WINTER - $\mathbf{1 9}$ EXAMINATION
Subject Name: Fluid Mechanics \& Machinery Model Answer Subject Code: 22445

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	Sub. Q. No.	Answer	Marking Scheme
1.		Attempt any FIVE of the following:	10 Marks
	a)	Compare water and oil of specific gravity 0.8 on the basis of density \& viscosity.	
	Ans	$\begin{aligned} & \text { Soil }=(\text { Density })_{\text {oil }} /(\text { Density })_{\text {water }} \\ & 0.8=(\text { Density })_{\text {oil }} / 1000 \\ & (\text { Density })_{\text {oil }}=\mathbf{8 0 0} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}} \end{aligned}$ Here it is not possible to find out viscosity	02 Marks
	b)	The pressure in the tyres of the four wheeler was measured as 33. State the unit of pressure in this case. Name the device use to measure this pressure.	
	Ans	The unit of pressure 33 in this case is PSI (Pound per square Inch). The name of device used to measure is Bourdon Tube Pressure Gauge	01 Mark 01 Mark
	c)	Show the difference between hydraulic gradient line $\&$ total energy line with the help of suitable diagram.	

\qquad

Q. 2		Attempt any THREE of the following:	12 Marks
	a)	Draw sketch of Bourdon tube pressure gauge and state its advantages.	
	Ans	Bourdon Tube Pressure Gauge Advantages: (any four) These give more accurate results. Bourdon tube cost low. Bourdon tube are simple in construction. They can be modified to give electrical outputs. They are safe even for high pressure measurement. Accuracy is high especially at high pressures.	02 Marks for dia. 1/2 Marks for any 4 adv.
	b)	A circular plate 3.5 m diameter is fully immersed in water at an angle of 45° with the vertical. Determine the total pressure and the centre of pressure on the plate when its centre is $\mathbf{3 m}$ below the free surface of water.	
	Ans	$\begin{aligned} & d=3.5 \mathrm{~m} \\ & \theta=45^{\circ} \\ & \bar{x}=3 \mathrm{~m} \end{aligned}$ $\begin{aligned} F_{G} & =\frac{\pi}{64} d^{4} \\ & =\frac{\pi}{64} \times 3.5^{4} \end{aligned}$ Area of circular plate $=\frac{\pi}{4} d^{2} \quad \therefore I_{G}=7.366 \mathrm{~m}^{4}$ $\begin{aligned} & =\frac{\pi}{4} \times(3.5)^{2} \\ \therefore a & =9.62 \mathrm{~m}^{2} \end{aligned}$	01 Mark 01 Mark
		Page No:	N

	$\begin{aligned} & \text { Total Pressure }=W \cdot A \cdot \bar{x} \\ &=9810 \times 9.62 \times 3 \\ &=283149.78 \mathrm{~N} \\ & \therefore \text { Total Pressure }=283.149 \mathrm{kN} \\ & \text { Centre of pressure }=\frac{I_{G}}{A \bar{x}} \cdot \sin ^{2} \theta+\bar{x} \\ &=\frac{7.366}{9.62 \times 3} \times \sin ^{2} 45 \\ & \therefore \text { Centre of Pressure }=3.1276 \\ & \hline \end{aligned}$	01 Mark 01 Mark
c)	Explain Bernoulli's theorem with neat sketch. State its two important assumptions.	
Ans	This theorem states that whenever there is continuous flow of liquid the total energy at every section remains same provided that there is no any addition or loss of energy. $\mathrm{P} / \mathrm{W}+\mathrm{V}^{2} / 2 \mathrm{~g}+\mathrm{Z}=\text { constant }$ Where, $\mathrm{P} / \mathrm{W}=$ Pressure energy $\mathrm{V}^{2} / 2 \mathrm{~g}=\text { Kinetic energy }$ $\mathrm{Z} \quad=\text { Potential energy }$ Let us consider a conduit having 2 -sections. Now, By using Bernoulli's Theorem, Total head at section $1=$ Total head at section 2 $\mathrm{P}_{1} / \mathrm{W}+\mathrm{V}_{1}^{2} / 2 \mathrm{~g}+\mathrm{Z}_{1}=\mathrm{P}_{2} / \mathrm{W}+\mathrm{V}_{2}^{2} / 2 \mathrm{~g}+\mathrm{Z}_{2}$	01 Mark for statement 01 Mark
	Page No:	

	Assumptions: (any two) 1. The fluid is ideal. 2. The flow is steady \& continuous. 3. The flow is incompressible. 4. Velocity is uniform over the cross section. 5. The flow is irrotational.	01 Mark for sketch 01 Mark
d)	Compare i) Steady and uniform flow ii) Laminar and turbulent flow (Two important points)	
Ans	Steady flow:- The flow is said to be steady when the flow characteristics, such as velocity, pressure, density and temperature do not change with time. Water flowing through a tap at a constant rate is an example of steady flow. Uniform flow:- The flow in which velocity at a given time does not change with respect to space (length of direction of flow) is called as uniform flow. This term is generally applied to flow in channels. Laminar flow:- The flow in which each liquid particle has definite path and path of individual particles do not cross each other is called as laminar flow. e.g. Movement of blood in human body, the flow of thick oil through a small tube. Turbulent flow:- Flow in which each liquid particle does not have a definite path and the path of individual particles also cross each other is called as turbulent flow. e.g. The flow of river at the time of flood is turbulent flow.	01 Mark 01 Mark 01 Mark 01 Mark

\qquad

3		Attempt any THREE of the following	12
	a)	An oil of specific gravity 0.7 is flowing through venturimeter having inlet diameter 35 cm and throat diameter 20 cm . The oil-mercury differential manometer shows a reading of $\mathbf{3 0} \mathbf{~ c m}$. Calculate discharge of oil through the horizontal venturimeter. Take Co : 0.98 .	
	Ans:	Given data: i) $\mathrm{Sd}=0.8$ ii) $\mathrm{Sh}=13.6$ iii) Reading of differential manometer $=25 \mathrm{~cm}$ iv) dia at inlet $\mathrm{d} 1=35 \mathrm{~cm} v$) dia at throat $\mathrm{d} 2=20 \mathrm{~cm}$. $\begin{aligned} & \text { Difference of pressure head }=\mathrm{h}=\mathrm{x}\{\mathrm{Sh} / \mathrm{Sd}-1\} \bullet=25\{13.6 / 0.7-1\}=552.8 \mathrm{~cm} \text { of oil. } \\ & \text { Area at inlet }(\mathrm{a} 1)=\pi / 4 \times \mathrm{xd} 1^{2}=\pi / 4 \times 35^{2}=962.11 \mathrm{~cm}^{2} \\ & \text { Area at throat }(\mathrm{a} 2)=\pi / 4 \times \mathrm{d} 2^{2}=\pi / 4 \times 20^{2}=314.16 \mathrm{~cm}^{2} \\ & \begin{array}{c} \text { Discharge } \mathrm{Q}=\mathrm{cd} \times \mathrm{a} 1 \mathrm{a} 2 /\left(\mathrm{a} 1^{2}-\mathrm{a} 2^{2}\right)^{1 / 2} \times(2 \mathrm{gh})^{1 / 2} \\ \qquad \mathrm{Q} \quad=0.98 \times 962.11 \times 314.16 /(925655.6-98696.5)^{1 / 2} \times(2 \times 981 \times 552.8)^{1 / 2} \\ \quad=339161.9 \mathrm{~cm} 3 / \mathrm{sec}=339.17 \mathrm{lit} / \mathrm{sec} \end{array} \end{aligned}$	01 01 01 01
	b)	Explain water hammer phenomenon and state the remedies measures to avoid it.	
	Ans:	Water hammer phenomenon: commonly occurs when a valve closes suddenly at an end of a pipeline system, and a pressure wave propagates in the pipe. Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe. Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to equipment. Effects of water hammer are as follows 1) Due to rise in pressure the pipe may burst. 2) Erosion of inside surface of pipe. 3) Pressure drop in pipe Remedies for water hammer: 1) Controlling Velocity of flow. 2) Use of appropriate length of pipe. 3) Elastic properties of pipes. 4) Provide surge tank before the valve on main pipe line. 5) Provide bypass pipe near the valve. 6).Provide Air traps or stand pipes (open at the top) to absorb the potentially damaging forces. caused by the moving water. 7) Use high strength pipes. 8) Close the valve slowly.	2 Marks 2 Marks
	c)	List various minor losses in fluid flow. Explain any one type with sketch and formula.	
	Ans:	List various minor losses a) Sudden expansion of pipe	02 Marks
Page No:___ N			

$\left.\begin{array}{|l|l|l|l|}\hline \text { b) Sudden contraction of pipe } \\ \text { c) Pipe fittings } \\ \text { d) Bend in pipe } \\ \text { e) Loss of head at Entry. } \\ \text { f) Loss of head at Exit. }\end{array}\right]$

		- Vf2 = Vertical component of V2 (EH, equal to). It is a component at right angles to the direction of motion of the vane (known as velocity of flow at outlet)	
	e)	A jet of water of diameter 30 mm moving with velocity of $35 \mathrm{~m} / \mathrm{s}$, strikes a curved symmetrical plate at the center Find the force exerted by jet of water in direction of jet. If jet is deflected through an angles of 150° at outlet of curved plate. If the vane is moving with the velocity of $20 \mathrm{~m} / \mathrm{s}$ in the direction of jet.Find out the force exerted.	
	Ans:	Velocity of jet $V=35 \mathrm{~m} / \mathrm{s}$ Velocity of vane $u=20 \mathrm{~m} / \mathrm{s}$ The value of θ i.e. angle made by tip of vane at outlet as $\Theta=180-$ angle of deflection $=180-150=30^{\circ}$ Calculate : Force exerted ny jet diameter of nozzle as $30 \mathrm{~mm} \quad \mathrm{a}=\pi / 4 \times \mathrm{d}^{2}=\pi / 4 \times 0.03^{2}=7.07 \times 10^{-4}$ Force exerted by the jet on vane $\begin{aligned} & F x=P a(v-u)^{2}(1+\cos \theta) \\ & F x=1000 \times 7.07 \times 10^{-4}(35-20)^{2}(1+\cos 30)=296.83 \mathrm{~N} \end{aligned}$ Force exerted by the jet on vane $=296.83 \mathrm{~N}$	2 Marks 2 Marks
4		Attempt any THREE of the following	
	a)	Draw the layout of hydroelectric power plant and classify the turbines used in it.	
		Layout of hydroelectric power plant: Layout of a bydro-eletric power plant.	2 Marks
		Classification of the hydraulic turbines: According to the type of energy available at inlet to the turbine 1)impulse turbine and 2) Reaction turbine According to direction of flow through runner 1)tangential flow turbine 2) radial flow turbine 3) axial flow turbine 4) mixed flow turbine According to the head available at inlet to the turbine	2 Marks
		Page No:	N

	1) Low head turbine (2 m to 15 m) 2)Medium head turbine (16 m to 70 m) 3)High head turbine (71 m and above) According to the specific speed of the turbine 1)low specific speed 2)medium specific speed 3)High specific speed	
b)	Explain the Need of draft tube in reaction turbine .state the types of draft tube used in it	
Ans:	Draft tube is a pipe of gradually increasing diameter which connects the exit of runner of turbine to tail race. In case of reaction turbine, one part of available head is converted into K.E before entry to runner and rest of energy is in the form of pressure energy. This pressure energy is gradually converted into runner, thus the velocity leaving the runner is at high velocity. Draft converts K.E to pressure head . also 1) To decrease the pressure at the runner exit to a value less than atmospheric pressure and thereby increase the effective working head. ii) To recover a part of electric energy into pressure head at the exit of draft tube. This enables easy discharge to atmosphere. Types of draft tube: i. Conical draft tube. ii. Simple elbow draft tube. iii. Moody spreading draft tube. iv. Elbow draft tube with circular cross section at inlet and rectangular at outlet. (d) DRAFT TUBE WITH CIRCULAR INLET AND REGTANGULAR OUTLE	2 Marks 2 Marks
c)	Draw and explain performance and operating characteristics curves of a Pelton turbine	
Ans:	The followings are the important characteristic curves of a turbine : Main Characteristic Curves or Constant Head Curve. ... The speed of the turbine is varied by changing load on the turbine. For each value of the speed, the corresponding values of the power (P) and discharge (Q) are obtained.	2 Marks

\qquad

Let $p_{1}=$ pressure at section (1),
$v_{1}=$ velocity at section (1), $a_{1}=$ area of pipe at section (1), and

2 Marks
p_{2}, v_{2}, a_{2} are corresponding values at section (2). Applying Bernoulli's equation at sections (1) and (2), we get

$$
\begin{align*}
& \frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2} \\
& \text { or }\left(\frac{p_{1}}{\rho g}+z_{1}\right)-\left(\frac{p_{2}}{\rho g}+z_{2}\right)=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g} \\
& \text { But }\left(\frac{p_{1}}{\rho g}+z_{1}\right)-\left(\frac{p_{2}}{\rho g}+z_{2}\right)=h=\text { Differential head } \\
& \therefore \quad h=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g} \text { or } 2 g h=v_{2}{ }^{2}-v_{1}^{2} \\
& \text { or }
\end{align*}
$$

Now section (2) is at the vena-contracta and a_{2} represents the area at the vena-contracta. If a_{0} is the area of orifice then, we have

$$
C_{c}=\frac{a_{2}}{a_{0}}
$$

where $C_{c}=$ Co-efficient of contraction

$$
\begin{equation*}
\therefore \quad a_{2}=a_{0} \times C_{c} \tag{ii}
\end{equation*}
$$

By continuity equation, we have

$$
\begin{equation*}
a_{1} v_{1}=a_{2} v_{2} \quad \text { or } \quad v_{1}=\frac{a_{2}}{a_{1}} v_{2}=\frac{a_{0} C_{c}}{a_{1}} v_{2} \tag{iii}
\end{equation*}
$$

Substituting the value of v_{1} in equation (i), we get

$$
v_{2}=\sqrt{2 g h+\frac{a_{0}^{2} C_{c}^{2} v_{2}^{2}}{a_{1}^{2}}}
$$

\qquad

		Loss of head $\begin{aligned} \mathrm{h}_{\mathrm{F}} & =\mathrm{d} \mathrm{P} / \mathrm{pg}=1000 \times 10^{3} /(1000 \times 9.81)=101.94 \\ \mathrm{~h}_{\mathrm{f}} & =\mathrm{fLV}^{2} / 2 \mathrm{gd} \\ 101.94 & =0.0055 \times 1000 \mathrm{x} \mathrm{v}^{2} /(2 \times 9.81 \mathrm{~d}) \\ \mathrm{v} & =19.06 \mathrm{~d}^{1 / 2} \end{aligned}$ Head availavle at the end of pipe $=\mathrm{H}-\mathrm{h}_{\mathrm{f}}$ Power trasnmitted through pipe $\mathrm{P}=\rho g \mathrm{Q}\left(\mathrm{H}-\mathrm{h}_{\mathrm{f}}\right) / 1000 \quad \mathrm{~kW}$ $\begin{aligned} & 110 \times 10^{3}=1000 \times 9.81 \times(\Pi / 4) \mathrm{x} \mathrm{~d}^{2} \times \mathrm{vx}(509.7-101.94) \\ & 110 \times 10^{3}=1000 \times 9.81 \times(\Pi / 4) \mathrm{x} \mathrm{~d}^{2} \mathrm{xd}^{1 / 2} \times(509.7-101.94) \\ & \mathrm{d}^{3 / 2}=0.035 \\ & \mathrm{~d}=0.1069 \mathrm{~m} \end{aligned}$ 2) Efficiency of power Transmission $\eta=\left(\mathrm{H}-\mathrm{h}_{\mathrm{f}}\right) / \mathrm{H}=(509.7-101.94) / 509.7=0.8=80 \%$	2 Marks 2 Marks 2 Marks
	c)	A jet moving with a velocity of $\mathrm{V} \mathrm{m} / \mathrm{s}$ is made to strike a stationary i) flat plate normally ii) flat inclined at an angle θ iii)symmertical curved vane at centre with tip angle θ In which case the force exerted by the jet is maximum? Justify with suitable sketch and formula.	
	Ans:	i) Force excerted by jet on flate plate normally $=\rho A V^{2}$ ii) Force excerted by jet on flate plate inclined at an angle $\theta=\rho A V^{2} \sin \theta$ iii) Force Excerted by jet on symmetrical curved vane at centre with tip angle θ $\mathrm{F}=\rho A \mathrm{~V}^{2}(1+\cos \theta)$ Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum. Justification: - Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum. - Because it contains $(1+\cos \theta)$ term and as θ varies between to $(1+\cos \theta) 90^{0} \cos \theta$ is positive and $(1+\cos \theta)$ is always greater than 1 . - Hence Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum.	1 Marks 1 Marks 2 Marks 2 Marks
6		Attempt any TWO of the following:	12
	a)	Explain Construction and working of Francis Turbine with neat sketch.	

	Ans:	The main parts of the Francis turbine are: 1) Penstock: It is the large pipe which conveys water from the upstream of the reservoir to the turbine runner. 2) Spiral casing: It is a closed passage whose cross sectional area gradually decreases along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. 3) Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24 . 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes.	2 Marks 2 Marks 2 Marks
b)	Ans:	Given: $\mathrm{H}_{\mathrm{m}}=$ Manometric head $=14.5 \mathrm{~m}$ $\mathrm{N}=1000 \mathrm{rpm}, \Phi=$ Vane angle at outlet $=30^{0}$ D2 $=$ Diameter at outlet $=300 \mathrm{~mm}=0.3 \mathrm{~m}$ B2 $=$ Width at the outlet $=50 \mathrm{~mm}=0.05 \mathrm{~m} \& \quad \eta_{\text {mano }}=0.95 \& \eta_{\text {over }}=0.90$	

		To find: 1) Discharge. 2) Power required to the drive the pump. Solution: 1) Discharge (Q) Velocity Triangle $\begin{gathered} \tan 30=\left(\mathrm{V}_{\mathrm{f} 2} / \mathrm{u}_{2}-\mathrm{V}_{\mathrm{w} 2}\right) \\ \eta_{\text {mano }}=\left(\mathrm{gH}_{\mathrm{m}} / \mathrm{u}_{2} \mathrm{~V}_{\mathrm{w} 2}\right) \end{gathered}$ Also $\mathrm{u}_{2}=\left(\pi \mathrm{D}_{2} \mathrm{~N}\right) /(60)=(\pi \times 0.3 \times 1000) /(60)=15.71 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} 0.95 & =\left(9.81 \times 14.5 / 15.71 \times \mathrm{V}_{\mathrm{w} 2}\right) \\ \mathrm{V}_{\mathrm{w} 2} & =9.53 \mathrm{~m} / \mathrm{s} \end{aligned}$ $\tan 30=\left(\mathrm{V}_{\mathrm{f} 2} / 15.71-9.53\right)$ $\tan 30=\left(\mathrm{V}_{\mathrm{f} 2} / 6.18\right)$ $\mathrm{V}_{\mathrm{f} 2}=6.18 \times \operatorname{Tan} 30=3.57 \mathrm{~m} / \mathrm{s}$ Discharge (Q) $=\pi \mathrm{D}_{2} \mathrm{~B}_{2} \mathrm{~V}_{\mathrm{f} 2}$ $\mathrm{Q}=\pi \times 0.3 \times 0.05 \times 3.57=0.1682 \mathrm{~m}^{3} / \mathrm{s}$ 2) Power required to the drive the pump $\begin{aligned} & \eta \text { overall }=w Q H_{m} / \text { Input Power } \\ & \text { Input Power }=\rho \mathrm{QH} / \eta_{\mathrm{m}} / \eta_{\text {overall }}=1000 \times 9.81 \times 0.1682 \times 14.5 / 0.9 \\ & \text { Input Power }=26.58 \mathrm{~kW} \end{aligned}$	2 Marks 2 Marks 2 Marks
c)	Ans:	$\begin{aligned} & \text { Given:N=50 rpm, } \quad \mathrm{Q}=0.00736 \mathrm{~m}^{3} / \mathrm{s} \quad \mathrm{D}=300 \mathrm{~mm} \text {, } \\ & \mathrm{L}=300 \mathrm{~mm} \quad \mathrm{Hs}=3.5 \mathrm{~m} \quad \mathrm{Hd}=11.5 \mathrm{~m}, \\ & \text { Determine : 1) Therotical Discharge 2) Slip 3) Power required to run the pump } \end{aligned}$	

Solution:

1) Theoretical Discharge

$$
\mathrm{Q}_{\mathrm{th}}=\mathrm{ALN} / 60
$$

$$
=(\Pi / 4) \times \mathrm{D}^{2} \times \mathrm{LN} / 60
$$

$=(\Pi / 4) \times 0.3^{2} \times 0.3 \times 50 / 60$
$=0.0176 \mathrm{~m}^{3} / \mathrm{s}$
2) Slip $=Q_{t h}-Q_{\text {act }}=0.021-0.0176=0.0034 \mathrm{~m}^{3} / \mathrm{s}$
3) Power required to run the pump

$$
\begin{aligned}
& \mathrm{P}=\rho \mathrm{g} \mathrm{~A} \mathrm{LN}(\mathrm{Hs}+\mathrm{Hd}) / 60000 \mathrm{~kW} \\
& \mathrm{P}=1000 \times 9.81 \times(\Pi / 4) \times 0.3^{2} \times 0.3 \times 50 \times(3.5+11.5) / 60000 \\
& \mathrm{P}=2.6 \mathrm{~kW}
\end{aligned}
$$

\qquad / N

