii)QPSK	6M
		Explain the need of M-ary encoding. Draw the block diagram of M-ary FSK.	
	Ans:	Bandwidth :	3M each
			for
		BPSK = 210	bandwi
		BFSK = 4fb	dth
		ODSK A	require
		QPSK = 10	ment,
		Where fb is Bit Frequency/Bit rate	1M
		Need of Many areading	need of
		Need of M-ary encoding	M-ary
		M-ary encoding- In an M-ary signaling scheme, we can send one of the M possible	encodin
		signals such as $s1$, $s2$, sm (t) during each signaling interval of duration of t seconds	g and 2
			M block
		The number of signals in an M is given as $M=2^{N}$. Need of M-ary encoding for	diagram
		following reasons:	of M-
			ary FSK

Subject Name: Digital Communication System.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER - 2022 EXAMINATION

Subject Code:

22428

Model Answer

stream to be transmitted, d(t), is applied to one input of an exclusive-OR logic gate. To the other gate input the output of the exclusive-OR gate b(t) delayed by time Tb allocated to one bit is applied.

SUMMER - 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

Model Answer

This second input is then b(t - Tb).

b(t) is applied to a level shifter which assigns a positive voltage level when b(t)

= 1 and a negative voltage level when b(t) = 0. The level shifter output is then applied to a

balanced modulator to which a carrier signal $\sqrt{2}$ Pscos ω ct is also applied.

The modulator output, which is the transmitted signal is given by,

VDPSK (t) = $b'(t) \cos \omega ct$

 $=(\pm 1)\cos(\omega t)$

	<i>d</i> (<i>t</i>)		$b(t-T_h)$		b(t)		
	logic level	voltage	logic level	voltage	logic level	voltage	
	0 0 1 1	-1 -1 1 1	0 1 0 1	1 -1 1	0 1 1 0	-1 1 -1	
	Waveforms:						

Subject Name: Digital Communication System.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER - 2022 EXAMINATION

Subject Code:

```
22428
```


SUMMER – 2022 EXAMINATION

Subject Name: Digital Communication System.

Subject Code:

22428

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	1	0	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1	1	0	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0	1	0	0	0
7 0 0 1 1 0	6	1	0	0	1	1
	7	0	0	1	1	0
	The PN Sequen	ce obtained at the	output Q3 of fl	ip-flop 3 is 010	1110	