MAHARASHTI (Autonomous)

WINTER – 19 EXAMINATION

Subject Name: Control system

Subject Code

17538

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.

Model Answer

- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		Marking		
No.	Q. N.		Scheme		
01	(A)	Attemnt any THREE	•		12-Total
Q.1	(A)	Attempt any TIKEE	•		Marks
	a)	Compare open loop ar	nd closed loop systems.		<u>4M</u>
	Ans:				4M
		De sie Fee			
		Comparison	Open Loop System	Closed Loop System	
		Definition	The system whose	In closed loop, the output	
			control action is free	depends on the control	
			from the output is	action of the system.	
			known as the open		
			loop control system.		
		Feedback	Non-feedback	Feedback System	
		loop	System		
		Construction	Simple	Complex	
		Reliability	Non-reliable	Reliable	
		Accuracy	Inaccurate	Accurate because of feedback.	
		Stability	Stable	Less Stable	
		Response	Fast	Slow	
		Linearity	Non-linear	Linear	
		Error	Not possible	possible	
		correction			
		Bandwidth	Small	large	
		Examples	Traffic light,	Air conditioner,	
			automatic washing	temperature control	
			machine, immersion	system, speed and	
			rod, TV remote etc.	pressure control system, refrigerator, toaster.	

BOARD OF TECHNICAL EDUCATION

tified)

		Block Diagram	
	b)	Define poles and zeros with respect to control system. Explain with example.	4M
b) Ans	Ans:	Poles-The value of 'S', which make the transfer function infinite after substitution in the denominator of a T.F. are called poles of that T.F. Zeros-The values of 'S' which make the T.F. zero after substituting in the numerator are called as 'zeros' of that T.F. Example: Assume transfer function of a system- $T.F. = \frac{2(S+2)}{S(S+4)}$ Poles-The equation obtain by equating denominator to zero is, S(S+4)=0 Therefore S=0 and S=-4 If these values are used in the denominator, the value of transfer function becomes infinity. Hence poles of this T.F. are S=0 and S=-4. Zeros-The equation obtain by equating numerator to zero is, 2(S+2)=0 Therefore S= -2 If this value is used in the numerator the value of transfer function becomes zero	4M
		Hence zero of this T.F. is $S=-2$.	
	c)	State the advantages and disadvantages of Routh's stability criterion.	4M
	Ans:	 Advantages of Routh's array: Simple criterion that enables to determine the number of closed loop poles which lie in right half of S-plane without factorizing the characteristic equation. Without actually solving characteristic equation, it tells whether or not there are positive poles in a polynomial equation By seeing the sign changes in the first column, it can be analysed whether system is stable or not. It tells the number of poles present on imaginary axis i.e. it tells about critical stability. Disadvantages of Routh''s array: Cannot find out the value of poles. It is not a sufficient condition for stability. 	4M
	d)	Define 'Electrical Zero position of Synchro' and give its applications.	4M

	Ans:	When the rotor positions of the two synchro are perpendicular to each other, the voltage generated across the terminals of the rotor of control transformer is zero. This position is called as Electrical zero position of control transformer.	2M
		Application:1. As an error detector2. As a Position transducer	2M
(B)		Attempt any <u>ONE</u> :	6-Total Marks
	a)	Define tranfer function. Derive the equation of tranfer function for closed loop system.	6M
	Ans:	Transfer Function is defined as the ratio of Laplace transform of Output to that of Laplace transform of input under the assumption that all initial conditions are zero. Block diagram: (for negative feedback system) $\begin{array}{c} F(s) & \hline F(s) & \hline G(s) & \hline F(s) & \hline F($	Defination-2M Derivation-4M
	b)	R(s) 1+G(s)* H(s) Draw and explain electronic PID controller using OP- Amp. List its two advatages.	6M

	Ans:	Diagram	Diagram-2M
		R: R: R: R: R: R: R: R: R: R:	Employetion
		Explanation: PID is combination of 3 control action- proportional + integral + derivative. The proportional corrects instances of error, the integral corrects accumulation of error, and the derivative takes the corrective action in anticipation. The effect of the derivative is to counteract the overshoot caused by P and I. When the error is large, the P and I will push the controller output. This controller response makes error change quickly, which in turn causes the derivative to more	2M Advantage-2M
		aggressively counteract the P and the I. Advantages of PID controller: 1. Offset error is eliminated. 2. Settling time is less. 3. Provides a fast response	
Q.2		Attempt any <u>TWO</u> :	16-Total Marks
	a)	Reduce the block diagram using reduction rule. Obtain C(S) /R(S).	8M
	Ans	$R(s) \xrightarrow{(G_{1})} \xrightarrow{(G_{1})} \xrightarrow{(G_{2})} \xrightarrow{(G_{3})} (G$	6M(1M each formula applied)

	$\frac{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})}$ $\frac{G_{1}G_{3}(G_{a}+G_{a})}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})}$ $\frac{G_{1}G_{3}(G_{a}+G_{a})}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})}$ $\frac{G_{1}G_{a}(G_{a}+G_{a})}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})}$ $\frac{G_{1}G_{a}(G_{a}+G_{a})}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})} + G_{1}G_{a}(G_{a}+G_{a})H_{a}$ $\frac{R(S)}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})} + G_{1}G_{a}(G_{a}+G_{a})H_{a}$ $\frac{C(S)}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})} + G_{1}G_{a}(G_{a}+G_{a})H_{a}$ $\frac{C(S)}{(1+G_{1}G_{a}H_{1})(1+G_{b}H_{a})} + G_{1}G_{a}(G_{a}+G_{a})H_{a}$	2M- Final answer
b)	A system has G(S) $H(S) = \frac{K}{S(S+2)(S+4)(S+8)}$ where K is positive. Determine the range of 'K' for the system to be stable. Using Routh's criteria.	8M
Ans	Characteristic equation $1 + b_1(s) + (s) = 0$ $1 + \frac{k}{s(s+2)(s+4)(s+8)} = 0 - 1M$ s(s+2)(s+4)((s+8) + k = 0) $(s^2 + 2s)(s^2 + 8s + 4s + 32) + k = 0$	Characteristic equation-2M,
	$(S + 2S)((S^{*} + 12S + 32) + K = 0)$ $(S^{*} + 2S^{3} + 32S^{2} + 2S^{3} + 24S^{2} + 64S + K = 0)$ $S^{4} + 12S^{3} + 56S^{*} + 64S + K = 0 - 1M$ $S^{4} = 1 - 56 - K$ $S^{3} = 14 - 64 - 0$ $S^{2} = 51.42 - K$ $S^{1} = \frac{3291.43 - 14K}{51.42}4M$ From S^{0} , $K > 0$ From S^{0} , $K > 0$ From S^{0} , $K > 0$ $\frac{3291.43 - 14K}{14} > 0$ $\frac{3291.43 - 14K}{14} > K$ $\frac{3291.43}{14} > 14K$ $\frac{3291.43}{14} > K$ $\frac{3291.43}{14} - 14K > 0$ $\frac{3291.43}{14} - 2K$ $\frac{3291.43}{14} - 2K$ $\frac{3291.43}{14} - 2K$ $\frac{3291.43}{14} - 2K$	Rouths aaray 4M, Range-2M
c)	$\begin{array}{c} (s + 2s)((s^{*} + 12s + 32) + k = 0 \\ (s^{2} + 2s)((s^{*} + 12s + 32) + k = 0 \\ s^{4} + 12s^{3} + 32s^{2} + 2s^{3} + 24s^{2} + 64s + k = 0 \\ s^{4} + 14s^{8} + 56s^{2} + 64s + k = 0 & -1M \\ \hline s^{4} & 1 & 56 & k \\ s^{3} & 14 & 64 & 0 \\ s^{2} & 51 \cdot 42 & k \\ s^{1} & \frac{3291 \cdot 43 - 14k}{51 \cdot 42} & -4M \\ \hline From S^{0}, k > 0 \\ \hline From S^{1}, \\ \frac{3291 \cdot 43 - 14k}{14} > 0 \\ \frac{3291 \cdot 43 > 14k}{3291 \cdot 43} > k \\ \frac{3291 \cdot 43 > 14k}{14} \\ \frac{3295 \cdot 102 > k}{14} \\ \hline Range of value of k, \\ 0 < k < 235 \cdot 102 & -2M. \end{array}$	Rouths aaray 4M, Range-2M 8M

Ť

Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. Explaination-3M When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases in specific sequence, the motor is made to complete one revolution. Application of stepper motor- 1 In floppy Disc driver Computer printer Application of stepper motor- 3 In automation systems A Robotics Information systems 4 Attempt any <u>FOUR</u> : Information systems Information systems 4 Find the transfer function of network given in figure. 4M			$ \begin{array}{c} L \\ \overline{} \\ E_i(t) \\ E_i(t) \\ i(t) \\ K \\ E_o(t) \\ E_o(t) $	
Construction : Explaination- Stator The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches. Working: Explaination- 3M When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases. in specific sequence, the motor is made to complete one revolution. Application of stepper motor(any four)-2M Application of stepper a. In automation systems 8. Robotics Maternia handling A tatemut any FOUR : 16. Total	<u> </u>	a)	Find the transfer function of network given in figure.	Marks 4M
Stator winding Stator BA Stator BExplaination- 3MConstruction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel haminations. The as 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches. Working: When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases in specific sequence, the motor 1. In floppy Disc driver 2. Computer printer 3. In automation systems 4. Robotics 3. Image scanner 6. Material handlingApplication of stepper motor(any four)-2M	Q.3		Attempt any FOUR :	16-Total
Construction : Explaination- Stator Explaination- Stator The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated Explaination- Stator exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. Explaination- SM The three phases are energized from a DC source with the help of switches. Working: When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases in specific sequence, the motor is made to complete one revolution. Application of stepper motor(any four)-2M 1. In floppy Disc driver 1. In floppy Disc driver Application of stepper motor(any four)-2M			6. Material handling	
Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches. Working: When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to attain the new minimum reluctance position. By successively exciting the three phases. in specific sequence, the motor is made to complete one revolution.Application of stepper motor(any four)-2M			5. Image scanner	
Stator winding Jute 1Stator uter 1Explaination 3MConstruction : The figure above represents a variable reluctance stepper motor with single stack whose 			5. In automation systems 4. Robotics	1001 /-211
StatorStatorStatorStatorStatorStatorStatorStatorBigure above represents a variable reluctance stepper motor with single stack whosestator is wound for 3 phases. The stator has six salient poles or teeth with concentratedexciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the 			2. Computer printer	four)_2M
Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches. Working: When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to atia in the new minimum reluctance position. By successively exciting the three phases. in specific sequence, the motor is made to complete one revolution.Application of Application of stepper motor-			1. In floppy Disc driver	stepper
StatorwindingStatorBit of the state of the			Application of stepper motor-	Application of
StatorSt			in specific sequence, the motor is made to complete one revolution.	
StatorABExplaination-StatorStatorBBBStatorBBBBBThe figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches. Working: When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the closing of the second switch keeping the previous phase excited, the magnetic axis of the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step toExplaination- 3M			attain the new minimum reluctance position. By successively exciting the three phases	
StatorStatorBStatorBStatorBStatorBStatorBStatorBStatorBStatorBStatorBStatorBStator <th></th> <th></th> <th>the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to</th> <th></th>			the stator shifts by 30 degrees. So the rotor will also rotate through 30 degree step to	
StatorStatorBExplaination-3MStatorBBBBBStatorBBBBBStator isThe figure above represents a variable reluctance stepper motor with single stack whoseExplaination-3Mstator is wound for 3 phases. The stator has six salient poles or teeth with concentratedexciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series.The three phases are energized from a DC source with the help of switches.Working: When any one phase is excited by the closing of the switch in series, the corresponding poles act as north and south poles. The rotor between them adjusts itself in minimum reluctance position between stator and rotor. When the next phase is excited by the			closing of the second switch keeping the previous phase excited, the magnetic axis	
Stator Winding Bitator			reluctance position between stator and rotor. When the next phase is excited by the	
Stator winding Stator B Stator			poles act as north and south poles. The rotor between them adjusts itself in minimum	
Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the driving circuit are wound around opposite poles such that they are connected in series. The three phases are energized from a DC source with the help of switches.Explaination- 3M			When any one phase is excited by the closing of the switch in series, the	
Stator Winding B <t< th=""><th></th><th></th><th>Working:</th><th></th></t<>			Working:	
Stator A Winding B Stator Stator			series. The three phases are energized from a DC source with the help of switches.	
Stator A Stator B Stator B B Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the			driving circuit are wound around opposite poles such that they are connected in	
Stator A Stator B Stator B Stator B B Construction : The figure above represents a variable reluctance stepper motor with single stack whose stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated Explaination-3M			exciting windings around each one of them. The rotor is made up of slotted steel laminations. It has 2 salient poles without any exciting windings. The coils of the	
Stator A Stator B Stator B B Construction : The figure above represents a variable reluctance stepper motor with single stack whose Explaination-3M			stator is wound for 3 phases. The stator has six salient poles or teeth with concentrated	
Stator B' C' C' C' C' C' C' C' C' C' C			Construction : The figure above represents a variable reluctance stepper motor with single stack whose	Explaination- 3M
			Stator Winding C' & o o o o o o o o o o o o o o o o o o	

BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHTI (Autonomous) (ISO/IEC - 2700

Amai		2 Montra for
Alls:		2 WAIKS IOF
	Transfer function of given network is	KVL
	A mility and the second	equations
	$E_i(t)$ $((t))$ R $E_i(t)$ $E_i(s)$ $R \in E_i(s)$	
	Applying KUL we can write	
	$E_i(t) = L \frac{d_i(t)}{dt} + \frac{1}{c} \int i(t) dt + i(t) R$	
	$E_{p}(t) = R i(t) $	
	Taking Laplace of equation () and (2)	
	$E_{i}(s) = SLI(s) + \frac{1}{SC}I(s) + RI(s) - (3)$	2 Marks for
	$E_0(s) = R I(s)$	solving
	$E_i(s) = I(s) \left[SL + \frac{1}{3c} + R \right]$	Transfer
	$= I(S) \left[\frac{S^2 L C + 1 + S C R}{S C} \right]$	function
	EO(S) RILS)	
	$E_i(s)$ $I_i(s) \begin{bmatrix} s^2 L C + 1 & + S C R \end{bmatrix}$	
	$E_{\rho}(s) = scR$	
	$\overline{E_i(s)}$ $\overline{SLC + SCR + 1}$	
b)	Draw labelled time response of 2^{nd} order control system and define rise time	4M
	and settling time.	
Ans:	Time response of 2 nd order control system	2 Marks for
	c(I) Peak overshoot M	Time response
	Tolerance band $\pm 2\%$	
	100 % in steady state, output 98 % remains within ± 2 % orror band	
	50 %	
	+ ^T d→	
	+	
	Definition:	
	Rise Time : Time required for the response to rise from 10% to 90% of the final	I Marks for
	value for overdamped systems and 0% to 100% of the final value for underdamped	each definition
	systems.	
	Settling time. Time required for the response to decrease and stay within specified	
	percentage of its final value and within tolerance band (usually 2%).	
	Determine stability of the system using Routh's criterion.	
c)	$S^4 + 6S^3 + 26S^2 + 56S + 80 = 0.$	4 M

A	S: The stability by Routh's chiterion $5^4 + 65^3 + 265^2 + 565 + 80 = 0$ $5^4 \mid 26 = 80$ $5^3 \mid 6 = 56 = 0$ $5^2 \mid 16.66 = 80$ $5^1 \mid 27.21 = 0$ $5^0 \mid 80$ As there is no sign change, \therefore system is stable.	3 Marks for solving Rouths criterion 1Marks for conclusion
d)	Explain the procedure to draw Bode plot.	4M
	 s: Procedure to draw Bode plot: Express given G(s) H(s) into time constant form and sinusoidal TF Find out the factors in it Draw a line of 20 Log K dB Draw a line of appropriate slope representing poles and zeros at the origin, passing through intersection point ω=1 and 0dB Shift this intersection point on 20 Log K line and draw parallel line to the line draw in step 3 this is addition of constant K and no. poles or zeros at the origin. Change the slope of this line at various corner frequencies by appropriate value and draw line with resultant slope. Continue this line till it intersects next corner frequency line. Change the slope and continue. Prepare the phase table and obtain the table of ω and resultant phase angle Φ_R by actual calculation. Plot these points and draw the smooth curve obtaining the necessary phase angle plot. 	4 Marks for proper Procedure
e)	 (i) Define : (1) Offset, (2) Proportional band, (3) Neutral zone. (ii) List control actions. 	4M
A	 i) Offset: The proportional controller produces a permanent residual error in the controlled variable, when a change in load occurs. This is referred to as offset. ii) Proportional Band: Proportional band is defined as the amount of change in the input error required to drive the loop output from 0 to 100%. In a controller the manipulating variable is proportional to the control deviation within the proportional band. The gain of the controller can be matched to the process by altering the proportional band. If the proportional band is set to zero, the controller action is ineffective. iii) Neutral Zone: In all the practical implementation of the ON-OFF controller, there is an overlap, as the error increases through zero or decreases through zero. Such an overlap creates a span of error in which there is no change in the controller output. This span is called neutral zone, dead zone or dead band. 	3 Marks for definition
	ii) Control actions	1 Marks for
	 Discontinues Mode ON-OFF controller Continuous Mode 	

Т

MAHARASHTI (Autonomous)		BOARD OF TECHNICAL EDUCATION	
(ISO/IEC - 2700	Stargen . 198mille	:tified)	

		 i)Proportional (P)controller ii)Derivative (D)controller iii)Integral (I)controller 3. Composite controllers i)Proportional +Integral (PI)controller ii)Proportional +Derivative (PD)controller 	
0.4		iii)Proportional +Integral +Derivative (PID)controller	10
Q.4	(A)	Attempt any THREE:	12 Total Marks
	(a)	T.F second order system is given by $\frac{C(S)}{R(S)} = \frac{64}{S^{2+}5S+64}, \text{ find } T_S \text{ and } M_P \text{ for unit step input.}$	4M
	Ans:	$\frac{C(s)}{R(s)} = \frac{64}{s^2 + ss + 64}$	1 Marks for finding ξ value
		T.F of Second order system is $\frac{\omega_n^2}{S^2 + 2\varepsilon_g \omega_n S + \omega_n^2} \Rightarrow \frac{64}{S^2 + 5S + 64}$ $\therefore \omega_n^2 = 64 , \omega_n = \sqrt{64} = 8 \text{ rad/sec}$	1 Marks for T _s
		$\Rightarrow 2 \epsilon_{3} \omega_{n} = 5$ $\epsilon_{3} = \frac{5}{2 \omega_{n}} = \frac{5}{2 \times 8} = 0.312$ $\cdot T_{8} = \frac{4}{2} = \frac{4}{2 \times 8} = \frac{1.60 \text{ sec}}{1.60 \text{ sec}}$	2 Marks for M _p
		$ G_{3} G_{3} = e^{-e_{3}T} / \sqrt{1-e_{3}^{2}} \times 100 $ $ = e^{-0.312TT} / \sqrt{1-0.312^{2}} \times 100 $ $ = e^{-0.980 / 0.950} \times 100 $ $ = e^{-0.356} \times 100 = 35.64 \cdot /_{1} $	

(b)	Define system	stability. Draw the	e location of poles	for stable, unstabl	le, critically stab	le 4M
Ans	Stabili	ty: A linear time in	variant system is se	et to be stable if fol	lowing condition	s 1 Marks for
	are sati	isfied.	-		-	Stability
	i.	When the system i	s excited by a boun	ded input the output	ut is also bounded	1
		and controllable.	•	1 1		
	ii.	In the absence of i	nput output must te	and to zero irrespect	tive of the initial	
		conditions.	1 1	I		
	Sr. No.	Nature of closed loop poles	Locations of closed loop poles in s-plane	Step response	Stability condition	
	1.	Real, negative i.e. in L.H.S. of s-plane	+ <u>μ</u> + <u>a</u> 2 - <u>a</u> 1 0 + σ		Absolutely stable	
	2	Complex conjugate with negative real part i.e. in L.H.S. of s-plane		C(1) Damped oscillations	Absolutely stable	
	3.	Real, positive i.e. in R.H.S. of s-plane (Any one closed loop pole in right half irrespective of number of poles in left half of s-plane)		o(t)	Unstable	
	4	Complex conjugate with positive real part i.e. in R.H.S. of s-plane		COU	Unstable	
	5.	Non repeated pair on imaginary axis without any pole in R.H.S. of s-plane			Marginally or critically stable	
			$ \substack{\substack{i \mid m \\ i \mid m_2 \\ \hline i \mid m_1 \\ \hline i \mid m_2 \\ i \mid m$		Marginaliy or critically stable.	
			on imaginary axis.	Sustained oscillations with two frequency components my and my		
	6.	Repeated pair on imaginary axis without any pole in R.H.S. of a-plane	+jes → (ks, 1) → σ → σ		Unstable	
(c)	Note: A imagin Descri	Any relevant diagr aary axis may be co be the principle of	am of s-plane with onsidered. ON – OFF contro	n root location in h	ooth plane and oplication in det	3 Marks for location of poles ail. 4M
Ans	 ON-OFF controller (or) two position controller 1) The ON-OFF controller is a type of controller in which a controller output is changed to maximum or minimum value depending upon whether the measured value is greater or less than the set point. 					
	2)	It is the simples a	and cheapest mode	e of action, hence	commonly used	l 1n
		industrial and dome	estic control system	IS.		
	3)	The controller outp	out is given by			
	3)		a < 0			
	5)	%P = 0 %,	$e_p < 0$			
	5)	%P = 0 %, %P = 100 %,	$e_p < 0$ $e_p > 0$			2 Marks for
	5)	% P = 0 %, % P = 100 %, Where e_p is input e	$e_p < 0$ $e_p > 0$ rror, p is controller	output and $e = r - $	b where $r = set p$	2 Marks for oint any one
		%P = 0 %, %P = 100 %, Where e_p is input e and b = measured c	$e_p < 0$ $e_p > 0$ rror, p is controller or actual value	output and $e = r - $	b where $r = set p$	oint 2 Marks for any one relevant
	4)	%P = 0 %, %P = 100 %, Where e _p is input e and b = measured c When the measured	$e_p < 0$ $e_p > 0$ rror, p is controller or actual value ed variable is below	output and $e = r - r$ w the set point. c	b where r = set p ontroller is ON	2 Marks for oint any one relevant and application

MAHARASHTE (Autonomous)

(ISO/IEC - 2700

controller is OFF and output is minimum.

Application (any relevant application related to ON-OFF controller carry 2 marks)

Air Conditioner

In air conditioning system, when the temperature falls below a certain reference level, the error is positive the output is maximum i.e. 100 % controller output will stop the air supply to the air conditioner.

When the temperature rises above the certain reference level, the error will be negative i.e. output is zero . Now the controller output will start the electric supply to air conditioner.

Electric Iron:

In automatic electric iron, a resistive heating element is used to generate heat. A thermostat is used as controller to control the temperature. The reference input is the desired temperature setting on the thermostat. The controlled output is the actual temperature of the electric iron. When the output temperature is less than the thermostat reference setting, the thermostat is actuated which, in turn, switches on the heating element. As a result, the temperature increases, and when it exceeds the thermostat setting (desired value of temperature) by a small amount, the heating element is turned off. The temperature then starts decreasing. When it falls below the thermostat setting by a small amount, the heating element is once again switched on. The heating cycle is thus repeated.

The sole plate of the iron of which the temperature is to be controlled is the Process. The actuator is the heating element and the thermostat acts as the error detector and controller. Disturbance to the system is the heat loss due to radiation.

Diagram of Electric Iron as On-Off Controller:

MAHARASHTI (Autonomous) (ISO/IEC - 2700	BOARD OF TECHNICAL EDUCATION :tified)	
	DC Motor control systems potentiometers can be used as position feedback as shown in figure. This type of arrangement allows comparison of two remotely located shaft positions. The output voltage is taken across the variable terminals of the two potentiometers. Output of this differential potentiometer is $=K_s[\theta r(t) - \theta_L(t)]$ This is then is fed to DC Amplifier, which is further amplifying the armature current of the DC Motor. The motor, in turn moves and with it the shaft connected to the load potentiometer in such a way as to make the output voltage zero. That is the output (Load) potentiometer shaft moves in accordance with the shaft of the input (reference) potentiometer.	Description

e

(B)

(a)

Ans

dc motor D.C. amplifier e_a М Ref input θ,

2 Marks for sketch

Attempt any ONE:	6M
A unity feedback system has $G(S) = \frac{10(S+1)}{S(S+2)(S+5)}$. Calculate the error coefficients K_p , K_v , K_a and steady state error, where $r(t) = 3+10t$.	6M
Since unity feed back system $\therefore H(s) = 1$ Ever coefficients are. K_P , K_V , K_A . $G(s) = \frac{10(s+1)}{5(s+2)(s+5)}$ $G(s) = \frac{16(1+s)}{s(1+0.2s)}$ G(s) = (1+s) G(s) = (1+s) G(3Marks for error coefficients
$= \lim_{s \to 0} \frac{(1+s)}{s(1+0.5s)(1+0.2s)} = 0$ $K_V = \lim_{s \to 0} SG(s) H(s)$ $= \lim_{s \to 0} \frac{\beta(1+s)}{s(1+0.2s)} = 1$	3Marks for

$$K_{a} = \lim_{\substack{g \to 0 \\ g \to 0}} s^{2} G(g) H(g)$$

=
$$\lim_{\substack{g \to 0 \\ g \to 0}} s^{2} (1+s) = 0$$

 $g(1+s)(1+s)(1+s)(1+s) = 0$
steady state error

MAHARASHTI (Autonomous) (ISO/IEC - 2700

	Steady State error Enc = lim S R(S)	
	$35 S \to 0 \overline{1 + G(s) + (s)}$	
	$\begin{array}{c} 9nput & 9t(t) = 3 + 10t \\ \cdot & p(a) = 3 - t + 10t \end{array}$	
	$e_{22} = e_{22} + e_{232}$	
	$R_{aa} = \lim_{x \to a} \frac{1}{x} \frac{3}{x}$	
	$\frac{1}{35} = \frac{2}{5} = 2$	
	= _3 = 0	
	$\frac{1+2}{2}$	
	$\frac{3 \Rightarrow 0}{3 \Rightarrow 0} \frac{7 37}{1 + \frac{(1+3)}{5(1+0.55)(1+0.25)}} \times 1 5 \begin{bmatrix} 1 + \frac{(1+3)}{5(1+0.55)(1+0.25)} \\ 5(1+0.55)(1+0.25) \end{bmatrix}$	
	$-\lim_{n\to\infty}\frac{10}{1-10}$	
	= 330 $= 5 + 5(11-2)= 5(1+0.55)(1+0.25)$	
	$=\frac{10}{0+1}=10$	
	$e_{12} = e_{551} + e_{552}$	
	$e_{35} = 0 + 10 = 10$	
	Duom Dada plat for a control system having unity facely and onen la an	
(b)	Transfer function as $G(S) = \frac{80}{3}$.	6M
Ans	$\frac{S(S+2)(S+20)}{Step 1 \cdot Convert the G(s)H(s) in time constant form}$	2Marks for
1115	Since $H(s) = 1$	calculating
	$G(s)H(s) = \frac{80}{10000000000000000000000000000000000$	Magnitude
	s(s)n(s) = s(s+2)(s+20)	Plot
	2	
	$=\frac{2}{c(1+s)(1+s)}$	
	$S(1+\frac{1}{2})(1+\frac{1}{20})$	2Marks for
	Magintude Flot (Factors)	calculating
	1) $K = 2$, $ M = 20 \log K = 6.02 dB$	phase Plot
	It is a straight line of magnitude 6 dB parallel to X axis (0 dB slope).	
	2) Pole at origin $1/s$: It is a straight line of magnitude ± 20 dP at origin and a constant slope -20 dP/decade	
	It is a straight line of magnitude +20 dB at origin and a constant slope -20 dB/decade cutting X axis at $\omega = 1$	
	$3) \frac{1}{1+\frac{s}{2}}$	
	0 dB magnitude upto corner frequency $\omega_{c1} = 2$ rad/sec and line of slope is -20	
	dB/decade from $\omega_{c1} = 2$ rad/sec.	
	4) $\frac{1}{1+\frac{s}{2}}$	
	0 dB magnitude upto corner frequency $\omega_{c2} = 20$ rad/sec. From $\omega_{c2} = 20$ rad/sec	2Marks for
	straight line of slope is -20 dB/decade.	graph Plotting
	Resultant Magnitude	B-aby - worme
	Resultant at origin = add magnitudes of all individual plots at origin	
	= 6+20+0+0=26 dB	

MAHARASHTI (Autonomous) (ISO/IEC - 2700

(a)	Name the standard test inputs. Draw then and given their Laplace transform.					411/1
Ans:	The Standard 1.Unit Step Ir 2.Unit Ramp 3.Unit Parabo	test signals are : aput Input lic Input			4M	
	4.Unit Impuls	e Input				
		Test Signal	Graphical representation	Laplace representation		
		Unit Step Input		$\frac{1}{s}$	-	
		Unit Ramp Input	r(t) \rightarrow Stope = A 0 \rightarrow t	$\frac{1}{s^2}$		
		Unit Parabolic Input	f(t) = At	$\frac{1}{s^3}$		
		Unit Impulse	$\begin{array}{c} \uparrow 0 \\ \uparrow \\ \downarrow \\ \downarrow$	1		
(b)	Find the range equation will	ge of value of K so be stable. F(S) = 3	that system with $S(S^2 + S+1) (S+4)$	following characte +K = 0.	eristics	4M
Ans:	The characteristics equation is given by, $s (s^{2} + s + 1) (s + 4) + K = 0$ $(s^{3} + s^{2} + s) (s + 4) + K = 0$ i.e. $s^{4} + 5$. $s^{3} + 5$. $s^{2} + 4$. $s + K = 0$					

	The routh's array for above characteristics equation is formed as follows	
	$\frac{8^4}{1000}$	
	s^3 s 4 0	
	S ² 4.2 K 0	
	$S^1 = \frac{16.8-5K}{4.2}$	
	S ⁰ K	
	For stability all elements of 1 st column should be positive.	
	i.e. $\frac{16.8-5K}{4.2} > 0$ for S ¹ row	
	i.e. K $< \frac{16.8}{5}$	
	i.e. 0 < K < 3.36	
	This is range of K for stable system.	
(c)	Define the following frequency response specification.	4M
	(i) Response peak (ii) Bandwidth	
	(iii) Cut off frequency (iv) Gain margin	43.5.0
Ans:	i) Response peak : It is defined as the maximum value of magnitude of $ M(jw) $. It is denoted by Mr	1M for each
	(ii) Bandwidth • It is defined as the range of the frequencies over which the system	correct
	will respond satisfactorily. It is also defined as range of the frequency over	definition
	magnitude of closed loop response does not drop by more than 3db from its zero frequency	
	value.	
	(iii) Cut off frequency: Frequency at which the magnitude of closed loop response	
	in 3db down from its zero frequency value is called as cut off frequency.	
	(iv) Gain margin : The margin in gain allowable by which gain can be increased till	
(4)	system reaches on the verge of instability is called as Gain Margin	
(a)	Draw the transient response of second order system for different values of ξ (zeta).	4M
Ans:	Transient response of second order system for different values of ζ (zeta) :	4M
	$\xi = 0.4$	
	Underdamped	
	$\int \int \int \nabla \nabla \nabla = 0.8$	
	5-1	

BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

)	Draw and descri	be the block diag	ram of process cont	trol system.

Block diagram of process control system consists of following blocks:-

Disturbance Manipulated Actuating Reference Controlled Variable Variable (Output) Signal Input (Setpoint) Control Plant Elements Feedback Signal Feedback Elements **1.Plant or Process :** Plant or process is an important element of process control system in which variable of process is to be controlled. The Process means some manufacturing sequence. It has one variable or multivariable output. 2. Feedback element or Sensor : The feedback element or sensor is the device which converts the output variable into

another suitable variable which can acceptable by error detector. **3.Error detector :** The error detector compares between actual signal and reference input i.e. set

The error detector compares between actual signal and reference input i.e. set point .The error detector is subtract summing points whose output is an error signal to controller for comparison and for the corrective action.

$\mathbf{E}(\mathbf{t}) = \mathbf{r}(\mathbf{t}) \mathbf{b}(\mathbf{t})$

4.Automatic controller : The controller detects the actuating error signal, which is usually at a very low power level, and amplifies it to a sufficiently high level i.e. means automatic controller comprises an error detector and amplifier.
5.Actuator or control element : The actuator is nothing but pneumatic or valve, a hydraulic motor or an electric motor, which produces an input to the plant according to the control signal getting

		motor, which produces an input to the plant according to the control signal getting	
		from controller.	
O6 .		Attempt any FOUR:	16M
~			
		For the given transfer function	
	(a)	C(S) = 10(S+8)	4M
		$\frac{1}{R(S)} - \frac{1}{S(S+4)(S^2+6S+25)}$	
		Find: Poles, Zero, Characteristics equation pole-zero plot on S-plane.	

2M for

diagram

2M for explan

ation

MAHARASHTI (Autonomous) (ISO/IEC - 2700

Ans:	1) $\frac{c(s)}{R(s)} = \frac{10(s+s)}{s(s+4)(s^2+6s+2s)}$	
	a) Potes: We can get poles from equations in the denominator. a) $s^{3}+6s+25=0$ for the quadratic equation $as^{3}+bstc=0$ poles are $-b\pm \frac{b^{2}-4nc}{2a} = -6\pm \frac{b^{2}-4h2s}{2} = -2+1$ i.e. $-6\pm \frac{b-4}{2} = -\frac{2+8i}{2} = -3\pm 4i$ ii) $s+4=0$ so, $s=-4$ iii) $s+4=0$ so, $s=-4$ iii) $s+2=0$ Therefore poles are $0, -4, -3+4i$; $8-3-4i$ b) Zeros: We can get zeros from equation in the numerator So, for $s+8$ equation we can get roots by comparing it with Zerro i.e. roots of the equation are -8. c) Characteristic Equation :- $s(s+4)(s^{2}+6s+25)=0$ $s(s^{2}+6s^{2}+25s+4s^{2}+25+100)=0$	Poles, Zero, Characteristics equation pole- zero plot 1M each
	d) Pole-zero plot:- i^{i} Splane i^{i} Splane i^{i} Splane i^{i} Splane i^{i} Splane i^{i} Splane i^{i} Splane i^{i} Splane	
	Define marginal stability. Draw the neat sketch to represent its location of poles	434
(D)	on S-plane.	4N
Ans:	Marginal Stability: A linear time invariant system is said to be critically of marginally stable if for a bounded input its output oscillates with constant frequency and amplitude For such systems, one or more pair of non-repeated roots is located on the j axis. The location of roots of Marginally stable system is shown in fig b	definition)

		4		(2M for
		ίως 🗴		(2101 101 sketch)
			No pole	sileten)
		J ^w 1 *		
		_jω ₁ ×	in RHS	
		_jω ₂ ×	s-plane	
		1		
		nonrepeated ΄ poles on jω axis (b)	
(-)	Compare proport	ional and integral contro	ller on the basis of	
(c)	(i) Nature	e of O/P (ii) Response to	error	41/1
	(iii) O/P e	quation (iv) Application)n	
Ans:		Duonautional	Integral controller	1M for each
		controllor	Integral controller	point
	Noture of	Controller output is	Pata of change of	
		reportional to arror	controller output is	
	U/r		properticulto error	
	Degrange to	Desmanda to	Proportional to error	
	Response to	Responds to	Responds to size of	
	error	direction of error	error	
	O/P	Pout=KpEp+P ₀		
	equation		$P(t) = K_i \int_0^{t} e(t)dt + P(0)$	
	Application	Proportional controller	Liquid Flow Control Steam	
	Application	can be used for	Pressure Control	
		temperature control of	Tressure control	
		any material or fluid		
	Dofino stoody sto	to and transient response	of a system Cive the expression for	
(d)	steady state error	:.	of a system. Give the expression for	4M
Ans:	Steady state respo	1M for each		
	as steady state resp	definition		
	Tuonstant user one			
	final standar state			
	nial steady state is			
	present in the sy			
	Equation for Stea	2M for		
	c	equation		
	$e_{ss} = \lim \frac{3}{1-s}$			
	$s \to 0 1 + 0$	F(s)H(s)		
(e)	Compare stepper	motor and DC servo mot	tor. (Any 4 points)	4 M

Ans:	Stepper Motor	DC Servomotor	Any 4 points-
	No control winding	Control winding is present.	4M
	Number of steps can be	It gives continuous rotation.	
	precisely controlled.	_	
	It is brushless.	It has brushes.	
	Due to absence of brushes, no	Maintenance is required	
	wear and tear and hence less	_	
	maintenance		
	Load and no load condition does	These conditions affect the	
	not affect the running current of	running current	
	stepper motor		
	Speed(stepping rate) is governed	Speed is controlled by supply	
	by frequency of switching	voltage.	
		•	Ţ