WINTER-19 EXAMINATION

MODEL ANSWER

Subject Name: DESIGN OF RCC STRUCTURES

Subject Code:

17604

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors etc should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

	(a) ii) Ans	Write any four assumption is design for limit state of collapse in flexure. i) Plane section normal to the axis remains plane after bending. ii) The maximum strain in concrete at the outermost compression fiber is taken as 0.0035 in bending. iii) For design purpose, the compressive strength of concrete in structure shall be assumed to be 0.67 times the characteristic strength. The partial safety factor $\mathrm{Ym}=1.5$ shall be applied in addition to this. iv) The tensile strength of concrete is ignored. v) The design stress in steel reinforcement is obtained from the strain at reinforcement level using idealized stress-strain curve for the types of reinforcement used. vi) For design purposes the partial safety factor Υm of steel reinforcement, equal to 1.15 shall be applied. vii) The maximum strain in the tension reinforcement in the section at failure shall not be less than $\mathrm{fy} /(1.15 \mathrm{Es})+0.002$.	1 M each for any four
Q. 1	(a) iii) Ans	State any four ductile detailing provision as per IS 13920. Requirements of ductility for RCC members. 1. The factored axial stress on the member under earthquake loading shall not exceed 0.1 fck. 2. The member shall preferably have a width-to-depth ratio of more than 0.3. 3. The width of the member shall not be less than 200 mm . 4. The depth D of the member shall preferably be not more than $1 / 4$ of the clear span. 5. If the average axial stress P / A on the column under earthquake conditions is less than 0.1 fck, the column reinforcement shall be designed according to the requirements of flexure members. . But if P/A greater or equal to 0.1 fck , special confining reinforcement will be required at the column ends. 6. The minimum dimension of the member shall not be less than 200 mm . 7. The ratio of the shortest cross-sectional dimension to the perpendicular dimension shall preferably not be less than 0.4 . Note: Student can write any four provisions from IS 13920 for flexural and columns . Marks to be given to the student if any other provision from IS 13920 is written.	1 M each for any four
Q. 1	(a) iv) Ans	State advantages (any two) \& disadvantages (any two) of pre-stressed concrete. Advantages of prestressed concrete. 1. The use of high strength concrete and steel in prestressed members results in lighter and slender members which is not possible in RC members. 2. In fully prestressed members the member is free from tensile stresses under working loads, thus whole of the section is effective. 3. In prestressed members, dead loads may be counter-balanced by eccentric prestressing. 4. Prestressed concrete member possess better resistance to shear forces due to effect of compressive stresses presence or eccentric cable profile. 5. Use of high strength concrete and freedom from cracks, contribute to improve durability under aggressive environmental conditions. 6.Long span structures are possible so that saving in weight is significant. 7. Factory products are possible. 8. Prestressed members are tested before use.	$\begin{gathered} 1 \text { M } \\ \text { each for } \\ \text { any } 2 \end{gathered}$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
9. Prestressed concrete structure deflects appreciably before ultimate failure, thus giving ample warning before collapse. \\
10.Fatigue strength is better due to small variations in prestressing steel, recommended to dynamically loaded structures. \\
Disadvantages of Prestressed Concrete \\
1. The availability of experienced builders is scanty. \\
2. Initial equipment cost is very high. \\
3. Availability of experienced engineers is scanty. \\
4. Prestressed sections are brittle. \\
5. Prestressed concrete sections are less fire resistant.
\end{tabular} \& 1 M each for any 2 \& \\
\hline Q. 1 \& \begin{tabular}{l}
(a)v) \\
Ans
\end{tabular} \& \begin{tabular}{l}
State the values for maximum spacing of bars in slabs \& minimum shear reinforcement for beams. \\
Maximum spacing of bars in slabs \\
Main steel - 3d or 300 mm whichever is smaller \\
Distribution steel - 5 d or 450 mm whichever is smaller \\
Where \(d\) is the effective depth of slab \\
Minimum shear reinforcement for beams in the form of stirrups shall be provided such that
\[
\frac{\mathrm{Asv}}{\mathrm{bsv}}>\frac{0.4}{0.87 \mathrm{fy}}
\] \\
Asv \(=\) total cross sectional area of stirrup leg effective in shear. \\
\(\mathrm{b}=\) Breadth of the beam \\
fy \(=\) characteristics strength of stirrup reinforcement in \(\mathrm{N} / \mathrm{mm}^{2}\) which shall not be greater than \(415 \mathrm{~N} / \mathrm{mm}^{2}\)
\end{tabular} \& 1
1

1
1 \&

\hline \& | b) |
| :--- |
| (b) i) |
| Ans | \& | Attempt any ONE |
| :--- |
| An RCC beam 230 mm wide \& $\mathbf{4 0 0} \mathbf{~ m m}$ deep effective is supported over an effective span of 5.5 m . It is reinforced with $\mathbf{4 - 2 0} \mathbf{~ m m}$ dia. bar along tension side only. Calculate the ultimate moment of resistance \& working load if M 20 concrete \& Fe 415 steel is used. $\begin{aligned} & \mathrm{B}=230 \mathrm{~mm} \\ & \mathrm{D}=400 \mathrm{~mm} \\ & \mathrm{Le}=5.5 \mathrm{~m} \\ & \mathrm{Ast}=\frac{4 \times \pi \times 20^{2}}{4}=1256 \mathrm{~mm}^{2} \\ & \mathrm{MR}=? \\ & \mathrm{w}=? \\ & \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { fy }=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ |
| Depth of Neutral axis $\begin{aligned} \mathrm{xu} & =\frac{0.87 \text { fy Ast }}{0.36 \mathrm{fck} \cdot \mathrm{~b}} \\ \mathrm{xu} & =\frac{0.87 \times 415 \times 1256}{0.36 \times 20 \times 23 \mathrm{n}}=273.84 \mathrm{~mm} \end{aligned}$ |
| Limit value of Neutral axis $\mathrm{xu} \max =0.48 \mathrm{~d}$ | \& 1 \& 6

\hline
\end{tabular}

		$\begin{aligned} & =0.48 \times 400 \\ & =192 \mathrm{~mm} \end{aligned}$ As $\mathrm{xu}>\mathrm{xu}$ max the section is over reinforced Moment of resistance $\begin{aligned} \text { MR } & =0.138 \mathrm{fck} \mathrm{bd}^{2} \\ \quad= & 0.138 \times 20 \times 230 \times 400^{2} \\ & =101.57 \times 10^{6} \mathrm{Nmm} \\ & =101.57 \mathrm{kNm} \end{aligned}$ Or $\begin{aligned} \mathrm{MR} & =0.36 \text { fck } \cdot \mathrm{b} \mathrm{xu} \max (\mathrm{~d}-0.42 \mathrm{xu} \max) \\ & =0.36 \times 20 \times 230 \times 192(400-0.42 \times 192) \\ & =101.54 \times 10^{6} \mathrm{Nmm} \\ & =101.54 \mathrm{kNm} \end{aligned}$ Equating MR to BM $\begin{aligned} & \mathrm{M}=\frac{\text { wdle }}{8} \\ & \begin{aligned} \mathrm{wd}(\text { factored load }) & =\frac{8 \times 101.57}{5.5^{2}} \\ & =26.86 \mathrm{kN} / \mathrm{m} \end{aligned} \end{aligned}$ $\text { Working load }=\frac{\text { Factored load }}{\text { Partial Safty factor }}$ Working load $w=\frac{26.86}{1.5}$ $=17.91 \mathrm{kN} / \mathrm{m}$	1 1 1 1 1
Q. 1	(b) ii) Ans	Draw stress - strain diagram for singly reinforced beam in LSM. State the values of position of N.A., moment of resistance \& percentage steel for balanced section. For all grades of steel i.e. Fe 250, Fe 415 \& Fe 500	3 M

(ISO/IEC - 27001-2013 Certified)

Load calculation

Self weight of slab $=0.15 \times 25=3.75 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
& =2 \mathrm{KN} / \mathrm{m}^{2} \\
& =1 \mathrm{KN} / \mathrm{m}^{2} / \text { Total Load }=6.75 \mathrm{kn} / \mathrm{m}^{2}
\end{aligned}
$$

Factored Load wd $=6.75 \times 1.5$
$=10.125 \mathrm{KN} / \mathrm{m}^{2}$
Factored max bending moment
$\operatorname{Md}=w d x \operatorname{le} / 8$
$\frac{10.125 \times 3.625^{2}}{8}=16.63 \mathrm{KNm}$
Required effective depth for fy 250 ,

$$
M=0.149 f c k b d^{2}
$$

$0.149 \times 151000 \mathrm{x} \mathrm{d}^{2}=16.63 \times 10^{6}$
$\mathrm{d}=\mathbf{8 6 . 2 6 \mathrm { mm }}$ < d provided
$\mathrm{D}=150 \mathrm{~mm}$
$\mathrm{d}=125 \mathrm{~mm}$

Area of main steel

Ast $=0.5 \times$ fck x b x d $\{1-\operatorname{SQRT}[1-(4.6 \times \mathrm{Mu}) /(\mathrm{fck} \times \mathrm{bx} \mathrm{d} 2)]\} / \mathrm{fy}$

$$
=0.5 \times 15 \times 1000 \times 125\left\{1-\operatorname{SQRT}\left[1-\left(4.6 \times 16.63 \times 10^{6}\right) /\left(15 \times 1000 \times 125^{2}\right)\right]\right\} / 250
$$

$$
=672.24 \mathrm{~mm}^{2}
$$

Spacing of main reinforcement using 10 mm bars
$S=A \emptyset /$ Ast $\times b=\Pi \times 10^{2} / 4 \times 1000 / 672.24$
$=116.77 \mathrm{~mm}=110 \mathrm{~mm}$
Max Spacing $=3 \mathrm{~d}$ or 300 mm or 110 whichever is less
$=3 \times 125$ or 300 mm or 110
As $\mathrm{S}<\mathrm{max}$, provide 10 mm bars or $110 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Area and spacing of distribution steel
Astd $=0.15 / 100 \times b \times D$
$=0.15 / 100 \times 1000 \times 150$
$=225 \mathrm{~mm}^{2}$
Spacing of $6 \mathrm{~mm} \emptyset \mathrm{MS}$ distribution bars ($A \varnothing=28.26 \mathrm{~mm}^{2}$)
Sd = A $\varnothing /$ Astd x b
$=28.26 / 225 \times 1000$
$=125.6 \mathrm{~mm}=120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Max spacing Sd max = 5d or 450 mm
$=5 \times 125$ or 450 mm
$=625$ or $=450 \mathrm{~mm}$
Sd < Sdmax
:- providing 6mm \varnothing distribution bars $\mathbf{Q 1 2 0 m m} \mathbf{c / c}$

	Reinforcement details of one way slab	1
b) Ans	Design a slab for a hall size of 4 mx 5.5 musing M 20 concrete \& Fe 415 steel. Take live load $=2 \mathrm{kN} / \mathrm{m}^{2}$ floor finish $=0.5 \mathrm{kN} / \mathrm{m} 2$, $\mathrm{MF}=1.4$, $L x=0.114, x y=0.035$, check for shear \& deflection need not to be taken. Draw reinforcement sketch. $\begin{aligned} & \mathrm{ly}=5.5 \mathrm{~m} \\ & \mathrm{Ix}=4 \mathrm{~m} \\ & \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{LL}=2 \mathrm{KN} / \mathrm{mm}^{2} \\ & \mathrm{FF}=0.5 \mathrm{KN} / \mathrm{m}^{2} \\ & \mathrm{Mf}=1.4 \end{aligned}$ $\frac{l y}{l x}=\frac{5.5}{4}=1.38<2 \quad \text { Two way slab }$ $\begin{aligned} & \mathrm{d}=\frac{\operatorname{span}}{20 \times M F} \\ & =\frac{4000}{20 \times 1.4}=142.86 \mathrm{~mm} \end{aligned}$ $\text { Overall depth = D = } 142.86+\text { cover }+\varnothing / 2$ $=142.86+20+10 / 2$ [Assuming 10 mm bar] $=167.86 \mathrm{~mm}$ $=170 \mathrm{~mm}$ dvail $=170-20-10 / 2$ $=142 \mathrm{~mm}$ Effective span: lex $=1+d$ $=4000+145$ $=4145 \mathrm{~mm}$ $=4.145 \mathrm{~m}$ Loads Self weight of slab $=0.17 \times 25=4.25 \mathrm{kN} / \mathrm{m}^{2}$ $=0.5 \mathrm{kN} / \mathrm{m}^{2}$	1

```
\(=2 \mathrm{kN} / \mathrm{m}^{2}=6.75 \mathrm{kN} / \mathrm{m}^{2}\)
Factored load wd \(=6.75 \times 1.5\)
\(=10.13 \mathrm{kN} / \mathrm{m}\)
Factored Bending Moment
    Mux = \(\mathrm{ax} \times\) wu x lex \({ }^{2}\)
    \(=0.114 \times 10.13 \times 4.145^{2}\)
    \(=19.84 \mathrm{kNm}\)
Muy = ay x wu x lex \({ }^{2}\)
        \(=0.035 \times 10.13 \times 4.145^{2}\)
    \(=6.09 \mathrm{KNm}\)
Effective depth of slab
0.138 fck bd \({ }^{2}=\mathrm{Md}\)
\(0.138 \times 20 \times 1000 \mathrm{~d}^{2}=19.8410^{6}\)
\(\mathrm{d}=84.78 \mathrm{~mm}<145 \mathrm{~mm}:-\) OK
\(D=170 \mathrm{~mm}\)
\(\mathrm{d}=145 \mathrm{~mm}\)
Area and spacing of steel
Astx \(=0.5 \frac{f c k}{f y} \sqrt{\left.1-1 \frac{4.6 M d}{f c k b d^{2}}\right]} b d\)
    \(\left.=\frac{0.5 \quad 20}{415} \mathrm{X} \sqrt[{[1}-]{1-\frac{4.6 \times 19.84 \times 10^{6}}{20 \times 1000 \times 145^{2}}}\right] \times 1000 \times 145=402.32 \mathrm{~mm}^{2}\)
Astmin \(=\frac{0.12}{100} \times b d\)
    \(=\frac{0.12}{100} \times 1000 \times 170=204 \mathrm{~mm}^{2}\)
Astx \(>\) Astmin : \(-O K\)
area of 10 mm bars \(\left(A \emptyset=\Pi x \frac{10^{2}}{4}=78.5 \mathrm{~mm}^{2}\right.\)
\(\mathrm{Sx}=\frac{78.5 \times 1000 / 758.32}{402.32}=195.15 \mathrm{~mm}=190 \mathrm{~mm}\)
Spaing \(=\frac{\text { Aф } \times 1000}{\text { Ast }}\)
Note : students can also calculate using 8 mm bars
Smax = 3d a 300 whichever is \(\min\)
\(=3 \times 145\)
\(=435_{\mathrm{mh}}\) a 300 mm
S \(x<\) Smax
Provide 10mm bar a \(170 \mathrm{~mm} \mathrm{c} / \mathrm{c}\)
Asty \(=0.5 \frac{f c k}{f y} \sqrt{\left.1-1 \frac{4.6 M d}{f c k b d^{2}}\right]} b d\)
\(=0.5 \times 20 / 415^{[1-} \sqrt{\left.1-\frac{4.6 \times 6.09 \times 10^{6}}{20 \times 1000 \times 145^{2}}\right]} \times 1000 \times 145=118.39 \mathrm{~mm}^{2}\)
Asty < Astmin
Asty \(=204 \mathrm{~mm}^{2}\)
OR
\(\mathrm{d}=145-10=135 \mathrm{~mm}\)
Asty \(==0.5 \mathrm{x}\)
```


Note : Student can assume any overall depth grater then $\mathbf{2 0 3 . 5 7 m m}$
davail $=210-20-\frac{10}{2}$
$=185 \mathrm{~mm}$
Effective span
$l e=l+\frac{d}{2}$
$2000=+\frac{185}{2}=2092.5=2.093 \mathrm{~m}$

Load calculations
Self weight of slab $=0.21 \times 25=5.25 \mathrm{KN} / \mathrm{m}^{2}$
Live load $=2.5 \mathrm{KN} / \mathrm{m}^{2}$
=Floor finish $=0.5 \mathrm{KN} / \mathrm{m}^{2}$
Total $w=8.25 \mathrm{KN} / \mathrm{m}^{2}$
Factored $w d=8.25 \times 1.5=12.38 \mathrm{KN} / \mathrm{m}^{2}$
Factored max Bm
$\mathrm{Md}=\frac{\mathrm{wd} \times l e^{2}}{2}$

$$
=\frac{12.38 \times 2.093^{2}}{2}=
$$

Required effective depth

$\mathrm{d}=185 \mathrm{~mm}$

$$
=27.12 \mathrm{kNm}
$$

$\mathrm{Md}=0.138 \mathrm{fck} \mathrm{bd}^{2}$

$$
0.138 \times 20 \times 1000 \times \mathrm{d}^{2}=27.12 \times 10^{6}
$$

d = 99.13 mm < d available : ok
: $\mathrm{D}=210 \mathrm{~mm}$

Area and spacing of main steel

$$
\begin{aligned}
\text { Ast } & =\frac{0.5 f c k}{f y}\left[1-\frac{\sqrt{1-4.6 \mathrm{md}}}{\mathrm{fckbd}}\right] b d \\
& =\frac{0.5 \times 20}{415}\left[1-\frac{\sqrt{1-4.6 \times 27.12 \times 10^{6}}}{20 \times 1000 \times 185^{2}}\right] 1000 \times 185 \\
& =426.64 \mathrm{~mm}^{2}
\end{aligned}
$$

Astmin $=0.12 x \frac{b d}{100}$
$=\frac{0.12}{100} \times 1000 \times 210=252 \mathrm{~mm}^{2}$
Ast > Astmin : OK

Spacing using 8 mm bars $\left(A \emptyset=50.26 \mathrm{~mm}^{2}\right.$
$s x=1000 \times \frac{A \emptyset}{A s t}$
$=1000 \times \frac{50.26}{426.64}=117.80 \mathrm{~mm}=110 \mathrm{~mm}$
Smax 3d or 300 mm whichever is less $=3 \times 185=555 \mathrm{~mm}$ or 300 mm
Sx < Smax provide 8 mm or $110 \mathrm{~mm} \mathrm{c/c}$
Area and spacing of distribution steel.
Astd $=\frac{0.12}{100} \times b \times D$
$=\frac{0.12}{100} \times 1000 \times 210=252 \mathrm{~mm}^{2}$
Spacing using 8 mm bars
(ISO/IEC - 27001-2013 Certified)

		$\begin{aligned} & s d=1000 \times \frac{A \emptyset}{A s t d} \\ & =1000 \times \frac{50.26}{252}=199.44 \mathrm{~mm}=180 \mathrm{~mm} \end{aligned}$ Smax $=5 \mathrm{~d}$ or 450 mm whichever is less $=5 \times 185 \text { or } 450 \mathrm{~mm}$ $=935$ or 450 mm Sd<Smax: OK provide 8 mm or $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	1	
Q. 3	a) Ans	Attempt any FOUR: State the IS specifications for effective flange width of T \& L beam with meaning of terms used in it. (a) For T-beams, $\mathrm{bf}=\frac{10}{6}+b w+6 D f$ (b) For L-beam, $\mathrm{bf}=\frac{l o}{12}+b w+3 D f$ (c) For isolated/individual beams, the effective flange width may be obtained as below but in no case greater than the actual width 'b'. i) $\mathrm{bf}=\frac{l o}{\left(\frac{(0}{b}\right)+4}+$ bw for $T-$ beams. ii) $\mathrm{bf}=\frac{0.510}{\left(\frac{10}{b}\right)+4}+b w$ bw for $\mathrm{L}-$ beams where, $\mathrm{bf}=$ Effective flange width. $\mathrm{I}_{0}=$ Effective span. bw = Breadth of web. Df = Thickness of flange, and $b=$ Actual width of flange.	$2 \mathrm{M}$ Each beam	12

(ISO/IEC - 27001-2013 Certified)

	b)	Calculate effective flange width for a T beam having $\mathbf{c / c}$ distance between supports $=8.4, \mathrm{c} / \mathrm{c}$ distance between beam $=\mathbf{4 m}$, slab thickness $=150 \mathrm{~mm}$, width of rib $=350$ mm , support thickness $=400 \mathrm{~mm}$ For the beams c / c distance between beams $=4.15 \mathrm{~m}$ c / c distance between support $=8.4 \mathrm{~m}$ slab thickness $=150 \mathrm{~mm}$ width of rib $=350 \mathrm{~mm}$ support thickness $=400 \mathrm{~mm}$ effective width of concrete $\mathrm{bf}=\frac{l o}{6}+\mathrm{bw}+6 \mathrm{Df}$ $\begin{aligned} \mathrm{bf} & =\frac{8400}{6}+350+6 \times 150 \\ & =2650 \mathrm{~mm} \end{aligned}$	2 2	
	c) Ans	Find development length of 16 mm dia. bar in tension \& compression. Use M20 concrete \& Fe $\mathbf{5 0 0}$ grade steel. Take cbd $=\mathbf{1 . 2} \mathbf{~ N / m m 2}$ fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$ $d=16 \mathrm{~mm}$ fy $=500 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{bd}=1.2 \mathrm{~N} / \mathrm{mm}^{2}$ for deformed bars $\square \mathrm{bd}=1.2 \times 1.6=1.92 \mathrm{~N} / \mathrm{mm}^{2}$ In tension $\begin{aligned} & \text { Development length Ld }=\frac{0.87 \text { fy } \emptyset}{4 \tau \mathrm{bd}} \\ & =\frac{0.87 \times 500 \times 16}{4 \times 1.92} \\ & =906.25 \mathrm{~mm} \end{aligned}$ In compression $\begin{aligned} & \square \mathrm{bd}=1.25(1.2 \times 1.6)=2.4 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Development length } \mathrm{Ld}=\frac{0.87 \mathrm{fy} \emptyset}{4 \mathrm{cbd}} \\ &=\frac{0.87 \times 500 \times 16}{4 \times 2.4} \\ &=725 \mathrm{~mm} \end{aligned}$	1 1 1 1 1	
	d) Ans	State any four uses of bent up bar in shear reinforcement. Use of bent up bars in shear reinforcement 1) Bent up bars are provided to complement the vertical stirrups in resealing shear. 2) Bent up bars are good in restraining crack width which may be developed due to diagonal tension 3) No additional steel is required, because only the unwanted tension bars are used by bending these bars, hence in provides economy. 4) Half of the total shear reinforcement can be contributed by bent up bars.	$\begin{aligned} & 1 \mathrm{M} \\ & \text { each } \end{aligned}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

Q. 4	(a) a) i) Ans.	Attempt any THREE: State any four types of losses in pre-stressed concrete with their percentage. Losses in pre-stressing:	1 Mark each any four	12
	a) ii) Ans.	State any four functions of reinforcement. Functions of reinforcement in R.C. sections: 1. In case of slab, beams and wall of water tanks, reinforcement is mainly provided to carry direct or bending tensile stresses. 2. In case of columns the steel is provided to resist the direct compressive stress as well as bending stresses if any. 3. In case of beams stirrups are provided to resist the diagonal tension due to shear and hold the main steel in position. 4. The box type mesh of reinforcement is provided to resist torsion. 5. The steel is provided in the form of rectangular, circular, lateral ties or spirals to prevent bucking of main bars in column. 6. The distribution steel is provided to distribute the concentrated loads and to reduce the effects of temperature and shrinkage and to hold main bars in position.	1 Mark each any four	
	a) iii) Ans.	State any four conditions where doubly reinforced beam is provided. 1. When the applied moment exceeds the moment resisting capacity of a singly reinforced beam. 2. When the dimension b and d of the section are restricted due to architectural, structural or constructional purposes. 3. When the sections are subjected to reversal of bending moment. e. g. piles, underground water tank etc. 4. In continuous T-beam where the portion of beam over middle support has to be designed as doubly reinforced. 5. When the beams are subjected to eccentric loading, shocks or impact loads.	1 Mark each (any four)	

(ISO/IEC - 27001-2013 Certified)
a) iv)

Calculate working load carrying capacity of column $300 \times 300 \mathrm{~mm}$ provided with 4-20 mm \varnothing bars. M20 concrete \& Fe415 steel is used.

Ans.
Given data :
Size of column $=300 \times 300 \mathrm{~mm}$
4-20 mm \varnothing bars
$\mathrm{M} 2 \mathrm{O} \Longrightarrow \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Fe} 415 \Longrightarrow \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$
To find, working load carrying capacity of column $=\mathrm{P}=$?
Step 1: Gross area $=A_{g}=300 \times 300$

$$
A_{g}=90000 \mathrm{~mm}^{2}
$$

Step 2: Area of steel, $A_{s c}=4 \times \frac{\pi}{4} \mathrm{xd}^{2}$

$$
\begin{aligned}
& =4 \times \frac{\pi}{4} \times(20)^{2} \\
\mathrm{~A}_{\mathrm{sc}} & =1256.64 \mathrm{~mm}^{2}
\end{aligned}
$$

Step 3: Area of concrete, $A_{c}=A_{g}-A_{s c}$

$$
=90000-1256.64
$$

$$
A_{c}=88743.36 \mathrm{~mm}^{2}
$$

Step 4: Ultimate load carrying capacity, P_{u}
$P_{u}=0.4 * f_{c k} * A_{c}+0.67 * f_{y} * A_{s c}$
$P_{u}=[0.4 * 20 * 88743.36]+[0.67 * 415 * 1256.64]$
$\mathrm{P}_{\mathrm{u}}=1059355.63 \mathrm{~N}$
$\mathrm{P}_{\mathrm{u}}=1059.35 \mathrm{kN}$
(Working load carrying capacity) $P=\frac{P_{u}}{Y_{f}}$

$$
P=\frac{1059.35}{1.5}
$$

$$
P=706.233 \mathrm{kN}
$$

(ISO/IEC - 27001-2013 Certified)

(ISO/IEC - 27001-2013 Certified)

(ISO/IEC - 27001-2013 Certified)
$M_{u \max }=208.725 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
$M_{\text {umax }}=208.725 \mathrm{kN}-\mathrm{m}$

As $M_{u}>M_{u m a x} \quad$. . . Design the beam as doubly reinforced beam.

Step 2: To find Area of steel $\left(A_{s t 1}\right)$:
$\mathrm{P}_{\text {tlim }}=0.048 * f_{\text {ck }}$
For M20 \& Fe415
$P_{\text {tlim }}=0.048 \times 20$
$P_{\text {tlim }}=0.96 \%$
Therefore,
$A_{s t 1}=\left(\mathrm{P}_{\mathrm{tlim}} * \mathrm{~b} * \mathrm{~d}\right) / 100=(0.96 \times 250 \times 550) / 100$
$A_{s t 1}=1320 \mathrm{~mm}^{2}$
Step 3: Calculate Factored bending moment:
$\mathrm{M}_{\mathrm{u} 2}=\mathrm{M}_{\mathrm{u}}-\mathrm{M}_{\mathrm{u} 1}=300-208.725$
$M_{\mathrm{u} 2}=91.275 \mathrm{kN}-\mathrm{m}$
Step 4: Calculate the value of $f_{s c} \& f_{c c}$:
$f_{c c}=0.45 * f_{c k}=0.45 \times 20$
$f_{\mathrm{cc}}=9 \mathrm{~N} / \mathrm{mm}^{2}$ \&
$d^{\prime} / d=50 / 550$
$d^{\prime} / d=0.11$
From given table,

$\mathrm{d}^{\prime} / \mathrm{d}$	0.10	0.15
$\mathrm{f}_{\mathrm{sc}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	352	342

$f_{\mathrm{sc}}=352-\{(352-342) \times(0.11-0.10) /(0.15-0.10)\}$
$f_{\mathrm{sc}}=350 \mathrm{~N} / \mathrm{mm}^{2}$
Step 5: Taking moment about tensile steel:
$\mathrm{M}_{\mathrm{u} 2}=\left(f_{s c}-f_{c c}\right) * \mathrm{~A}_{s c} *\left(\mathrm{~d}-\mathrm{d}^{\prime}\right)$
$91.275 \times 10^{6}=(350-9) * \mathrm{~A}_{s c} *(550-50)$
$\mathrm{A}_{s c}=535.34 \mathrm{~mm}^{2}$
Provide 2-20 mm \emptyset bars, $A_{\text {scprovided }}=628.32 \mathrm{~mm}^{2}$
Step 6: Equating $\mathrm{C}_{\mathrm{u} 2} \& \mathrm{~T}_{\mathrm{u} 2}$:
$\left(f_{s c}-f_{c c}\right) * \mathrm{~A}_{s c}=0.87 * f_{\mathrm{y}} * \mathrm{~A}_{\mathrm{st} 2}$

		$\begin{aligned} & (350-9) \times 628.32=0.87 \times 415 \times \mathrm{A}_{\mathrm{st} 2} \\ & \mathrm{~A}_{\mathrm{st} 2}=593.43 \mathrm{~mm}^{2} \end{aligned}$ Step 7: Calculate total area of steel required: $\begin{aligned} & A_{s t}=A_{s t 1}-A_{s t 2}=1320+593.43 \\ & A_{s t}=1913.43 \mathrm{~mm}^{2} \end{aligned}$ Therefore, provide 4-25 mm diameter bars as a main reinforcement.	1M	
Q. 5	a) Ans.	Attempt any TWO: Determine the ultimate moment resisting capacity of a beam. Take $\mathbf{b} \mathbf{= 2 5 0} \mathbf{m m}$, $\begin{aligned} & \mathbf{d}=450 \mathrm{~mm}, \mathrm{~d}^{\prime}=30 \mathrm{~mm}, \mathbf{A}_{\mathrm{st}}=2450 \mathrm{~mm}^{2}, A_{\mathrm{sc}}=400 \mathrm{~mm}^{2}, \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}, \\ & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}, f_{s c}=355 \mathrm{~N} / \mathrm{mm}^{2}, \& \text { neglect } f_{\mathrm{cc}} . \end{aligned}$ Given data : $\begin{aligned} & \mathrm{b}=250 \mathrm{~mm} \\ & \mathrm{~d}=450 \mathrm{~mm} \\ & \mathrm{~d}^{\prime}=30 \mathrm{~mm} \\ & \mathrm{~A}_{\mathrm{st}}=2450 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{\mathrm{sc}}=400 \mathrm{~mm}^{2} \\ & \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \\ & f_{\mathrm{sc}}=355 \mathrm{~N} / \mathrm{mm}^{2} \\ & f_{c c}=0 \end{aligned}$ Step 1: To Xumax: $\begin{aligned} & X_{u \max }=0.48 * d=0.48 \times 450 \\ & X_{u \max }=216 \mathbf{~ m m} \end{aligned}$ Step 2: To find actual X_{u} : $\begin{aligned} & A_{s t 2}=\frac{\left(f_{s c}-f_{c c}\right) * A_{s c}}{0.87 * f_{y}} \\ & A_{s t 2}=\frac{(355-0) * 400}{0.87 * 415} \\ & A_{s t 2}=393.30 \mathrm{~mm}^{2} \\ & A_{s t 1}=A_{s t}-A_{s t 2}=2450-393.30 \\ & A_{s t 1}=\mathbf{2 0 5 6 . 7 0} \mathrm{mm}^{2} \end{aligned}$	2M	16

(ISO/IEC - 27001-2013 Certified)

	$\begin{aligned} & x_{u}=\frac{0.87 * f_{y} * A_{s t 1}}{0.36 * f_{c k} * b} \\ & x_{u}=\frac{0.87 * 415 * 2056.70}{0.36 * 20 * 350} \\ & \mathbf{x}_{\mathrm{u}}=412.54 \mathrm{~mm}>\mathrm{X}_{\mathrm{umax}}=216 \mathrm{~mm} \end{aligned}$ Section is Over reinforced Step 3: To find Ultimate moment of resistance M_{u} : $\begin{aligned} & \mathrm{M}_{\mathrm{u}}=\mathrm{M}_{\mathrm{ulim}}+\mathrm{M}_{\mathrm{u} 2} \\ & \mathrm{M}_{\mathrm{u}}=0.138 * f_{\mathrm{ck}} * \mathrm{~b} * \mathrm{~d}^{2}+\left(f_{s c}-f_{\mathrm{cc}}\right) * \mathrm{~A}_{s c} *\left(\mathrm{~d}-\mathrm{d}^{\prime}\right) \\ & \mathrm{M}_{\mathrm{u}}=0.138 \times 20 \times 250 \times 450^{2}+(355-0) \times 400 \times(450-30) \\ & \mathrm{M}_{\mathrm{u}}=199.36 \times 10^{6} \mathrm{~N}-\mathrm{mm} . \\ & \quad \mathrm{M}_{\mathrm{u}}=199.36 \mathrm{kN}-\mathrm{m} \end{aligned}$	$2 M$ 2M
b) Ans.	A singly reinforced beam $230 \times 450 \mathrm{~mm}$ deep (effective) is reinforced with $\mathbf{3 - 2 0} \mathbf{~ m m}$ dia. of $\mathrm{Fe}_{\mathrm{e}} 415$ bars to resist a factored shear force of 150 kN . Design $8 \mathrm{~mm} \varnothing$ two legged vertical stirrups. Take $\mathrm{T}_{\mathrm{max}}=2.8 \mathrm{MPa}$. Use following table for Tc_{c}. Given data : $\begin{aligned} & b=230 \mathrm{~mm} \\ & d=450 \mathrm{~mm} \\ & 3-20 \mathrm{~mm} \emptyset \text { bars } \\ & A_{s t}=3 \times \frac{\pi}{4} \times(20)^{2} \\ & A_{s t}=942.48 \mathrm{~mm}^{2} \\ & V_{u}=150 \mathrm{kN} \\ & \mathrm{~F}_{\mathrm{e}} 415 \longmapsto \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \\ & T_{c_{\text {max }}}=2.8 \mathrm{Mpa} \end{aligned}$ To design 8 mm \varnothing 2-legged vertical stirrups Step 1: Factored Shear force V_{u} : $V_{u}=150 \mathrm{kN}$ Step 2: Calculate nominal Shear stress T_{v} : $\begin{aligned} & T_{v}=V_{u} / b * d=\left(150 \times 10^{3}\right) /(230 \times 450) \\ & T_{v}=1.449 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1M

(ISO/IEC - 27001-2013 Certified)

Check: $\tau_{v}=1.449 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{\mathrm{cmax}}=2.8 \mathrm{Mpa}$

........ OK
Step 3: Calculate Shear strength of concrete T_{c} :
$P_{t}=\left(A_{\text {st }} / b d\right) * 100=\{942.48 /(230 \times 450)\} \times 100$
$P_{t}=0.91 \%$
From given Table,

\% P_{t}	0.75	1.00
Tc in N/mm ${ }^{2}$	0.56	0.62

$T_{c}=0.62-\{(0.62-0.56) \times(1.00-0.91) /(1.00-0.75)\}$
$\mathrm{T}_{\mathrm{c}}=0.598 \mathrm{~N} / \mathrm{mm}^{2}$
As $T_{v}=1.449 \mathrm{~N} / \mathrm{mm}^{2}>\mathrm{T}_{\mathrm{c}}=0.598 \mathrm{~N} / \mathrm{mm}^{2} \quad \ldots$. Shear reinforcement is required
Step 4: Shear force for which shear reinforcement:
$V_{u s}=V_{u}-T_{c} * b * d=\left(150 \times 10^{3}\right)-(0.598 \times 230 \times 450)$
$\mathrm{V}_{\text {us }}=\mathbf{8 8 1 0 7} \mathrm{N}$
Design is only for vertical stirrups,
Therefore no bars are provided as a bent up bars. So, shear force resisted by vertical stirrups only.
$V_{u s v}=V_{u s}=88107 \mathrm{~N}$
Provide 8 mm Ø 2-legged vertical stirrups
$\mathrm{S}_{\mathrm{v}}=\left(0.87 * \mathrm{f}_{\mathrm{y}^{*}} \mathrm{~A}_{\text {sv }} * \mathrm{~d}\right) / \mathrm{V}_{\text {usv }}=\left\{0.87 \times 415 \times\left(2 \times \frac{\pi}{4} \times 8^{2}\right) \times 450\right) / 88107$
$\mathrm{S}_{\mathrm{v}}=185.38 \mathrm{~mm}$

Step 5: Check for spacing S_{v} :

1. Minimum shear reinforcement

$$
\mathrm{S}_{\mathrm{v}} \leq\left(0.87 * \mathrm{f}_{\mathrm{y}^{*}} \mathrm{~A}_{\text {sv }}\right) / 0.4 \mathrm{~b}=\left\{0.87 \times 415 \times\left(2 \times \frac{\pi}{4} \times 8^{2}\right) / 0.4 \times 230\right.
$$

$\mathrm{S}_{\mathrm{v}} \leq 394.53 \mathrm{~mm}$
2. Maximum spacing $=0.75 \mathrm{~d}$ or 300 mm

$$
\begin{aligned}
& =0.75 \times 450 \text { or } 300 \mathrm{~mm} \\
& =337.5 \mathrm{~mm} \text { or } 300 \mathrm{~mm}
\end{aligned}
$$

Provide S_{v} minimum of $1 \& 2$
$S_{\mathrm{v}}=\mathbf{1 8 0} \mathbf{~ m m}<$ minimum of $337.5 \mathrm{~mm} \& 330 \mathrm{~mm}$
(ISO/IEC - 27001-2013 Certified)
c)

Design a RC column footing for a column of size $400 \times 400 \mathrm{~mm}$. Take SBC of soil = 200 $\mathrm{kN} / \mathrm{m}^{2}$ \& load on column is 1500 kN . Use M20 concrete \& Fe415 Steel. Calculate depth of footing using bending moment criteria only.

Ans.
Given data :
$\mathrm{b}=400 \mathrm{~mm}$
$\mathrm{P}=1500 \mathrm{kN}$
$\mathrm{P}_{\mathrm{u}}=1.5 \times 1500$
$\mathrm{P}_{\mathrm{u}}=2250 \mathrm{kN}$
SBC of soil $=200 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{M} 2 \mathrm{O} \Longrightarrow \mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{F}_{\mathrm{e}} 415 \Longrightarrow \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$

To find:

1. Size of footing $=$?
2. Main steel in both direction $=$?

Step 1: Ultimate Bearing Capacity of soil:
U. B. C. $\left(q_{u}\right)=2 \times S B C=2 \times 200$

$$
\mathrm{q}_{\mathrm{u}}=400 \mathrm{kN} / \mathrm{m}^{2}
$$

Step 2: Calculate size of footing:
Assuming 5\% as self-weight of footing
Area of footing $=($ Factored Load $/$ UBC of soil $)$

$$
=(1.05 \times 2250) / 400
$$

$$
A_{f}=5.906 \mathrm{~m}^{2}
$$

$$
\mathrm{L}=\mathrm{B}=2.43 \mathrm{~m}
$$

$$
\text { say } L=B=2.5 \mathrm{~m}
$$

Adopt footing of size $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$
Step 3: Calculate Upward soil pressure (p):
$\mathrm{p}=\left(\mathrm{P}_{\mathrm{u}} / \mathrm{L} \times \mathrm{B}\right)=(2250 / 2.5 \times 2.5)$
$\mathrm{p}=360 \mathrm{kN} / \mathrm{m}^{2}$

$$
L=B=\sqrt{ } A_{f}=\sqrt{5} .906
$$

Step 4: Calculate depth of footing:
$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{y}}=1 * \mathrm{X}_{1} * \mathrm{p} *\left(\mathrm{X}_{1} / 2\right)=1 \times 1.05 \times 360 \times(1.05 / 2)$
$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{y}}=198.45 \mathrm{kN}-\mathrm{m}$
$d_{\text {req. }}=\sqrt{ }\left(M_{x} / 0.138 * f_{c k} * b\right)=\sqrt{ }\left(198.45 \times 10^{6} / 0.138 \times 20 \times 1000\right)$
$\mathrm{d}_{\text {req. }}=268.14 \mathrm{~mm}$
Say $d_{\text {req. }}=\mathbf{2 7 0 ~ m m}$
Adopt cover of 50 mm
$D=d+50=270+50$
$\mathrm{D}=320 \mathrm{~mm}$
Provide D $=320 \mathrm{~mm}$ \& $\mathrm{d}=270 \mathrm{~mm}$
That is provide size of footing as ($\mathbf{2 . 5} \mathbf{~ m} \times \mathbf{2 . 5} \mathbf{~ m} \times \mathbf{0 . 3 2} \mathbf{~ m}$)
Step 5: Calculate area of steel :
$A_{s t x}=A_{s t y}=\frac{0.5 * f_{c k}}{f_{y}}\left\{1-\sqrt{1-\frac{4.6 * M_{d x}}{f_{c k} * b * d^{2}}}\right\}(b * d)$
$A_{s t x}=A_{s t y}=\frac{0.5 * 20}{415}\left\{1-\sqrt{1-\frac{4.6 * 198.45 * 10^{6}}{20 * 1000 * 270^{2}}}\right\}(1000 * 270)$
$A_{s t x}=A_{s t y}=2527.82 \mathrm{~mm}^{2}$
Using 16 mm diameter bars,

$$
S_{x}=S_{y}=\frac{1000 * A_{\phi}}{A_{s t}}
$$

$S_{x}=S_{y}=\frac{1000 * \frac{\pi}{4} * 16^{2}}{2527.82}$
$S_{x}=S_{y}=79.50 \mathrm{~mm}$
$S_{x}=S_{y} \cong 75 \mathrm{~mm}$
Provide \#16 mm @ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ both ways.
Step 6: Find development length of bars:
$L_{d}=\frac{0.87 * f_{y} * \phi}{4 * \varsigma_{b d}}$
$L_{d}=\frac{0.87 * 415 * 16}{4 * 1.92}$
$L_{d}=752.19 \mathrm{~mm}$
Say $L_{d}=760 \mathrm{~mm}$
This length is available from face of column.
Provide 320 mm depth near the face of column and reduce depth of footing 150 mm at the edge.

(ISO/IEC - 27001-2013 Certified)

(ISO/IEC - 27001-2013 Certified)

(ISO/IEC - 27001-2013 Certified)

	c) Ans.	Explain - 'over reinforced sections are not permitted as per IS codes". 1) In over-reinforced section, percentage of steel is more than critical percentage. 2) Due to this, the concrete crushes reaching its ultimate strain firstly before steel reaching its yield point. 3) In this case, the beam will fail initially due to overstress in the concrete, suddenly without giving any warning. 4) Therefore, design codes restrict the percentage of steel in RC sections to that of balanced section thus disallowing over- reinforced section.	$1 M$ $1 M$ $1 M$ $1 M$	
	d) Ans.	Define Nominal Cover. Why cover is provided? Nominal cover: It is defined as the distance measured from the concrete surface to the nearest surface/edge of the reinforcing bar. Purposes of providing cover to reinforcement: 1) To prevent corrosion of steel. 2) To give necessary embedment to the reinforcing bar.	2M	
	e)	For a T-beam with following dimensions: Width of flange $=1500 \mathrm{~mm}$ Width of web $=\mathbf{3 0 0} \mathbf{~ m m}$ Effective depth $=500 \mathrm{~mm}$ Depth of slab $=120 \mathrm{~mm}$ Tension steel $=A_{\text {st }}=2000$ mm 2 Materials $=$ M20- $\mathrm{Fe}_{\mathrm{e}} \mathbf{4 1 5}$ Calculate ultimate moment of resistance of the section. Given data : $\begin{aligned} & b_{f}=1500 \mathrm{~mm} \\ & b_{w}=300 \mathrm{~mm} \\ & d=500 \mathrm{~mm} \\ & D_{f}=120 \mathrm{~mm} \\ & A_{s t}=2000 \mathrm{~mm}^{2} \\ & M 20 \Longrightarrow f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{~F}_{\mathrm{e}} 415 \Longrightarrow \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$		

To find ultimate moment of resistance $=\mathrm{M}_{u}=$?
Step 1: Calculate neutral axis depth x_{u} :
$0.36 f_{c k} * b_{f} * x_{u}=0.87 f_{y} * A_{s t}$
$0.36 * 20 * 1500 * x_{u}=0.87 * 415 * 2000$
$x_{u}=66.851 \mathrm{~mm}<\mathrm{D}_{\mathrm{f}}=120 \mathrm{~mm}$
$X_{\text {umax }}=0.48 \mathrm{~d}$

$$
=0.48 \times 500
$$

$X_{\text {umax }}=\mathbf{2 4 0} \mathbf{~ m m}$
$\mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{umax}}$
. Section is under reinforced
Step 2: Calculate Ultimate moment of resistance M_{u} :
$M_{u}=T_{u}{ }^{*} Z_{u}$
$M_{u}=0.87 * f_{y} * A_{s t} *\left(d-0.42 * x_{u}\right)$
$M_{u}=0.87$ * 415 * 2000 * (500-0.42 * 66.851)
$M_{u}=340.77 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
$M_{u}=340.77 \mathrm{kN}-\mathrm{m}$

