

WINTER-19 EXAMINATION

MODEL ANSWER

Subject Name	DESIGN OF	RCC STRUCTURES
--------------	------------------	-----------------------

Subject Code:

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors etc should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

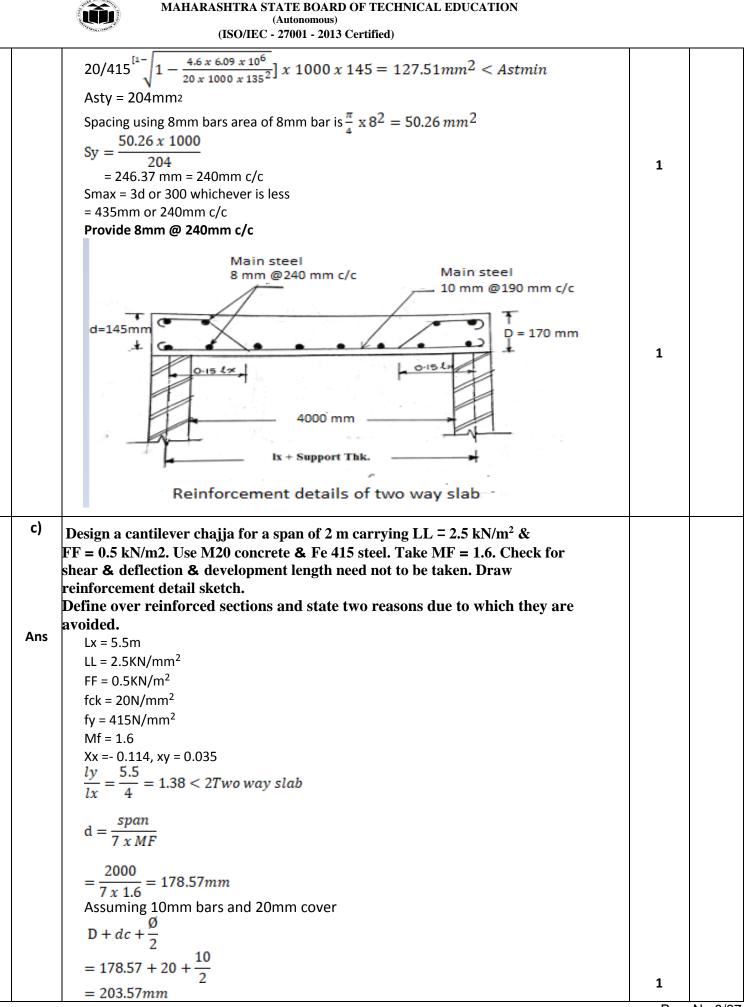
Q.	Sub		Answers			Marking	Total
No.	Q.					Scheme	Marks
	N.						
1	a)	Solve any THREE:					12
	(a) i)	 Define 'partial safety factor' and state is Partial safety factor for material strength when applied to the characteristic Partial safety factor for load: It is a load multiplied to characteristic load gi is to be designed. 	h: It is a strength red strength gives a strea enhancing factor (gr	luction factor (grongth known as de reater than unity)	sign strength. which when	1 1	
		Partial safety fac	ctors for steel and c	oncrete	-		
		Limit state	Mate	erial			
			Concrete	steel			
		Ultimate serviceability	1.5	1.15		2	
		Deflection	1.0	1.0			
		Cracking	1.3	1.0			

		(ISO/IEC - 27001 - 2015 Certified)	
	(a) ii) Ans	Write any four assumption is design for limit state of collapse in flexure. i) Plane section normal to the axis remains plane after bending.	
		ii) The maximum strain in concrete at the outermost compression fiber is taken as	
		0.0035 in bending.	1 M each
		iii) For design purpose, the compressive strength of concrete in structure shall be	for any
		assumed to be 0.67 times the characteristic strength. The partial safety factor $\Upsilon m= 1.5$	four
		shall be applied in addition to this.	
		iv) The tensile strength of concrete is ignored.	
		v) The design stress in steel reinforcement is obtained from the strain at reinforcement level	
		using idealized stress-strain curve for the types of reinforcement used.	
		vi) For design purposes the partial safety factor Υm of steel reinforcement, equal to 1.15 shell be applied	
		1.15 shall be applied. vii) The maximum strain in the tension reinforcement in the section at failure shall not	
		be less than $fy/(1.15 \text{ Es}) + 0.002$.	
Q.1	(a) iii)	State any four ductile detailing provision as per IS 13920.	
		Requirements of ductility for RCC members.	1 M
	Ans	1. The factored axial stress on the member under earthquake loading shall not exceed 0.1	each
		fck.	for any
		2. The member shall preferably have a width-to-depth ratio of more than 0.3.	four
		3. The width of the member shall not be less than 200 mm.	
		4. The depth D of the member shall preferably be not more than $1/4$ of the clear span. 5. If the evenese evid stress $P(A, a)$ the column under earthqueles conditions is less than 0.1	
		5. If the average axial stress P/A on the column under earthquake conditions is less than 0.1 fck , the column reinforcement shall be designed according to the requirements of flexure	
		members But if P/A greater or equal to 0.1 fck, special confining reinforcement will be	
		required at the column ends.	
		6. The minimum dimension of the member shall not be less than 200 mm.	
		7. The ratio of the shortest cross-sectional dimension to the perpendicular dimension shall preferably not be less than 0.4.	
		Note: Student can write any four provisions from IS 13920 for flexural and columns .	
		Marks to be given to the student if any other provision from IS 13920 is written.	
Q.1	(a)iv)	State advantages (any two) & disadvantages (any two) of pre-stressed concrete.	
	Ans	Advantages of prestressed concrete.	1 M
	-	1. The use of high strength concrete and steel in prestressed members results in lighter	each for
		and slender members which is not possible in RC members.	
		2. In fully prestressed members the member is free from tensile stresses under working	any 2
		loads, thus	
		whole of the section is effective.	
		3. In prestressed members, dead loads may be counter-balanced by eccentric prestressing.4. Prestressed concrete member possess better resistance to shear forces due to effect of	
		compressive stresses presence or eccentric cable profile.	
		5. Use of high strength concrete and freedom from cracks, contribute to improve	
		durability under aggressive environmental conditions. 6.Long span structures are possible so that saving in weight is significant.	
		7. Factory products are possible.	
		8. Prestressed members are tested before use.	
		•	DegeNie 2/27

Q.1	(a)v)	 9. Prestressed concrete structure deflects appreciably before ultimate failure, thus giving ample warning before collapse. 10.Fatigue strength is better due to small variations in prestressing steel, recommended to dynamically loaded structures. Disadvantages of Prestressed Concrete The availability of experienced builders is scanty. Initial equipment cost is very high. Availability of experienced engineers is scanty. Prestressed sections are brittle. State the values for maximum spacing of bars in slabs & minimum 	1 M each for any 2	
Q		shear reinforcement for beams.		
	Ans	Maximum spacing of bars in slabs	1	
		Main steel – 3d or 300 mm whichever is smaller	1	
		Distribution steel – 5d or 450 mm whichever is smaller	_	
		Where d is the effective depth of slab Minimum shear reinforcement for beams in the form of stirrups shall be provided such that		
		$\frac{Asv}{0.4}$		
		$\frac{1}{1}$ bsv $\frac{1}{0.87}$ fy		
		Asv = total cross sectional area of stirrup leg effective in shear.	1	
		b = Breadth of the beam		
		fy = characteristics strength of stirrup reinforcement in N / mm2 which shall not be greater		
		than 415 N / mm ²	1	
Q.1	b)	Attempt any ONE		6
	, /r/ :/	An RCC beam 230 mm wide & 400 mm deep effective is supported		-
	(b) i)	over an effective span of 5.5 m. It is reinforced with 4-20 mm dia. bar		
		along tension side only. Calculate the ultimate moment of resistance &		
		moulting load if M 20 compared & Fo 415 steel is used		
	Δns	working load if M 20 concrete & Fe 415 steel is used.		
	Ans	B = 230 mm		
	Ans			
	Ans	B = 230 mm		
	Ans	B = 230 mm $D = 400 mm$		
	Ans	B = 230 mm $D = 400 mm$ $Le = 5.5 m$		
	Ans	B = 230 mm D = 400 mm Le = 5.5m Ast = $4 \times \pi \times 20^2 = 1256 \text{ mm}^2$		
	Ans	B = 230 mm D = 400 mm Le = 5.5m Ast = $\frac{4 \times \pi \times 20^2}{4}$ = 1256 mm ² 4		
	Ans	B = 230 mm D = 400 mm Le = 5.5m Ast = $\frac{4 \times \pi \times 20^2}{4}$ = 1256 mm ² 4 MR =?		
	Ans	B = 230 mm D = 400 mm Le = 5.5m Ast = $\frac{4 \times \pi \times 20^2}{4}$ = 1256 mm ² 4 MR =? w =?		
	Ans	B = 230 mm D = 400 mm Le = 5.5m Ast = $\frac{4 \times \pi \times 20^2}{4}$ = 1256 mm ² 4 MR =? w =? fck = 20 N/mm ²		
	Ans	B = 230 mm D = 400 mm Le = 5.5m Ast = $\frac{4 \times \pi \times 20^2}{4}$ = 1256 mm ² 4 MR =? w =? fck = 20 N/mm ² fy = 415 N/mm ²	1	
	Ans	$B = 230 \text{ mm}$ $D = 400 \text{ mm}$ $Le = 5.5m$ $Ast = \frac{4 \text{ x } \pi \text{ x } 20^2}{4} = 1256 \text{ mm}^2$ $\frac{4}{4}$ $MR =?$ $w =?$ $fck = 20 \text{ N/mm}^2$ $fy = 415 \text{ N/mm}^2$ $Depth of Neutral axis$ $xu = \frac{0.87 \text{ fy Ast}}{0.36 \text{ fck,b}}$	1	
	Ans	$B = 230 \text{ mm}$ $D = 400 \text{ mm}$ $Le = 5.5m$ $Ast = \frac{4 \text{ x } \pi \text{ x } 20^2}{4} = 1256 \text{ mm}^2$ $\frac{4}{4}$ $MR =?$ $w =?$ $fck = 20 \text{ N/mm}^2$ $fy = 415 \text{ N/mm}^2$ $Depth of Neutral axis$ 0.87 fy Ast	1	
	Ans	$B = 230 \text{ mm}$ $D = 400 \text{ mm}$ $Le = 5.5m$ $Ast = \frac{4 \text{ x } \pi \text{ x } 20^2}{4} = 1256 \text{ mm}^2$ $\frac{4}{4}$ $MR =?$ $w =?$ $fck = 20 \text{ N/mm}^2$ $fy = 415 \text{ N/mm}^2$ $Depth of Neutral axis$ $xu = \frac{0.87 \text{ fy Ast}}{0.36 \text{ fck,b}}$	1	
	Ans	$B = 230 \text{ mm}$ $D = 400 \text{ mm}$ $Le = 5.5m$ $Ast = \frac{4 \text{ x } \pi \text{ x } 20^2}{4} = 1256 \text{ mm}^2$ $\frac{4}{4}$ $MR =?$ $w =?$ $fck = 20 \text{ N/mm}^2$ $fy = 415 \text{ N/mm}^2$ $Depth of Neutral axis$ $xu = \frac{0.87 \text{ fy Ast}}{0.36 \text{ fck,b}}$	1	
	Ans	$B = 230 \text{ mm}$ $D = 400 \text{ mm}$ $Le = 5.5m$ $Ast = \frac{4 \text{ x } \pi \text{ x } 20^2}{4} = 1256 \text{ mm}^2$ $\frac{4}{4}$ $MR =?$ $w =?$ $fck = 20 \text{ N/mm}^2$ $fy = 415 \text{ N/mm}^2$ $Depth of Neutral axis$ $xu = \frac{0.87 \text{ fy Ast}}{0.36 \text{ fck,b}}$ $xu = \frac{0.87 \text{ x } 415 \text{ x } 1256}{0.36 \text{ x } 20 \text{ x } 230} = 273.84 \text{ mm}$	1	

	-	(ISO/IEC - 27001 - 2013 Certified)		
		$= 0.48 \times 400$		
		= 192 mm	1	
		As $xu > xu$ max the section is over reinforced		
		Moment of resistance		
		$MR = 0.138 \text{ fck } bd^2$		
		$= 0.138 \text{ x } 20 \text{ x } 230 \text{ x } 400^2$		
		$= 101.57 \text{ x} 10^6 \text{ Nmm}$	1	
		= 101.57 kNm	_	
		Or		
		$MR = 0.36 \text{ fck} \cdot b \text{ xu max} (d - 0.42 \text{ xu max})$		
		= 0.36 x 20 x 230 x 192 (400 – 0.42 x 192)		
		$= 101.54 \text{ x } 10^{6} \text{ Nmm}$		
		= 101.54 kNm		
		Equating MR to BM	1	
		$M = \frac{wd ls^2}{8}$		
		wd (factored load) = $\frac{8 \times 101.57}{5.5^2}$		
		= 26.86 kN/m		
		Working load = $\frac{Factored load}{Partial Safty factor}$	1	
		Partial Safty factor		
		26.86		
		Working load w = $\frac{26.86}{1.5}$		
		= 17.91 kN/m	1	
0 1	(b) ii)	Draw stress - strain diagram for singly reinforced beam in LSM. State the values of		
Q. 1	(5) 11)	position of N.A., moment of resistance & percentage steel for balanced section. For all		
		grades of steel i.e. Fe 250, Fe 415 & Fe 500		
		grades of steer i.e. Fe 250, Fe 415 & Fe 500		
	Ans		3 M	
		Section Strain diagram Stress diagram		

			V		D4 line			
		Grade of steel	Xu max	Mu lim	Pt lim			
		Fe 250	0.43d	0.149 fck bd ²	0.88 fck			
		Fe 415	0.48d	0.138 fck bd ²	0.048 fck		3M	
		Fe 500	0.46d	0.133 fck bd ²	0.038 fck			
		Where xu max is the va						
		Mu lim is the value of n			ection			
		Pt lim is the percentage	e steel for balance	ed section				
Q 2		Attempt any TWO:						16
	a)	Design a slab for a hall 9 x	x 3.5 m for follo	wing data - live lo	ad = 2 kN/m	2,		
		floor finish = 1 kN/m ² , wi						
		concrete & mild steel. Dr & development length ne			ils. Check for	shear		
	Ans	Ly/lx = 9/3.5 = 2.57 > 2:- on	e way slab					
		$LL = 2kN/m^2$						
		$FF = 1kN/m^2$						
		Width of support = 230mm						
		MF = 1.5						
		fck =15N/mm ²						
		$fy = 250N/mm^2$						
		Xumax = 0.53d						
		Depth from deflection	criteria:					
		D = span/20 x MF						
		=3500/20 x 1.5 = 116.6	7mm					
		Overall depth $D = d + c$	lear cover $+$ Ø/2					
		= 116.67.67 + 20 + 10/2	2 (Assuming 100) bar)				
		= 141.67mm						
		=150mm					1	
		davailable = $150 - 20$ -	- 10/2				T	
		= 125mm						
		Effective span						
		Le = l + t or l + d which	ever is smaller					
		=3500 + 230 or 3500 +	125					
		= 3730mm or 3625mm					1	
		le = 3.625						
								•


(ISO/IEC - 27001 - 2013 Certilied)		
Load calculation		
Self weight of slab = $0.15 \text{ x } 25 = 3.75 \text{kN/m}^2$		
$= 2 \mathrm{KN}/\mathrm{m}^2$		
= 1KN/m ² / Total Load $= 6.75$ kn/m ²	1	
Factored Load wd = 6.75×1.5		
$= 10.125 \text{KN/m}^2$		
Factored max bending moment		
Md = wd x le/8		
$\frac{10.125 \times 3.625^2}{8} = 16.63 KNm$		
Required effective depth for fy 250,		
$M = 0.149 \ fck \ bd^2$		
$0.149 \ge 15\ 1000 \ge d^2 = 16.63 \ge 10^6$		
d=86.26mm < d provided	1	
D = 150 mm		
d = 125 mm		
Area of main steel Ast = 0.5 x fck x b x d $\{1 - SQRT[1 - (4.6 x Mu) / (fck x b x d2)]\} / fy$ = 0.5 x 15 x1000 x 125 $\{1 - SQRT[1 - (4.6 x 16.63x 10^6) / (15 x 1000 x 125^2)]\} / 250$ = 672.24mm ²		
Spacing of main reinforcement using 10mm bars	1	
S = AØ/Ast x b = ∏x10 ² /4 x1000/ 672.24 = 116.77mm = 110mm		
Max Spacing = 3d or 300mm or 110 whichever is less =3 x 125 or 300mm or 110		
As S <max, 10mm="" 110mm="" bars="" c="" c<="" or="" provide="" td=""><td>1</td><td></td></max,>	1	
Area and spacing of distribution steel		
Astd = 0.15/100 x b x D = 0.15/ 100 X 1000 X 150		
$= 225 \text{mm}^2$		
Spacing of 6mm ØMS distribution bars (AØ= 28.26mm ²) Sd = AØ/Astd x b		
$= 28.26/225 \times 1000$		
= 125.6mm = 120mm c/c		
Max spacing Sd max = 5d or 450mm		
= 5 x 125 or 450mm		
= 625 or = 450mm Sd < Sdmax		
- providing 6mm Ø distribution bars O 120mm c/c	1	

	(ISO/IEC - 27001 - 2013 Certified)		
	distribution steel 6 mm @120 mm c/c d = 125mm d = 125mm d = 150 mm Lx = 3500 mm Lx = 3500 mm Reinforcement details of one way slab	1	
b)	Design a slab for a hall size of 4 m x 5.5 musing M 20 concrete & Fe 415 steel.		
	Take live load = 2 kN/m^2 floor finish = 0.5 kN/m2, MF = 1.4,		
	Lx = 0.114, xy = 0.035, check for shear & deflection need not to be taken.		
	Draw reinforcement sketch.		
	Draw remortement sketch.		
Ans	ly = 5.5m		
	lx = 4m		
	fck = 20N/mm ²		
	$fy = 415N/mm^2$		
	$LL = 2KN/mm^2$		
	$FF = 0.5KN/m^2$		
	Mf = 1.4		
	$\frac{ly}{lx} = \frac{5.5}{4} = 1.38 < 2 Two \ way \ slab$		
	, span		
	$d = \frac{span}{20 \ x \ MF}$		
	4000		
	$=\frac{4000}{20 x 1.4} = 142.86mm$	1	
	20 x 1.4 Overall depth = D = 142.86 + cover + Ø/2	1	
	= 142.86 + 20 + 10/2 [Assuming 10mm bar]		
	=167.86mm		
	=170mm		
	dvail = 170 - 20 - 10/2		
	= 142mm		
	Effective span:		
	lex = l + d		
	= 4000 + 145 = 4145mm		
	= 4.145 mm = 4.145m	1	
	Loads		
	Self weight of slab = $0.17 \times 25 = 4.25 \text{kN/m}^2$		
	$= 0.5 \text{kN/m}^2$		
I	, ,		

 $= 2kN/m^2 = 6.75kN/m^2$ Factored load wd = 6.75 x 1.5 = 10.13kN/m **Factored Bending Moment** $Mux = \alpha x x wu x lex^2$ $= 0.114 \times 10.13 \times 4.145^{2}$ = 19.84 kNm $Muy = \alpha y x wu x lex^2$ $= 0.035 \times 10.13 \times 4.145^{2}$ 1 = 6.09 KNm Effective depth of slab $0.138 \text{ fck } \text{bd}^2 = \text{Md}$ $0.138 \times 20 \times 1000 d^2 = 19.84 10^6$ d = 84.78mm < 145 mm :- OK D= 170mm d = 145mm Area and spacing of steel Astx = $0.5 \frac{fck}{fy} \sqrt{1 - 1 \frac{4.6Md}{fckbd^2}} bd$ 1 $=\frac{0.5}{415}x^{[1]}\sqrt{1-\frac{4.6 \times 19.84 \times 10^{6}}{20 \times 1000 \times 145^{2}}} x 1000 \times 145 = 402.32 mm^{2}$ Astmin = $\frac{0.12}{100} \times bd$ $=\frac{0.12}{100} x\ 1000\ x\ 170 = 204 mm^2$ Astx > Astmin : -OKarea of 10mm bars ($A\emptyset = \prod x \frac{10^2}{4} = 78.5 mm^2$ $Sx = \frac{78.5 \times 1000/758.32}{402.32} = 195.15mm = 190mm$ 1 Spaing = $\frac{A \Phi x 1000}{A \text{ st}}$ Note : students can also calculate using 8mm bars Smax = 3d a 300 whichever is min = 3 x 145 = 435_{mh} a 300mm S x < Smax Provide 10mm bar a 170mm c/c Asty = $0.5 \frac{fck}{fy} \sqrt{1 - 1 \frac{4.6Md}{fckbd^2}} bd$ = $0.5 \times 20/415^{[1-]} \sqrt{1 - \frac{4.6 \times 6.09 \times 10^6}{20 \times 1000 \times 145^2}} x \ 1000 \ x \ 145 = 118.39 mm^2$ 1 Asty < Astmin Asty = 204mm² OR d = 145-10 = 135mm Asty = = 0.5 x

= 210mm		
Note : Student can assume any overall depth grater then 203.57mm		
davail = $210 - 20 - \frac{10}{2}$		
= 185mm		
Effective span		
$le = l + \frac{d}{2}$		
$2000 = +\frac{185}{2} = 2092.5 = 2.093m$		
L	1	
Load calculations		
Self weight of slab = $0.21 \times 25 = 5.25 \text{KN/m}^2$		
Live load = 2.5 KN/m ²		
=Floor finish = 0.5 KN/m ²		
Total w = 8.25 KN/m ²		
Factored wd = $8.25 \times 1.5 = 12.38 \text{KN/m}^2$		
Factored max Bm		
$Md = \frac{wd \times le^2}{2}$		
$=\frac{12.38 \times 2.093^2}{2}$		
==	1	
= 27.12 kNm		
Required effective depth		
$Md = 0.138 \text{ fck } bd^2$		
0.138 x 20 x 1000 x d ² = 27.12 x 10 ⁶		
d = 99.13 mm < d available : ok		
: D = 210 mm		
d = 185 mm	1	
Area and spacing of main steel		
Ast = $\frac{0.5 f ck}{f y} [1 - \frac{\sqrt{1 - 4.6md}}{f ck bd^2}] bd$		
$fy = fx = fx = fck bd^2$		
$= \frac{0.5 \times 20}{415} \left[1 - \frac{\sqrt{1 - 4.6 \times 27.12 \times 10^6}}{20 \times 1000 \times 185^2} \right] 1000 \times 185$		
$= 426.64 \text{ mm}^2$		
bd		
$Astmin = 0.12x \frac{du}{100}$		
$=\frac{0.12}{100} \times 1000 \times 210 = 252mm^2$	1	
	-	
Ast > Astmin : OK		
Spacing using 8mm bars (AØ= 50.26mm ²)		
AØ		
$sx = 1000 x \frac{A\emptyset}{Ast}$		
$= 1000 \times \frac{50.26}{426.64} = 117.80 mm = 110 mm$		
Smax 3d or 300mm whichever is less = $3 \times 185 = 555$ mm or 300mm		
Sx < Smax provide 8mm or 110mm c/c	1	
Area and spacing of distribution steel.		
$1 \text{ atd} = \frac{0.12}{2}$		
$Astd = \frac{0.12}{100} \times b \times D$		
$=\frac{0.12}{100} \times 1000 \times 210 = 252mm^2$		
Spacing using 8mm bars		

		MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)		
		$sd = 1000 \times \frac{A\emptyset}{Astd}$ = 1000 x $\frac{50.26}{252}$ = 199.44mm = 180mm Smax = 5d or 450mm whichever is less = 5 x 185 or 450mm = 935 or 450mm Sd < Smax : OK provide 8 mm or 180 mm c/c	1	
		D= 210 mm C/s of Cantilever Slab	1	
Q. 3	a)	Attempt any FOUR: State the IS specifications for effective flange width of T & L beam with		12
		meaning of terms used in it.		
	Ans	(a) For T-beams, bf = $\frac{lo}{6} + bw + 6Df$ (b) For L-beam, bf = $\frac{lo}{12} + bw + 3Df$ (c) For isolated/individual beams, the effective flange width may be obtained as below but in no case greater than the actual width 'b'. i) bf = $\frac{lo}{(\frac{lo}{b})+4} + bw$ for $T - beams$. ii) bf = $\frac{0.5lo}{(\frac{lo}{b})+4} + bw$ bw for L - beams where, bf = Effective flange width. l_0 = Effective span. bw = Breadth of web. Df = Thickness of flange and	2 M Each beam	
		Df = Thickness of flange, and b = Actual width of flange.		

	(ISO/IEC - 2/001 - 2013 Certified)		
b)	Calculate effective flange width for a T beam having c/c distance between supports = 8.4, c/c distance between beam = 4m, slab thickness = 150 mm, width of rib = 350 mm, support thickness = 400 mm		
	For the beams		
	c/c distance between beams = 4.15 m		
	c/c distance between support = 8.4 m		
	slab thickness = 150 mm		
	width of rib = 350mm	2	
	support thickness = 400 mm effective width of concrete		
	$bf = \frac{lo}{6} + bw + 6Df$		
	$bf = \frac{8400}{6} + 350 + 6x150$		
	6		
	= 2650 mm	2	
c)	Find development length of 16 mm dia. bar in tension & compression. Use		
	M20 concrete & Fe 500 grade steel. Take tbd = 1.2 N/mm2		
	fck = 20 N/mm^2		
Ans	d = 16 mm		
	$fy=500 \text{ N/mm}^2$		
	\Box bd= 1.2N/mm ²		
	for deformed bars		
	\Box bd = 1.2 x 1.6 = 1.92 N/mm ²		
	In tension		
	Development length Ld = $\frac{0.87 fy \emptyset}{4 rbd}$	1	
	4cbd 0.87 x 500 x 16		
	=		
	4 x 1.92	1	
	= 906.25 mm		
	In compression		
	\Box bd = 1.25 (1.2 x 1.6) = 2.4 N/mm ²	1	
	Development length Ld = $\frac{0.87 fy \emptyset}{4 \text{ cbd}}$		
	$=\frac{0.87 \times 500 \times 16}{0.87 \times 500 \times 16}$		
	4 x 2.4		
	= 725 mm	4	
		1	
۱۳	State any four uses of bent up bar in shear reinforcement.		
d)	Use of bent up bars in shear reinforcement.		
	 Bent up bars are provided to complement the vertical stirrups in resealing shear. 		
٨٣٥	 Bent up bars are provided to complement the vertical stirrups in researing shear. Bent up bars are good in restraining crack width which may be developed due to 	1 M	
Ans	diagonal tension		
	3) No additional steel is required, because only the unwanted tension bars are used by	each	
	bending these bars, hence in provides economy.		
	4) Half of the total shear reinforcement can be contributed by bent up bars.		
	+) Han of the total shear removement can be contributed by bent up bars.		

Q. 4	(a)	Attempt any THREE:		12
	a) i)	State any four types of losses in pre-stressed concrete with their percentage.		
	Ans.	Losses in pre-stressing:	1	
		(i) Due to elastic shortening of concrete – 1%	Mark	
		(ii) Due to creep of concrete - 5%	each	
		(iii) Due to shrinkage of concrete - 6%	any four	
		 (iv) Due to creep in steel - 3% (v) Due to frictional loss 	-	
		(v) Due to slip at anchorages		
	a) ii)	State any four functions of reinforcement.		
		Functions of reinforcement in R.C. sections:		
	-	1. In case of slab, beams and wall of water tanks, reinforcement is mainly		
		provided to carry direct or bending tensile stresses.		
		2. In case of columns the steel is provided to resist the direct compressive stress		
		as well as bending stresses if any.	1	
		3. In case of beams stirrups are provided to resist the diagonal tension due to	Mark	
		shear and hold the main steel in position.	each	
		4. The box type mesh of reinforcement is provided to resist torsion.	any four	
		5. The steel is provided in the form of rectangular, circular, lateral ties or spirals		
		to prevent bucking of main bars in column.		
		6. The distribution steel is provided to distribute the concentrated loads and to		
		reduce the effects of temperature and shrinkage and to hold main bars in		
		position.		
	a) iii)	State any four conditions where doubly reinforced beam is provided.		
	Ans.	 When the applied moment exceeds the moment resisting capacity of a singly reinforced beam. 		
		2. When the dimension b and d of the section are restricted due to	1	
		architectural, structural or constructional purposes.	Mark	
		 When the sections are subjected to reversal of bending moment. e. g. piles, underground water tank etc. 	each	
		4. In continuous T-beam where the portion of beam over middle support has to	(any four)	
		be designed as doubly reinforced.	iourj	
		5. When the beams are subjected to eccentric loading, shocks or impact loads.		

	(150/1EC - 2/001 - 2015 Certified)		
a) iv)	Calculate working load carrying capacity of column 300 x 300mm provided with		
	4 - 20 mm Ø bars. M20 concrete & Fe415 steel is used.		
Ans.	Given data :		
	Size of column = 300 x 300mm		
	4 – 20 mm Ø bars		
	M20 \implies f _{ck} = 20 N/mm ²		
	Fe415 \implies f _y = 415 N/mm ²		
	To find, working load carrying capacity of column = P =?		
	<u>Step 1</u> : Gross area = $A_g = 300 \times 300$		
	A _g = 90000 mm ²		
	<u>Step 2</u> : Area of steel, $A_{sc} = 4 \times \frac{\pi}{4} \times d^2$		
	$= 4 \times \frac{\pi}{4} \times (20)^2$	484	
	$A_{sc} = 1256.64 \text{ mm}^2$	1M	
	<u>Step 3</u> : Area of concrete, $A_c = A_g - A_{sc}$		
	= 90000 - 1256.64		
	A _c = 88743.36 mm ²	1M	
	Step 4: Ultimate load carrying capacity, Pu:		
	$P_u = 0.4 * f_{ck} * A_c + 0.67 * f_y * A_{sc}$		
	$P_u = [0.4 * 20 * 88743.36] + [0.67 * 415 * 1256.64]$		
	P _u = 1059355.63 N		
	P _u = 1059.35 kN	1M	
	(Working load carrying capacity) P = $\frac{P_u}{\gamma_f}$		
	$P = \frac{1059.35}{1.5}$		
	P = 706.233 kN	1M	

b) i)	Attempt any ONE:		6
	Find ultimate moment of resistance of a beam 230 x 460 mm deep to the Centre		
	of tension reinforcement. It is provided with 2-16 mm \emptyset bars at top & 4 – 20 mm		
	Ø bars at bottom. Take effective cover on both side = 40 mm, f_{sc} = 217 N/mm ² .		
A	Use M15 concrete & M. S. Grade – I steel. Neglect f _{cc} .		
Ans.	Given data :		
	b = 230 mm		
	d = 460 mm		
	d' = 40 mm		
	$f_{sc} = 217 \text{ N/mm}^2$		
	2 – 16 mm Ø bars at top		
	$A_{sc} = 2 \times \frac{\pi}{4} \times d^2$		
	$= 2 \times \frac{\pi}{4} \times (16)^2$		
	A _{sc} = 402.12 mm ²		
	4 – 20 mm Ø bars at bottom		
	$A_{st} = 4 x \frac{\pi}{4} x d^2$		
	$=4 \times \frac{\pi}{4} \times (20)^2$		
	$A_{st} = 1256.64 \text{ mm}^2$	1M	
	M15 \implies f _{ck} = 15 N/mm ²		
	M. S. Grade, $F_e 250 \implies f_y = 250 \text{ N/mm}^2$		
	To find ultimate moment of resistance = M_u = ?		
	<u>Step 1:</u> To find X _{umax}		
	X _{umax} = 0.53d = 0.53 x 460		
	X _{umax} = 230 mm		
	Step 2: To find actual X _u :		
	$A_{st2} = \frac{(f_{sc} - f_{cc}) * A_{sc}}{0.87 * f_y}$	1M	
	$A_{st2} = \frac{(217 - 0) * 402.123}{0.87 * 250}$		
	$A_{st2} = 401.20 \text{ mm}^2$		
	$A_{st1} = A_{st} - A_{st2} = 1256.64 - 401.20$		
	b) i) Ans.	Find ultimate moment of resistance of a beam 230 x 460 mm deep to the Centre of tension reinforcement. It is provided with 2-16 mm Ø bars at top & 4 - 20 mm Ø bars at bottom. Take effective cover on both side = 40 mm, f _{sc} = 217 N/mm ² . Use M15 concrete & M. S. Grade – I steel. Neglect f _{cc} . Given data : b = 230 mm d = 460 mm d' = 40 mm f _{sc} = 217 N/mm ² 2 - 16 mm Ø bars at top A _{sc} = 2 x $\frac{\pi}{4} \times d^2$ = 2 x $\frac{\pi}{4} \times (16)^2$ A _{sc} = 402.12 mm ² 4 - 20 mm Ø bars at bottom A _{sc} = 4 x $\frac{\pi}{4} \times d^2$ = 4 x $\frac{\pi}{4} \times (20)^2$ A _{st} = 1256.64 mm ² M15 \Longrightarrow f _{ck} = 15 N/mm ² M 5. Grade, F _c 250 \Longrightarrow f _y = 250 N/mm ² To find ultimate moment of resistance = M _u = ? Step 1: To find X _{umax} X _{umax} = 0.53d = 0.53 x 460 X _{umax} = 230 mm Step 2: To find actual X _u : A _{st2} = $\frac{(f_{sc} - f_{cc}) * A_{sc}}{0.87 * f_y}$ A _{st2} = $\frac{(217 - 0) * 402.123}{0.87 * 250}$ A _{st2} = 401.20 mm ²	Find ultimate moment of resistance of a beam 230 x 460 mm deep to the Centre of tension reinforcement. It is provided with 2-16 mm Ø bars at top & 4 - 20 mm Ø bars at bottom. Take effective cover on both side = 40 mm, $f_{xe} = 217 \text{ N/mm}^2$. Use M15 concrete & M. S. Grade – I steel. Neglect f_{cc} . Given data : b = 230 mm d = 460 mm d' = 40 mm $f_{sc} = 217 \text{ N/mm}^2$ 2 - 16 mm Ø bars at top $A_{xc} = 2 x \frac{\pi}{4} x d^2$ $= 2 x \frac{\pi}{4} x (16)^2$ $A_{xc} = 402.12 \text{ mm}^2$ 4 - 20 mm Ø bars at bottom $A_{xc} = 4 x \frac{\pi}{4} x d^2$ $= 4 x \frac{\pi}{4} x (20)^2$ $A_{st} = 1256.64 \text{ mm}^2$ M15 \Longrightarrow $f_{ck} = 15 \text{ N/mm}^2$ M. S. Grade, $F_{e250} \Longrightarrow$ $f_{v} = 250 \text{ N/mm}^2$ To find ultimate moment of resistance = $M_u = ?$ Step 1: To find X _{umax} $X_{umax} = 2.03 \text{ mm}$ Step 2: To find atual X _u : $A_{st2} = \frac{(217 - 0) * 402.123}{0.87 * 250}$ $A_{st2} = \frac{(217 - 0) * 402.123}{0.87 * 250}$

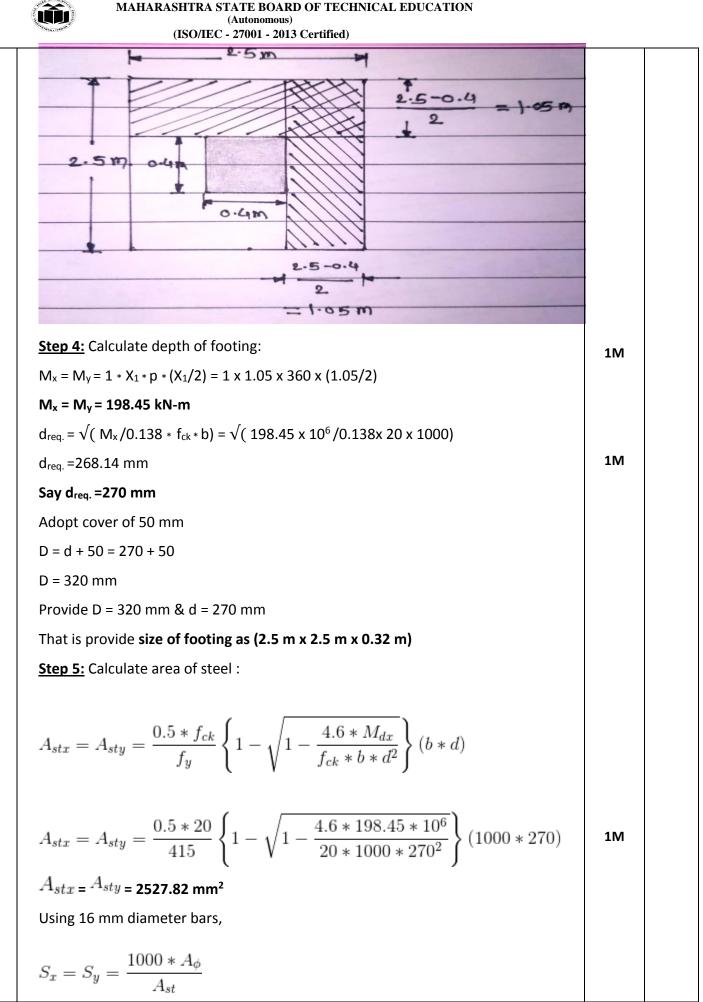
	Winen.	1998	(ISO/IEC - 270	01 - 2013 Certified)				
	As	_{st1} = 855.44 mm	2					1M	
	<i>x.</i>	$=\frac{0.87*f_y}{0.36*f_c}$	$* A_{st1}$						
		<i>p</i> -							
	x_u	$=\frac{0.87 * 250}{0.36 * 1}$) * 855.44					1M	
		= 149.80 mm <				er reinforced			
		ep 3: To find Ul					1/\1		
		$f_u = [0.87 * f_i]$			•				
	M	, = 0.87 x 250 x	855.44 x (460 -	- 0.42 x 149.80) + <mark>(217 –0)</mark> x 4	02.12 x (460 - 4	40)	1M	
	Mu	u = 0.87 x 250 x	855.44 x (460 -	- 0.42 x 149.80) + (217 – 0) x 4	02.12 x (460 -	- 40)		
	Mu	u = 119.65 x 10 ⁶	N-mm.						
		Mu =	119.65 kN-m					1M	
b) ii)	Desi	gn a doubly reint	forced beam 25) x 600 mm ovei	rall for a factore	d load of 300 kN	J-m at		
,		rticular section.							
	-	rete & F _e 415.				,	,		
		-]		
		d'/d	0.05	0.10	0.15	0.20			
		f _{sc} (N/mm²)	355	352	342	329			
]		
Ans.	Giver	i data :							
	b =	= 250 mm							
	D	= 600 mm							
	ď	= 50 mm							
	d =	= D – d' = 600 –	50						
	d =	= 550 mm							
	M	$20 \implies f_{ck} = 2$	20 N/mm ²						
		415 🖙 f _y = 41							
		find Area of ste							
			-st •						
	Ste	e p 1: To find lim	niting moment	of resistance N	1 _{umax} :				
	M	$u_{max} = 0.138 * f_{c}$	k * b * d ²						
	Mu	umax = 0.138 x 20) x 250 x 550 ²						

	(150/1120 - 270	51 - 2015 Certified)	
M _{umax} = 208.725 x	10 ⁶ N-mm		
M _{umax} = 208.725 k	N-m		1M
As M _u > M _{umax}		Design the beam as doubly reir	nforced beam.
<u>Step 2:</u> To find Are	ea of steel (A _{st}):	
$P_{tlim} = 0.048 * f_{ck}$		For M20 & F _e 415	
P _{tlim} = 0.048 x 20			
P _{tlim} = 0.96%			1M
Therefore,			
$A_{st1} = (P_{tlim} * b * d)$	/ 100 = (0.96 x	250 x 550)/100	
$A_{st1} = 1320 \text{ mm}^2$			1M
<u>Step 3:</u> Calculate F	actored bendi	ng moment:	
$M_{u2} = M_u - M_{u1} = 3$	00 – 208.725		
M _{u2} = 91.275 kN-n	า		
<u>Step 4:</u> Calculate t	he value of f_{sc}	& <i>f</i> _c <i>c</i> :	
$f_{\rm cc} = 0.45 * f_{\rm ck} = 0$	0.45 x 20		
$f_{\rm cc} = 9 \text{ N/mm}^2 \text{ \&}$			
d' / d = 50/550			
d' / d = 0.11			
From given table,			
d'/d	0.10	0.15	
f _{sc} (N/mm²)	352	342	
f _{sc} = 352 - {(352-3	42) x (0.11-0.1	0) / (0.15-0.10)}	
$f_{\rm sc}$ = 350 N/mm ²			
Step 5: Taking mo	ment about te	nsile steel:	1M
$M_{u2} = (f_{sc} - f_{cc}) * A$	<i>sc</i> ∗ (d − d′)		
91.275 x 10 ⁶ = (35	<mark>0 –9</mark>) * A _{sc} * (55	0 – 50)	
$A_{sc} = 535.34 \text{ mm}^2$	2		1M
Provide 2-20 mm (Ø bars, Ascprovid	$_{\rm ed} = 628.32 \ \rm mm^2$	
<u>Step 6:</u> Equating C	u2 & Tu2:		
$(f_{sc}-f_{cc})*A_{sc}=0.$	87 * f_y * A_{st2}		

204.8 0.0	THE AVIA
()	
Conserver and	· IVen IR POT

	1	(ISO/IEC - 27001 - 2013 Certified)		·
		$(350 - 9) \times 628.32 = 0.87 \times 415 \times A_{st2}$		
		$A_{st2} = 593.43 \text{ mm}^2$		
		Step 7: Calculate total area of steel required:		
		$A_{st} = A_{st1} - A_{st2} = 1320 + 593.43$		
		A _{st} = 1913.43 mm ²	1 5 4	
		Therefore, provide 4 – 25 mm diameter bars as a main reinforcement.	1M	
Q. 5		Attempt any TWO:		16
	a)	Determine the ultimate moment resisting capacity of a beam. Take b = 250 mm,		
		d = 450 mm, d' = 30 mm, A_{st} = 2450 mm ² , A_{sc} = 400 mm ² , f_{ck} = 20 N/mm ² ,		
		$f_y = 415 \text{ N/mm}^2$, $f_{sc} = 355 \text{ N/mm}^2$, & neglect f_{cc} .		
	Ans.	Given data :		
		b = 250 mm		
		d = 450 mm		
		d' = 30 mm		
		$A_{st} = 2450 \text{ mm}^2$		
		$A_{sc} = 400 \text{ mm}^2$		
		f _{ck} = 20 N/mm ²		
		f _y = 415 N/mm²		
		$f_{sc} = 355 \text{ N/mm}^2$		
		$f_{cc} = 0$		
		<u>Step 1:</u> To X _{umax} :		
		X _{umax} = 0.48 * d = 0.48 x 450		
		X _{umax} = 216 mm	2M	
		<u>Step 2:</u> To find actual X _u :		
		$A_{st2} = \frac{(f_{sc} - f_{cc}) * A_{sc}}{0.87 * f_y}$		
		$A_{st2} = \frac{(355 - 0) * 400}{0.87 * 415}$		
		A_{st2} = 393.30 mm ²		
		$A_{st1} = A_{st} - A_{st2} = 2450 - 393.30$		
		A_{st1} = 2056.70 mm ²		
			2M	

040	07 TR	A.L.C.
Ĩ	â	
1. Co		man


	· · · · · · · · · · · · · · · ·	(ISO/I	EC - 27001 - 2013 Certi	ified)			
	$x_u = \frac{0.87 *}{0.36},$	$f_y * A_{st1}$					
		-					
	$x_u = \frac{0.87 *}{0.36}$	415 * 205	b.70				
			0 216 mm	Section is	Over reinforced		
			noment of resistan			2M	
	$M_u = M_{ulim} + N$						
			$f_{sc} - f_{cc}$) * A _{sc} * (d –	d')			
			$50^2 + (355 - 0) \times 400$				
	$M_u = 199.36 x$			5 A (130 - 30)			
			9.36 kN-m			2M	
b)	A singly reinforce	ed beam 230) x 450 mm deep (e	ffective) is rein	forced with 3 – 20	mm	
	dia. of F _e 415 bars	s to resist a	factored shear forc	e of 150 kN. De	esign 8 mm Ø two –		
	legged vertical st	tirrups. Take	Ţ _{Стах} = 2.8 МРа. U	se following ta	ble for Țc.		
	% P _t		0.50	0.75	1.00		
	Ţ _c in N/r	mm²	0.48	0.56	0.62		
Ans.	Given data :						
	b = 230 mm						
	d = 450 mm						
	3-20 mm Ø ba	irs,					
	$A_{st} = 3 \times \frac{\pi}{4} \times (2$	0) ²					
	A _{st} = 942.48 m	1m ²					
	V _u = 150 kN						
	$F_e415 \implies f_y=$	= 415 N/mn	1 ²				
	T _{Cmax} = 2.8 Mpa	а					
	To design 8 mi	<i>d</i> 2 1	al				
		mØ2-legge	d vertical stirrups				1
	Step 1: Factor						
	<u>Step 1:</u> Factor V _u = 150 kN						
	V _u = 150 kN	ed Shear for					
	V _u = 150 kN <u>Step 2:</u> Calcula	ed Shear for ate nominal	rce V _u :				

Che	eck: Ț _v = 1.449 N/m	$1m^2 < T_{Cmax} = 2.8$	Мра	ОК	
<u>Ste</u>	p 3: Calculate Shea	ar strength of c	oncrete Ț _c :		
P _t =	= (A _{st} / bd) * 100 =	{942.48 / (230	x 450)} x 100		
Pt =	= 0.91%				
Fro	m given Table,				1M
[% P _t	0.75	1.00		
	Ţ _c in N/mm²	0.56	0.62		
L				1	
Tc =	= 0.62 - {(0.62 - 0.5	56) x (1.00 - 0.9	01) / (1.00 – 0.75)}		
T c =	= 0.598 N/mm²				1M
As	Ţ _v = 1.449 N/mm² >	> Tc = 0.598 N/r	mm ² Shear	reinforcement is required	
<u>Ste</u>	<u>p 4:</u> Shear force fo	r which shear r	reinforcement:		
V_{us}	$= V_u - T_c * b * d = (15)$	50 x 10 ³)– (0.59	8 x 230 x 450)		
Vus	= 88107 N				1M
Des	sign is only for verti	cal stirrups,			
The	erefore no bars are	provided as a b	ent up bars. So, she	ear force resisted by vertical	
stir	rups only.				
Vusv	v = V _{us} = 88107 N				
	ovide 8 mm Ø 2-leg	-	_		
S _v =	= (0.87 * f _y * A _{sv} * d) /	V _{usv} = { 0.87 x 4	15 x (2 x $\frac{\pi}{4}$ x 8 ²) x 4	50) / 88107	
S _v =	= 185.38 mm				
Pro	ovide S _v = 185.38 m	ım say = 180 m	im		1M
<u>Ste</u>	p 5: Check for space	cing S _v :			
	1. Minimum shea	ar reinforceme	nt		
	$S_v \le (0.87 * f_{y^*} A)$	A _{sv}) / 0.4 b = { 0	.87 x 415 x (2 x $\frac{\pi}{4}$ x	8²) / 0.4 x 230	
	S _v ≤ 394.53 mi	m			1M
	2. Maximum spa	cing = 0.75 d o	r 300 mm		7141
		= 0.75 x 4	50 or 300 mm		
		= 337.5 m	m or 300 mm		1M
	Provide S_v mir	nimum of 1 & 2			
	S _v = 180 mm	< minimum of	337.5 mm & 330 n	nm	1M

c)	Design a RC column footing for a column of size 400 x 400 mm. Take SBC of soil = 200		
	kN/m^2 & load on column is 1500 kN. Use M20 concrete & F _e 415 Steel. Calculate depth		
	of footing using bending moment criteria only.		
Ans.	Given data :		
	b = 400 mm		
	P = 1500 kN		
	$P_u = 1.5 \times 1500$		
	$P_{u} = 2250 \text{ kN}$		
	SBC of soil = 200 kN/m^2		
	M20 \implies f _{ck} = 20 N/mm ²		
	$F_e415 \implies f_y=415 \text{ N/mm}^2$		
	To find:		
	1. Size of footing =?		
	2. Main steel in both direction =?		
	Step 1: Ultimate Bearing Capacity of soil:		
	U. B. C. (q _u) = 2 x SBC = 2 x 200		
	$q_u = 400 \text{ kN/m}^2$	1M	
	Step 2: Calculate size of footing:		
	Assuming 5% as self-weight of footing		
	Area of footing = (Factored Load / UBC of soil)		
	= (1.05 x 2250) / 400		
	A _f = 5.906 m ²		
	$L = B = \sqrt{A_f} = \sqrt{5.906}$		
	L = B = 2.43 m		
	say L = B = 2.5 m	1M	
	Adopt footing of size 2.5 m x 2.5 m		
	Step 3: Calculate Upward soil pressure (p):		
	$p = (P_u / L x B) = (2250 / 2.5 x 2.5)$		
	p = 360 kN/m ²	1M	
		1	

PageNo.22/27

$S_x = S_y = \frac{1000 * \frac{\pi}{4} * 16^2}{2527.82}$ $S_x = S_y = 79.50 \text{ mm}$ $S_x = S_y \cong 75 \text{ mm}$ Provide #16 mm @ 75 mm c/c both ways. <u>Step 6:</u> Find development length of bars: $L_d = \frac{0.87 * f_y * \phi}{4 * \varsigma_d}$ $L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ This length is available from face of column. Provide 320mm depth near the face of column and reduce depth of footing 150mm at the edge. $M = \frac{4/2}{4 \times 64} = \frac{1000 \times 1000 \times 1000}{100000000000000000000000000000000$	(ISO/IEC - 27001 - 2013 Certified)	
$S_x = S_y = 79.50 \text{ mm}$ $S_x = S_y \cong 75.50 \text{ mm}$ IM Provide #16 mm @ 75 mm c/c both ways. Step 6: Find development length of bars: $L_d = \frac{0.87 * f_y * \phi}{4 * v_{od}}$ $L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ Say $L_d = 760 \text{ mm}$ This length is available from face of column. Provide 320mm depth near the face of column and reduce depth of footing 150mm at the edge. $N = \frac{4/2}{4 + 20} + \frac{135}{4 $	$S_x = S_y = \frac{1000 * \frac{\pi}{4} * 16^2}{2525 \cdot 22}$	
$S_x = S_y \cong 75 \text{ mm}$ Provide #16 mw @ 75 mm c/c both ways. Step 6: Find development length of bars: $L_d = \frac{0.87 * f_y * \phi}{4 * Q_d}$ $L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ Say $L_d = 760 \text{ mm}$ This length is available from face of column. Provide 320mm depth near the face of column and reduce depth of footing 150mm at the edge. $\boxed{\begin{array}{c} 4/2 \\ 4/2 \\ 6/6 + 6/8 + rmm q(c) \\ 16/6 + rmm q(c)$		
Provide #16 mm @ 75 mm c/c both ways. Step 6: Find development length of bars: $L_d = \frac{0.87 * f_y * \phi}{4 * \varsigma_{bd}}$ $L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ This length is available from face of column. Trovide 320mm depth near the face of column and reduce depth of footing 150mm at the edge. $\int \frac{4/2}{125} \frac{1}{125} \frac{1}{125} \frac{1}{125} \frac{1}{125} \frac{1}{125} \frac{1}{125} \frac{1}{125} \frac{1}{125} \frac{1}{156} 1$		104
Step 6; Find development length of bars: $L_d = \frac{0.87 * f_y * \phi}{4 * Q_d}$ $L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ Say $L_d = 760 \text{ mm}$ This length is available from face of column and reduce depth of footing 150mm at the edge.		TIM
$L_d = \frac{0.87 * f_y * \phi}{4 * Q_d}$ $L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ Say $L_d = 750 \text{ mm}$ This length is available from face of column. Provide 320mm depth near the face of column and reduce depth of footing 150mm at the edge. $\frac{4/2}{12} + \frac{135}{12} + \frac{135}{$		
$L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ Say $L_d = 760 \text{ mm}$ This length is available from face of column and reduce depth of footing 150mm at the edge. $\int \frac{4}{4} \frac{12}{4} \frac{135}{4} \frac{15}{4} 1$		
$L_d = \frac{0.87 * 415 * 16}{4 * 1.92}$ $L_d = 752.19 \text{ mm}$ Say $L_d = 760 \text{ mm}$ This length is available from face of column and reduce depth of footing 150mm at the edge. $\int \frac{4}{4} \sqrt{\frac{135}{4}} \frac{135}{10} \frac{1}{10} $	$L_d = \frac{0.87 * f_y * \phi}{4 * \alpha}$	
L _d = 752.19 mm Say L _d = 760 mm This length is available from face of column and reduce depth of footing 150mm at the edge.		
Say $L_d = 752.19$ mm Say $L_d = 760$ mm This length is available from face of column and reduce depth of footing 150mm at the edge.	$L_d =$	
This length is available from face of column and reduce depth of footing 150mm at the edge.	$L_d=$ 752.19 mm	1M
Provide 320mm depth near the face of column and reduce depth of footing 150mm at the edge.	Say $L_d=$ 760 mm	
at the edge.	This length is available from face of column.	
$\frac{4/2}{4/2}$ $\frac{135}{4}$ $\frac{4/2}{4}$ $\frac{135}{4}$ $\frac{135}{4}$ $\frac{135}{4}$ $\frac{150}{4}$ $\frac{150}{4}$ $\frac{16}{9} (235mm c) (c - 11/4) (8)$	Provide 320mm depth near the face of column and reduce depth of footing 150	mm
$\frac{1}{2500}$	at the edge.	
$\frac{1}{16 \oplus @ 35 mm clc}$		
$\frac{1}{16 \oplus @ 35 mm clc}$		
$\frac{1}{16 \oplus @ 35 mm clc}$		
$\frac{150}{16 \oplus \Theta + 5 \text{ mm ql}}$	d/2 135	
$\frac{150}{16 \oplus \Theta + 5 \text{ mm ql}}$		
$\frac{16 \oplus @ \mp 5 mm clc}{16 \oplus @ \mp 5 mm clc} = \frac{39}{16 \oplus @ \mp 5 mm clc} = \frac{100}{16 \oplus @ \mp 5 $	- + 320	
$\frac{16 \oplus 0.75 \text{ mm clc}}{36 \oplus 0.75 \text{ mm clc}} = \frac{36}{(P_{1} - C + 1:4)}$	150	
SECTION A-A		
2.500 2.500 		
2.500 		
2.500 		
2.500 		
	2.500	
		1
2500		
All Dimension are in mm.	2500	
	All Dimension are in mrn.	i

Q. 6		At	tempt	any FOUR:				12
	a)	St	ate IS :	specifications for longitudinal & Transvers	e steel for column.			
		IS specification for longitudinal reinforcement of an axially loaded short column:						
	Ans.	١.	Mini	num diameter of bar in column = 12 mm				
		П.	Mini	num number of bars in circular column = 6	Nos.			
		111.	Cove	r of the column = 40 mm			1 Mark	
			Mini	inimum steel in column ax % of steel = 6 % of gross cross sectional area of column			each	
			Max				(any two)	
		V.	maxi	mum steel in column	ım steel in column			
			Min	% of steel = 0.8 % of gross cross sectional ar	ea of column			
		IS	specif	ications for transverse reinforcement of an	axially loaded sho	rt column:		
		I.	IS sp	ecification for diameter of lateral ties:				
			The o	liameter of the link should be maximum of	the following:	owing:		
			a) The diameter of the links should be at least one fourth of the largest					
		diameter of the longitudinal steel. b) In any case the links should not be less than 6mm in diameter. II. IS specification for pitch: The spacing of the link should not exceed the least of the following- a. The least lateral dimension of column.					1M	
		b. Sixteen times the diameter of the smallest longitudinal bar.c. 300 mm				1M		
	b)	St	ate eff	ective length for any four end conditions o	of column with nea	t sketch.		
			Sr. No.	End Conditions	Schematic Representation	Effective length		
	Ans.		01	Effectively held in position and restrained against rotation in both ends.	711111111.	0.65 L	4M Any 4 with neat sketch	

02	Effectively held in position at both ends, restrained against rotation in one end.	0.80 L	
03	Effectively held in position at both ends, but not restrained against rotation.	1.00 L	
04	Effectively held in position and restrained against rotation at one end, and at the other end restrained against rotation but not held in position.	 1.20 L	
05	Effectively held in position and restrained against rotation at one end, and at the other end partially restrained against rotation but not held in position.	1.50 L	
06	Effectively held in position at one end but not restrained against rotation, and at the other end restrained against rotation but not held in position.	2.00 L	
07	Effectively held in position and restrained against rotation at one end but not held in position nor restrained against rotation at the other end	 2.00 L	

c)	Explain – 'over reinforced sections are not permitted as per IS codes".		
	1) In over-reinforced section, percentage of steel is more than critical percentage.		
Ans.	2) Due to this, the concrete crushes reaching its ultimate strain firstly before steel	1M	
	reaching its yield point.		
	3) In this case, the beam will fail initially due to overstress in the concrete,	1M	
	suddenly without giving any warning.		
	4) Therefore, design codes restrict the percentage of steel in RC sections to that	1M	
	of balanced section thus disallowing over- reinforced section.	1M	
		TIAI	
d)	Define Nominal Cover. Why cover is provided?		
	Nominal cover: It is defined as the distance measured from the concrete surface to		
	the nearest surface/edge of the reinforcing bar.	2M	
	Purposes of providing cover to reinforcement:		
0.00	1) To prevent corrosion of steel.	214	
Ans.	2) To give necessary embedment to the reinforcing bar.	2M	
e)	For a T-beam with following dimensions:		
	Width of flange = 1500 mm		
	Width of web = 300 mm		
	Effective depth = 500 mm		
	Depth of slab = 120 mm		
	Tension steel = A _{st} = 2000 mm ²		
	Materials = M20- F _e 415		
	Calculate ultimate moment of resistance of the section.		
Ans.	Given data :		
	b _f = 1500 mm		
	b _w = 300 mm		
	d = 500 mm		
	D _f = 120 mm		
	$A_{st} = 2000 \text{ mm}^2$		
	M20 \implies f _{ck} = 20 N/mm ²		
	$F_e415 \implies f_y=415 \text{ N/mm}^2$		

To find ultimate moment of resistance = M_u = ?		
<u>Step 1:</u> Calculate neutral axis depth x _u :		
$0.36f_{ck} * b_f * x_u = 0.87f_y * A_{st}$		
$0.36 * 20 * 1500 * x_u = 0.87 * 415 * 2000$	4.5.4	
$x_u =$ 66.851 mm < D _f = 120 mm	1M	
x _{umax} = 0.48 d		
= 0.48 x 500		
x _{umax} = 240 mm	1M	
x _u < x _{umax} Section is under reinforced		
Step 2: Calculate Ultimate moment of resistance M _u :		
$M_u = T_u X_u$		
$M_u = 0.87 * f_y * A_{st} * (d - 0.42 * x_u)$	1M	
M _u = 0.87 * 415 * 2000 * (500 - 0.42 * 66.851)		
M _u = 340.77 x 10 ⁶ N-mm		
M _u = 340.77 kN-m	1M	