

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 - 2005 certified)

Subject code: 22503

WINTER -2019 EXAMINATION Model Answer

Page No: 01/

Important Instructions to examiners:

1) The answers should be examined by keywords and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

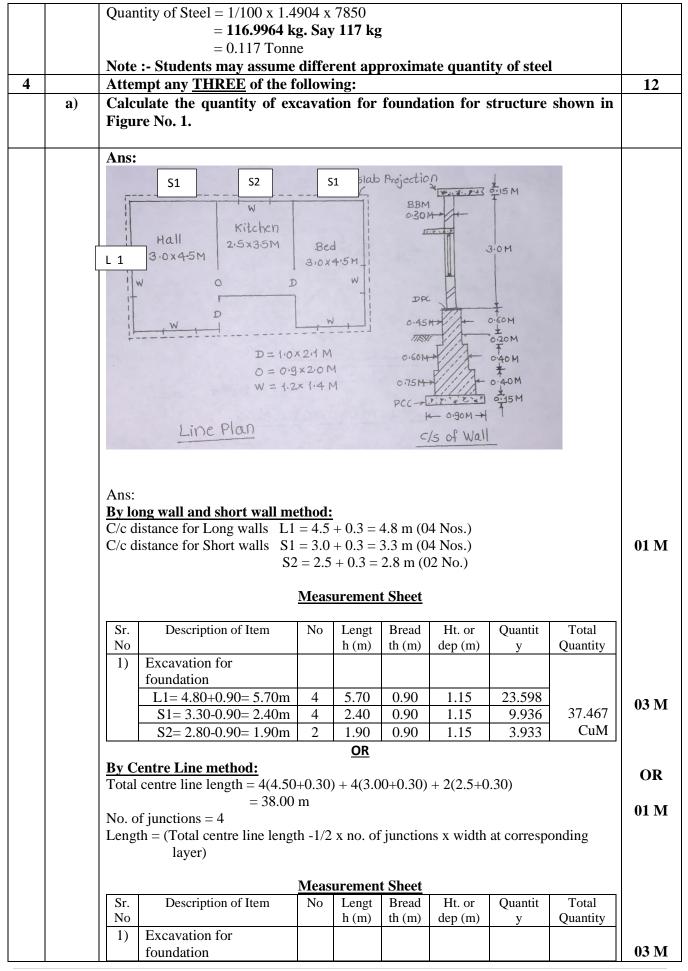
3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).

4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In the some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.

6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

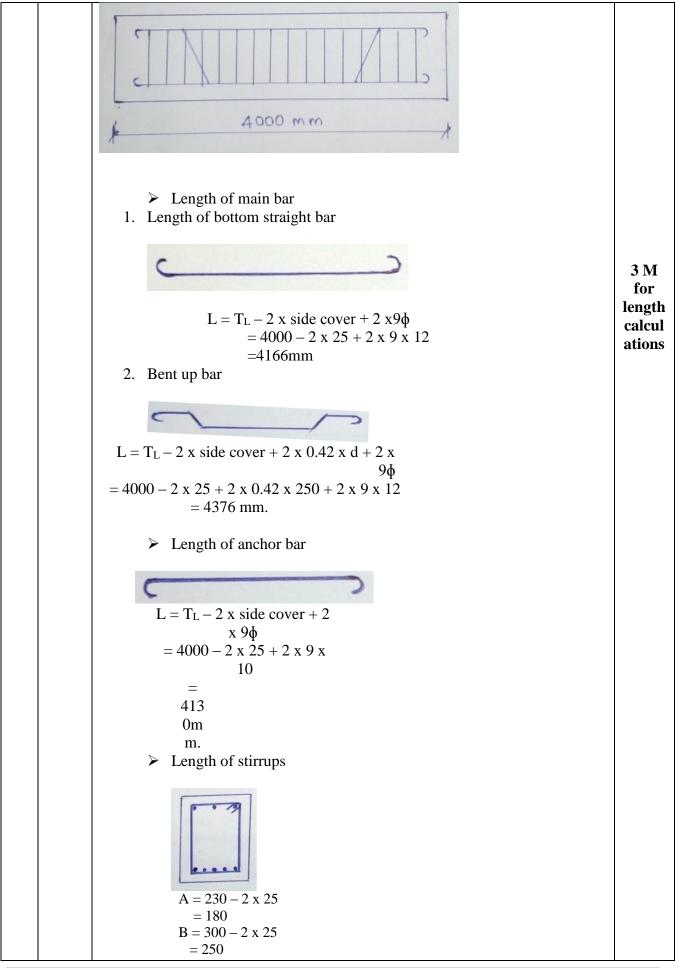

Q. No.	Sub Q. No.	Question and Model Answers	Marks
1	110.	Attempt any <u>FIVE</u> of the following:	10
	a)	State mode of measurement for following items of work as per I.S. 1200	
		Ans:i.Inspection chamber Numbers (Nos.)ii.Ironwork in truss Kg or Quintal or Toneiii.Timbering of trenches Square meter / m2iv.PCC in foundation Cubic meter / m3	1/2 M For each
	b)	State any four purposes of preparing approximate estimate	
		 Ans: 1. To give the rough idea of probable expenditure in short time without calculating the actual quantities, from the cost of similar structure having similar specification, construction & locality. 2. In case of Government & public bodies, for sanctioning of the expenditure required for the project in the form of Administrative approval. 3. In case of commercial projects to study the cost-benefit ratio. If it is justified the project is carried out. 4. For BOT/PPP Systems approximate estimates plays important role for decision making & for preparation of Feasibility Report of Project 	1/2 M each (for any four)

	5. For framing Tax Schedule & Insurance requirement.					
	6. For buying & sailing and Rent Fixation.					
C)	Define i) Administrative approval ii) Technical Sanction:-					
	Ans:					
	i) Administrative approval:-					
	It is the permission given by the highest authority of the user department for					
	the execution of proposed project on the basis of approximate estimate of the					
	project.					
	ii) Technical Sanction:-					
	It is the sanction given by the highest authority of the executive department to	1 M				
1)	the detailed estimate of th proposed project prepared by executive division.	each				
d)	State the meaning of work charged establishment and give its general					
	percentage	-				
	Ans:	1.3.4				
	The work charge establishment are the establishment which is directly	1 M				
	connected with work.					
	During the construction of a project/work some supervisory staff such as					
	supervisors, watchman, store clerk etc. are appointed on temporary basis.					
	To meet this expenditure a provision is made in the estimate of every work,					
	which is known as work charged establishment.	13.6				
	It is about 2 to 2.5 % of the estimated cost of the work	1 M				
e)	Define i) Lead ii) Lift					
•••	Ans:					
	Lead:-					
	The horizontal distance between the trench pit and the place where excavated					
	earth is placed is called as lead. Generally standard lead is taken 30 m	1 M				
	Lift:-	each				
	It is the vertical distance between point of excavation and point of disposal.					
	Generally standard lead is taken 1.5m					
f)	Suggest the method of approximate costing for					
-)	Ans:					
	i. Steel bridge :- Typical bay method					
	ii. Highway an Roads :- Service unit method	1/2 M				
	iii. RCC Retaining Wall :- Service unit method or Approximate	For				
	quantity method	each				
	iv. Irrigation Canal ;- Service unit method					
g)	Draw section of two legged stirrup and state formula for finding total					
5)	length of stirrup					
	$k = B \rightarrow b$					
		1 M				
	A a a=A-(2 X Cover)					
	\leftarrow b \rightarrow					
	h = B - (2 x cover)					
	b = B - (2 x cover)					
	Total length of stirrup = $2 x (a+b) + 24 x d$ where, $d = diameter of stirrup$					

2	Attempt any THREE of the following:	12 M
a)	State the rules for deduction of plaster works as per IS 1200.	
a)	State the rules for deduction of plaster works as per IS 1200.Ans:i.No deduction is made for ends of beams, posts, rafters, purlins etc.ii.No deduction is made for opening up to 0.5 sq. m. and no addition is made for jambs, soffits, and sills of these openings.iii.For opening more than 0.5 sq. m. and up to 3 sq. m. deduction is made for one face only. No addition for jambs, soffits, and sills of these openings.iv.For opening above 3 sq. m. deduction is made for both faces of openings and the jambs, soffits, and sills shall be added.State & explain data required for preparing detailed estimate Ans:	1 M each
	 i. Drawing: Quantities of various items are calculated on the basis of given drawing ii. Specification: Specification gives description of material to be used, mode of execution quality of work etc. The rates are varies according to specification iii. Rates: The rates of various materials used in the construction and the wages of different categories of labour should be available for preparing estimate. iv. Modes of measurement: Mode of measurement for different item of work are taken with reference to IS 1200. 	1 M each
C)	Prepare approximate estimate for a Government office building with given data	
	Ans: Total area of rooms = area of each room x no. of rooms = 60×14 = 840 Sq.M. Area of other facilities = 150 Sq.M. Total area = area of rooms + Area of other facilities = $840 + 150$ 800 Sq.M.	1 M
	= 990 Sq.M. Cost of construction of existing similar office Built up area rate = Built up area of existing similar office	1 M
	35500000 Built up area rate =	
	Built up area rate = 32272.727 Rs. / Sq.M Approximate estimate = Total area x Built up area rate = 990 x 32272.727 = 31950000 = 3.195 Crores	1 M
	Approximate estimate for a Government office building = Rs. 3.195 Crores	1 M
3 Page	Winter-2019 EAC-2250) 3

	d)	State the desired accuracy in taking measurem per IS : 1200	ents of items of works as	
		 Ans: To achieve the desired accuracy in measurements observed. A) Dimensions shall be measured to the near a) Thickness of slab measured nearest to (b) Wood work is to be measured nearest to c) Reinforcement, to the nearest 0.005m d) Thickness of roadwork less than 200m 	est 0.01m except).005m o 0.002m	2 M
		 0.005m. B) The tolerances in measurements are a) For volumes 0.01 cu.m b) For areas0.01 sq.m c) For lengths0.01 rmt d) For weights0.001 ton or 1kg. Fraction less than one half is neglected Fraction equal to one half or more than one 	he half is considered	2 M
3		Attempt any <u>THREE</u> of the following:		12
		 of all building of 1400 Sq. M. Given- Plinth area rate = Rs. 3800/- per Sq. M. (ii) Special architectural treatment = 1.5% (iii) Water supply and sanitary installations (iv) Internal installations = 14% of building (v) Other services = 6% of the building cos (vi) Contingencies = 3% (vii) Supervision charges = 8% 	of the building cost. s = 5% of the building cost. g cost.	
		Ans: Preliminary Estimate of a building – Building Cost = Plinth area x Plinth area rate = 1400 x 3800 = Rs.5320000/- Add for 1) Special Architectural treatment (1.5%) 2) Water supply and sanitary installations (5%) 3) Internal installations (14%) 4) Other Services (6%) Total Cost = Building Cost + $\sum (Sr. No. 1 to 4)$ = 5320000 + (79800 + 266000 + 744800	= 1.5/100 x 5320000 = Rs.79800/- = 5/100 x 5320000 = Rs.266000/- = 14/100 x 5320000 = Rs.744800/- = 6/100 x 5320000 = Rs.319200/-	1/2 M 2 M
		= 3320000 + (79800 + 200000 + 744800) = Rs.6729800/- Add (i) Contingencies (3%) = 3/100 x 67298 (ii) Supervision Charges (8%) = 8/100 x 67298 Grand Total or Estimated cost of the building = 672	800 = Rs. 201894/- 800 = Rs. 538384/-	1/2 M 1/2 M
			4,70,078/-	1/2 M

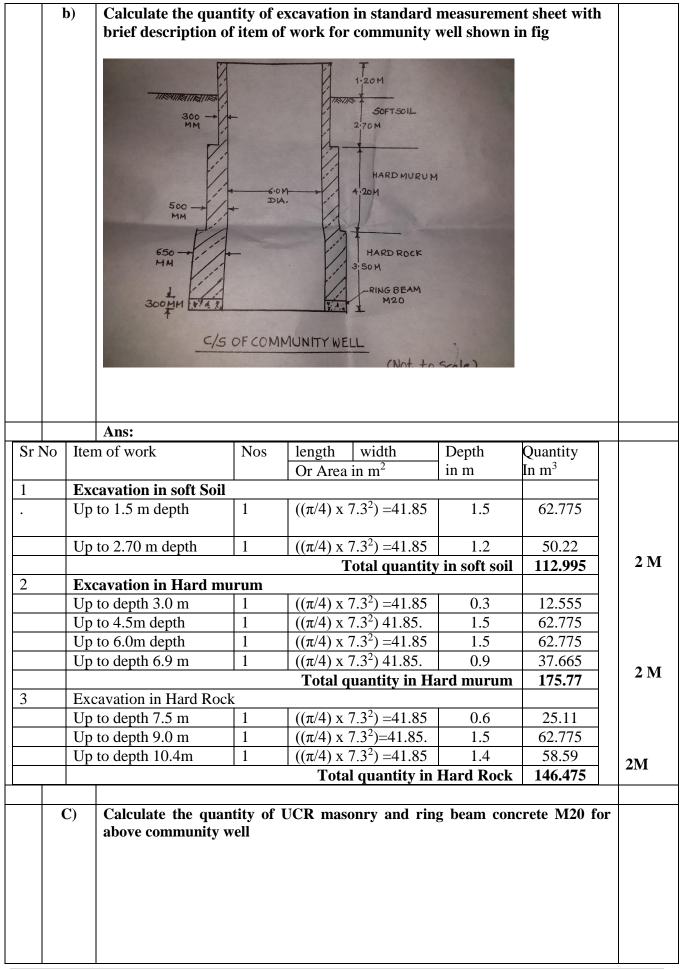
b)	Explain the term – 'Spot items' and give any two examples of it.							
	Spot items – These are certain items, for which it is not possible for the estimator to fix an amount without seeing and studying them in detail. Such items are known as spot items. Estimate of spot items can be prepared only after inspection and taking detailed measurements at site.	01 M 01 M						
	 Examples – Construction of an opening in existing wall. Demolishing existing structure. Connecting an old building with new building. Dewatering of trenches. 							
c)	Distinguish between Long Wall – Short Wall method and centre line method. (any four points of differences)							
	Ans:							
	Sr. Long wall-Short wall Method Centre line method							
	No. Image: No. 1) In this method structure is divided into any category but divided into any category but treated as a whole.							
	2) Centre to centre distance for long valls and short walls are to be calculated.	1 M						
	3) No consideration is given to the no. Due consideration is given to no. of junctions.	each (for						
	4)Calculations by this method are lengthy.Calculations in this method are less and easy.	any four)						
	5) This method is used for calculating quantities of any type of building. This method is suitable for calculating quantities of rectangular, circular and polygonal buildings.							
	6) It is more accurate when there are more no. of junctions. When there are more no. of junctions and varying widths, method may create confusion.							
	7) Total Quantity of item = (No. x length of long wall x width x height) + (No. x length of short wall x width x height) Total Quantity of item = Net centre line length x width x height							
d)	For a RCC framed structure, there are six columns of size 230 x 300 mm and length of column 3.60 m each. Work out the total approximate quantity of steel required for all columns.							
	Ans: Given- Size of column = $230 \times 300 \text{ mm}$ Length of column = 3.60 m No. of columns = 6	01 M						
	No. of columns = 6 Volume of concrete columns = No. of columns x Volume of one column = $6 \times (0.23 \times 0.30 \times 3.60)$	01 M						
	$= 0.4 (0.23 \times 0.50 \times 5.00)$ $= 1.4904 Cu.M$ Assume approximate quantity of steel = 1%	02 M						



		Net centre line length = $38 - 1/2x4x0.90$ = $36.20m$	1	36.20	0.90	1.15	37.467	37.467 CuM		
b)	Calculate the quantity of B.B.M. in CM 1:6 for structure shown in Figure No. 1.									
	Ans:									
		ong wall and short wall me listance for Long walls L1			1 9 m (0	(1 Nec.)				
		listance for Short walls S1							01 N	
	C/C U			+0.3 =						
						,				
				uremen		I	I			
	Sr.	Description of Item	No	Lengt	Bread th (m)	Ht. or	Quantit	Total Quantity		
	No 1)	Construction of BBM in		h (m)	th (m)	dep (m)	У	Quantity		
	1)	Superstructure								
		L1 = 4.80 + 0.30 = 5.10m	4	5.10	0.30	3.00	18.36			
		S1= 3.30-0.30= 3.00m	4	3.00	0.30	3.00	10.80		03 N	
		S2= 2.80-0.30= 2.50m	2	2.50	0.30	3.00	4.50			
		Deductions for								
		Door	2	1.00	0.30	2.10	1.26			
		Opening	1	0.90	0.30	2.00	0.54	29.34		
		Window	5	1.20	0.30	1.40	2.52	CuM		
				OR		•	•		OF	
	Total No. c	$\frac{\text{centre Line method:}}{\text{centre line length} = 4(4.50)}$ $= 38.00$ of junctions = 4 th = (Total centre line lengt layer)	m h -1/2	x no. of	junction			onding	01N	
				uremen						
	Sr. No	Description of Item	No	Lengt h (m)	Bread th (m)	Ht. or dep (m)	Quantit y	Total Quantity		
	1)	Construction of BBM in		in (iii)			<i>y</i>	Quality	03 N	
		Superstructure								
		Net centre line length	1	36.20	0.30	3.00	33.66			
		= 38 - 1/2x4x0.30								
		= 36.20m								
		Deductions for	-	1.00	0.00	0.10	1.05			
		Door	2	1.00	0.30	2.10	1.26	29.34		
		Opening Window	1 5	0.90	0.30	2.00 1.40	0.54	CuM		
	<u> </u>	w mdow	3	1.20	0.50	1.40	2.32	Cuivi		
c)	-	ain the following terms i i) Contingencies	n brie	ef						

	appr cont Som due head detai 2) Prov for s not k The sum prep	oximately ingencies. e items of to oversigh . To meet led estimat visional Su ome specia cnown at th work like whose full	be classi work mig t or some such ex e. Norma m - Provi lized wor e time of installatio informat ate. The a	fied unde ght have b miscellar spenses, p lly it is 3 t sional sur k to be do preparing on of A.C ion and d amount pa	r any been on neous i provisio to 5% o n is an one by s estima c, Lift e etails n id to th	distinct su nitted from tems do n on of con of estimate amount pr specialist f te. etc. are co nay not be	n the detai ot form ur tingencies d cost. rovided in irm. Whos mes under e known a	hich cannot re called as led estimate ader any sub is done in the estimate se details are r provisional t the time of t necessarily	1 M 1 M 1 M 1 M
d) Describe the	e general n	rocedure	e of carry	ing out	rate anal	vsis		
	Ans:	e generai p	noceuure	or carry	ing out	i att allal	y 515		
e	1)Calc type:2)Take (abo)3)Calc (abo)4)Calc (abo)5)Calc (abo)6)Calc (abo)7)Calc (abo)8)Wor (abo)0Calculate the (abo)	ime quantit ulate the q s of labours lump-sum ulate Total urs + charg ulate water ulate Overa ulate Covera ulate Covera ulate Total k out Rate em.	y of given juantity of s with refer charges f cost of t charges a all cost = ' actors pro cost of th per unit o	h item as p of various erence to t for tools & material & s plants, e as 1.5% or Total cost fit as 10% e item = c f item = T	ber its n materi heir tas t plants t labou tc. if an of mat of mat of on Ov overall of total co	node of ma als and the k work for s, sundries ars = cost by cost of ma erial & lab erial & lab erial cost. cost + com- ost of the it	ne quantity r completing if any requ of materiant terials & 1 bours + wa tractors pro- tem / assur- ad having	y of various ng the item. uired. al + cost of abours. ter charges ofit. ned quantity g formation	1/2 M x 8 (for eight steps)
			-	0			rea meth	od. Assume	
	formation le	evel as 115 400	<u>.50 m wit</u> 420		gitudina 40	al slope. 460	480	500	
	G.L. (m)	111.50			1.85	111.45	111.20	110.90	
	Ans: Given- 1) Formation width of road = B = 10 m 2) Formation level = 115.50 m 3) Side slope of both side 2 : 1 i.e. $S = 2$ 4) No longitudinal slope. 5) Chainage interval or length of section = L = 20m								
	Earthwork i) Depth of e			on level – F.L.		th (F.LG	L) Re	mark	
		400 420	111.50 111.60	115.50 115.50		4.00 3.90	Fi Fi	lling lling	01
		440 460	111.85 111.45	115.50 115.50		3.65 4.05		lling lling	

	500 110.90 115.50 4.60 Filling											
	ii) By I	Mid sec	tional are	ea metho	d							
	Area Area Tot a	Mean depth (dm) = $(d1+d2)/2$ Area of Rectangular Part = B.dm Area of side triangles = Sdm ² Total Area A = Bdm + Sdm² Volume of earthwork = Total area x Length of Section = A x L Ch. Depth Mean A1= A2= Total Length Volume= (AL)										
	Ch.	Depth	Mean	A1=	A2=	Total	Length	Volume	= (AL)			
		(d) m	depth (dm) m	Bdm	Sdm ²	Area (A1+A2)	of Section (L)	Filling	Cutting			
	400	4.00										
	420	3.90	3.950	39.50	31.205	70.705	20	1414.10				
	440	3.65 4.05	3.775 3.850	37.75 38.50	28.501 29.645	66.251 68.145	20 20	1325.02 1362.90		02		
	480	4.03	4.175	41.75	34.861	76.611	20	1532.22				
	500	4.60	4.450	44.50	39.605	84.105	20	1682.10				
							Total	7316.34				
	Volun	ne of Ea	rthwork	x = 7316.	34 Cu.M					01		
5	Attem	pt any '	TWO of	followin	ıg.					12a)		
	-		507	and the second se	amn 0x230							
	10¢ Bothu			0	umn foot	Not to :	Scale)					
	Ans:-	c.		o	umn foot	* (Not to :	Scale)					
	- Jena 	Quant Area of Area of	f Squa ity of bo of bottom of top squ area Am	ttom square	$A_{1} = L x$ $A_{1} = L x$ $= 0.33 x$ $A_{2} / 2$	L x B x F $= 1 x 1 x$ $= 0.15 m$	I .15 1 ³			1 M		


) 554					
			Total quanti).554 trapezoi	idal portion	$= h/6 (A_1)$	$+ A_2 + 4A_m$)	
			r our quuiti	-j 01		Portion		(1 + 0.109 +		1 M
							= 0.193 n	n^3	,	
Total quantity of footing = volume of bottom square + volume of										
			Trapezoidal			= 0.15+0.1	93			
						$= 0.13 \pm 0.11$ = 0.343 m ³				1 M
			1. Quantit	y of s						
			,		1) 50					
			ume cover (all 1) Length of r		·					
			L = $(l - l)$		-					
			,		,	+ 18 (10				
)							1 1 7
			= 1080 L $= 1.080$							1 M
					on Cla	or cover				
			No of bars	= <u>spa</u>						
					Spaci	ng				
				10	00 - 10	0				
				= 10	$\frac{000 - 10}{100}$	+1				
				= 9 -	100 +1					
				-	Nos.					1M
			2) Length of c				<u> </u>			
			Same as ma both directi					and steel sa	me in	
		<u> </u>		1	1	1	1			
Sr	Desc	cript	Shape of bar	No	Lengt	Total	Diam of	Wt Kg/m	Total	
no	ion				h(M)	length(m)	bar mm		wt in kg	
1	Maiı	n		20	1.080	21.6	10	0.62	13.40	
	Bar		C							
								total	13.40	1M
	b)	Wor	k out the quar	ntitv 4	 of nlain	steel for h	eam in fo			
	,		cending sched		r Pian		vani 111 10	no ming anu	Propert	
			0							
		i. .::	Overall leng			0	n dia a4	of which all	ont	
		ii. iii.	Main Bars : Size of Bear				n dia out	of which 2 b	ent up	
		iv.	Anchor Bar				a			
		v.	Stirrups = 6	6 mm	dia at 1	150 c/c				
		Ans:								
		Ass	ume clear cove	er on a	all sides	= 25 mm.				

			L = 2 (A + B) = 2 (180 +							
			= 1004 mr ➤ Number of s		-TI = 2	x Clear cove	•r +1			
	Spacing									
			=	$=\frac{400}{100}$	<u>150</u>	+ 1				
				=	150 27.33 say 28	3 Nos				
Sr no	Descri	ption	Shape of bar	No	Length(M)	Total length(m)	Diam of bar mm	Wt Kg/m	Total wt in kg	
1	Main B botton	-)	2	4.166	8.332	12	0.89	7.42	3 M for Table
2	Main B bent u bar			2	4.376	8.752	12	0.89	7.79	Table
3	Ancho	r Bar	()	2	4.130	8.26	10	0.62	5.12	
4	Stirrup)S		28	1.004	28.11	6	0.22	6.18	
								total	26.51	
C)		Pret	oare rate analysis fo	or 12	mm nlaster i	in CM 1·4				
		Assi	the pare rate analysis for the quantity (Area Nolume = Area x 7 = 100 x 0.0) of p Thick	blaster = 100		4			
	$= 1.20 \text{ m}^{3}$ $= 1.20 \text{ m}^{3}$ Add 30% to fill-up the joints $= 1.20 \text{ x } 1.30$ $= 1.56 \text{ m}^{3}$ Material Calculation Dry Volume = 25% more of wet volume $= 25/100 \text{ x } (1.56)$							1/2 M		
		, ,	= 1.95 m Volume of Cement soroportion	3	Dry Volu Sum of Mix		_X Cor	ntent of	cement in	
			lume of Cement = . of Cement Bags =	0	$\frac{1.95}{1+4} \ge 1 = 0.$ $\frac{0.390}{0.035} = 11.$		pproxir	nately =	= 12 bags	1/2 M

	b) Volume of Sar	nd = <u>Dr</u>	y Volume	X Conte	ent of Sand in	
	proportion	Sum o	f Mix Prope	ortion		
	Volume of Sand		Ĩ			
		1+4			erials and labours	
		e to place and	d time to tir	ne, proportion	ate marks should be	
Sr	Perticular	Qty	Rate	per	Amount	
No		29	Auto	pu		
А	Material					
1	Cement	12	280	Bag	3360	
2	Sand	1.56	1500	Cum	2340	2 M
				Total (A)	5700	
B	Labour					
1	Head Mason	0.5	600	Day	300	
2	Mason	8	500	Day	4000	
3	Male Mazdoor	8	300	Day	2400	
4	Female Mazdoor	8	300	Day	2400	
5	Bhisti	2	300	Day	600	
6	Scaffolding	L.S.			500	2 M
				Total (B)	10200	
	Total Cost of	Material & I	Labour (C)		15900	
	(A+B) Add Water Ch Material & La		6 of Total C	ost of	239	
	Add Contracto		10% of $0va$	rall Cost (E)	1590	
	Grand Total=				1390	
	Contractors Pr				1	
		r Sqm = Grai	nt total / As =17729/10		RS 180 per Sqm	1 M
-				.0-177.29	Sqm	10
5	Attempt any TWC Calculate the qu			uirad for		12
b	· 1	antities of m Brick mason	-			
		pointing in (•			
	in 100 Squi	pointing in v				
	Ans:					
	iii. 60 Cum I	Brick mason	ry in CM (1	l:6)		
	For Volume of	Brick Mason	$ry = 60m^3$			
	a) Dry Vol	ame = 35% of	f volume of	masonry		
		= <u>35</u> X 60 =	= 21 cu.m.			
		100				
				ontent of cem	ent in proportion	
	Sum	of	Mix			
Рае	ge	Wint	er-2019		E A C - 2 2 5	503

	Proportion	
	Volume of Cement = $(21 \times 1)/(1+6) = 3 \text{ cu. m}$	
		1 M
	No. of Cement Bags = $3/0.035 = 85.71$ bags	
	= 86	
	bags	
	c.Volume of Sand = $\frac{Dry Volume}{}$ X Content of Sand in proportion	
	Sum of Mix Proportion	1М
		1M
	Volume of Sand = $(21 \times 6)/(1+6) = 18$ cu. m	
	d)Number of Bricks	
	Size of one Brick = 19 cm x 9cm x 9 cm	
	= 0.19 m x 0.9 m x 0.9 m	
	Add thickness of Mortar through $out = 1 cm$	
	Size of Brick with mortar = $0.2m \ge 0.1m \ge 0.1m$	
	Number of Bricks = $60/(0.2x0.1x0.1) = 30000$	1M
	Assume 5% wastages = $(5 \times 30000/100) + 25000 = 31500$ Nos.	
	ii) 100 Sqm pointing in CM (1:3)	
	Thickness of pointing is 10 mm to 20 mm	
	Assume 15 mm thickness	
	Volume of mortar = 100×0.015	
	$= 1.5 \text{ m}^3$	
	Add 30% to fill-up the joints	
	$= 1.50 \times 1.30$	
	$= 1.95 \text{ m}^3$	
	Material Calculation	
	Dry Volume = 25% more of wet volume	1 M
	= 25/100 x (1.95)	
	$= 2.44 \text{ m}^3$	
	Volume of Cement = <u>Dry Volume</u> X Content of cement in proportion	
	Sum of Mix Proportion	
	Volume of Cement = $\frac{2.44}{1+4}$ x 1 = 0.488 cu.m	1 M
		I IVI
	No. of Cement Bags = $0.488 = 13.94$ bags = approximately = 14 bags	
	0.035	
	c) Volume of Sand = <u>Dry Volume</u> X Content of Sand in	
	proportion	
	Sum of Mix Proportion	
	Volume of Sand = 2.44 x 4 =1.95 cu.m	1M
1	1+4	
1	Note: - Students may assume different thickness of plastering and	
1	different value for calculation of dry volume.	
1		

Sr No	Item of work	Nos	length width	Depth	Quantity	
			Or Area in m ²	in m	In m ³	
1.	UCR Masonry					
1	UCR masonry for thk 300 mm and 2.7 m depth					
	UCR Masonry	1	$(\pi/4) \ge (6.6^2 - 6.0^2)$	3.9	23.16	1 M
2	UCR masonry for thk 500 mm and 4.2 m depth					
	UCR Masonry	1	$(\pi/4) \ge (7.0^2 - 6.0^2)$	4.2	42.88	1 M
3	UCR masonry for thk 650 mm and 3.2 m depth					
	UCR Masonry	1	$(\pi/4) \ge (7.3^2 - 6.0^2)$	3.2	43.43	
	Total Quantity				109.47	1 M
2.	R.C.C. Ring beam (RCC M20)					
	The ring beam for thk 650 mm and 300mm depth					
1	RCC ring beam	1	$(\pi/4) \ge (7.3^2 - 6.0^2)$	0.3	4.07	3 M
	Total quantity				4.07	