

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### WINTER-19 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648

Page **1** of **22** 

### Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.



## WINTER-19 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648

Page **2** of **22** 

| Q No.  | Answer                                                                                 | Marking |
|--------|----------------------------------------------------------------------------------------|---------|
|        |                                                                                        | scheme  |
| 1 a    | Attempt any 3                                                                          | 12      |
| 1a-i   | Fick's law of diffusion                                                                | 2       |
|        | Fick's law states that the flux of a diffusing component A in z direction in a         |         |
|        | binary mixture of A and B is proportional to the molar concentration gradient.         |         |
|        | $J_A = -D_{AB}dC_A/dZ$                                                                 | 2       |
|        | Where $J_{A}$ - molar flux of A in z direction                                         |         |
|        | C <sub>A</sub> – concentration of A                                                    |         |
|        | $dC_A/dZ$ – concentration gradient in z direction                                      |         |
|        | $D_{AB-}$ proportionality constant, diffusion coefficient                              |         |
|        | Z – distance in the direction of diffusion                                             |         |
| 1a-ii  | <b>1. Volatility:</b> It is the ratio of partial pressure of A to the mole fraction of | 2       |
|        | A in the liquid phase.                                                                 |         |
|        | Volatility of $A = p_A / x_A$                                                          |         |
|        | 2. Relative volatility: It is the ratio of volatility of more volatile                 | 2       |
|        | component to the volatility of less volatile component.                                |         |
|        | <b>Relative volatility</b> $(\alpha_{AB}) = p_A.x_B / x_A.p_B$                         |         |
|        | It is the measure of the separability by distillation.                                 |         |
| 1a-iii | Mixer settler:                                                                         | 4       |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)





## WINTER-19 EXAMINATION Model Answer

Subject code 17648 Subject Title: Mass Transfer Operation Page 4 of 22 Y 18 T stone G 3 Templishus AT Т, 16-1-01 1. Seema) Ti Ton 7. beinzens 20. 917 OV. Benurar ×. y Builing point diastam. Consider the process of boiling a binary mixture consisting of benzene (mvc) and toluene. The composition of the mixture is plotted on x-axis in terms of mvc and temperature of the mixture is plotted on y-axis. The mixture represented by point A is at a temperature of T1 and contains 50% 3 benzene. When we heat the mixture it will boil at a temperature T2, vapours will contain more of mvc. The vapoursat C is in equilibrium with liquid at B and thus BC is known as the tie line. If we reheat the condensate obtained at this stage, it will boil at T3 and the vapours issuing will contain more of mvc, thus enrichment of benzene takes place.

In the process of boiling, the mixture boils over a temperature range, so the term used is bubble point. The liquid represented by any point on the lower curve is at its bubble point and the lower curve is called bubble point temperature curve.

When a mixture of vapours is cooled, at a point condensation starts. The first drop of liquid will have composition represented by point K.While cooling the vapour becomes richer in mvc than liquid. The condensation starts at any point on the upper curve. The upper curve is the dew point temperature curve.



# WINTER-19 EXAMINATION **Model Answer**

| Subject Title: N | Mass Transfer Operation                       | Subject code            | 17648         | Page <b>5</b> of <b>22</b> |
|------------------|-----------------------------------------------|-------------------------|---------------|----------------------------|
| 1b-ii            | Basis: 100 kg solution                        |                         |               |                            |
|                  | $F = 100 \text{ kg}$ $x_F = 0.48$             |                         |               | 1                          |
|                  | Molecular weight of $Na_2S_2O_3 = 158$        |                         |               |                            |
|                  | Molecular weight of $Na_2S_2O_3 .5 H_2O = 24$ | 18                      |               | 1                          |
|                  | Material balance for water is $52 = C.(90/2)$ | 48) + L                 |               | 1                          |
|                  | Or $L = 52-0.363C$                            |                         |               | 1                          |
|                  | Material balance for solute is                |                         |               |                            |
|                  | 48 = C (158/248) + (52-0.363C) (X')           |                         |               | 1                          |
|                  | Note: Since the value of X' is not given,     | student can assume      | any value of  | X' 1                       |
|                  | and solve for C.                              |                         |               |                            |
| 2                | Attempt any 4                                 |                         |               | 16                         |
| 2-a              | Different methods of attaining super sa       | turation:               |               | 1 mark                     |
|                  | i) By cooling a concentrated, hot solution    | trough indirect heat ex | kchange.      | each for                   |
|                  | ii) By evaporating a part of solvent/ by eva  | aporating a solution.   |               | any 4                      |
|                  | iii) By adiabatic evaporation and cooling.    |                         |               |                            |
|                  | iv) By adding a new substance which it        | reduces the solubility  | of the origin | nal                        |
|                  | solute, i.e. by salting.                      |                         |               |                            |
|                  | v) By chemical reaction with a third subst    | ance                    |               |                            |
| 2-b              | Fluidised bed dryer:                          |                         |               | 4                          |



| ect Title: | Mass Transfer Operation                                            | Subject code                | 17648 | Page <b>6</b> of <b>22</b> |
|------------|--------------------------------------------------------------------|-----------------------------|-------|----------------------------|
|            | Wet feed<br>Wet feed<br>Fluidised bed<br>Hot air in<br>Cooling air | Air out<br>Cyclone<br>Fines |       |                            |
| 2-c        | Different mass transfer theories:                                  |                             |       | 1 mark                     |
|            | <b>1.</b> Whitman's two film theory                                |                             |       | each                       |
|            | 2. Higbie's penetration theory                                     |                             |       |                            |
|            | 3. Danckwert's surface renewal                                     | theory                      |       |                            |
|            | 4. Toor and Marchello's film pe                                    | enetration theory           |       |                            |
| 2-d        | Spray Column:                                                      |                             |       | 4                          |
|            |                                                                    |                             |       |                            |







| t Title: Mass Transfer Operation  | Subject code                                      | 17648           | Page <b>8</b> of <b>22</b> |
|-----------------------------------|---------------------------------------------------|-----------------|----------------------------|
| distillate and W kmoles of        | residual liquid in still which are obta           | ined at the e   | end                        |
| of operation. Let $y_D$ and $y_D$ | $_{\rm V}$ be the mol fr of A in distillate and b | oottom resid    | ual                        |
| liquid.                           |                                                   |                 | 2                          |
| Let L be kmoles of liquid         | n the still at any time during the cours          | e of distillat  | ion                        |
| and let x be mol fr of A in       | liquid.Let very small amount dD kmo               | l of distillate | of                         |
| composition y in equilibri        | um with the liquid is vaporized. The              | en compositi    | ion                        |
| and quantity of liquid dec        | eases to (x-dx) and L to (L-dL) respect           | tively.         |                            |
| Overall material balance i        | L=L-dL+dD                                         |                 |                            |
| Or $dL = dD$                      |                                                   |                 |                            |
| Material balance for comp         | onent A is Lx=(L-dL)(x-dx)+ydD                    |                 | 2                          |
| Lx = Lx - Ldx - xdL + dLdx + y    | lD                                                |                 |                            |
| dLdx=0                            |                                                   |                 |                            |
| 0 = -Ldx - xdL + ydL              |                                                   |                 |                            |
| But dD=dL                         |                                                   |                 |                            |
| i.e. 0=-Ldx-xdL+ydL               |                                                   |                 | 2                          |
| Ldx=(y-x)dL                       |                                                   |                 |                            |
| dL/L=dx/(y-x)                     |                                                   |                 |                            |
| Integrating the equation b        | tween the limits L=F, x=x <sub>F</sub> , L=W x=x  | W               |                            |
| F xF                              |                                                   |                 |                            |
| $\int dL/L = \int dx/(y-x)$       |                                                   |                 |                            |
| W xW                              |                                                   |                 |                            |
| X <sub>F</sub>                    |                                                   |                 |                            |
| $Ln(F/W) = \int dx/(y-x)$         |                                                   |                 | 2                          |
| X <sub>W</sub>                    |                                                   |                 |                            |
| This is Rayleigh's equation       | n                                                 |                 |                            |
| 3-b Feed containing 40 mole 9     | benzene                                           |                 |                            |
| xF = mole fraction of             | penzene in feed                                   |                 |                            |



# WINTER-19 EXAMINATION **Model Answer**

| ect Title: N | Mass Transfer Operation                               | Subject code          | 17648         | Page <b>9</b> of <b>22</b> |
|--------------|-------------------------------------------------------|-----------------------|---------------|----------------------------|
|              | = mole % benzene /100                                 |                       |               | 1                          |
|              | xF = 40/100 = 0.4                                     |                       |               |                            |
|              | given 50 mole % of the feed is vaporized. The         | herefore,             |               |                            |
|              | f = molal fraction of feed that is vaporized. T       | Therefore,            |               | 1                          |
|              | f = molal fraction of feed that is vaporized          |                       |               |                            |
|              | 50/100 = 0.5                                          |                       |               |                            |
|              | Slope of operating line for flash distillation =      | $=-\frac{(1-f)}{f}$   |               | 1                          |
|              | Slope = $\frac{-(1-0.5)}{0.5} = -1.0$                 |                       |               |                            |
|              | Draw the equilibrium curve with the help of           | data given.           |               | 1                          |
|              | The point of intersection of the operating line       | e and the diagonal is | $s(x_F, x_F)$ |                            |
|              | Mark that point on the diagonal and draw op           | erating line through  | it with slope | =                          |
|              | -1.0 which will cut the equilibrium curve at p        | point say P. through  | P read the    | 2                          |
|              | equilibrium liquid phase and vapor phase con          | mpositions from the   | x-axis and y  | r_                         |
|              | axis respectively.                                    |                       |               |                            |
|              | <b>Equilibrium : liquid phase composition =</b>       | 0.3 mole fraction of  | f benzene     | 2                          |
|              | Equilibrium : vapour phase composition :              | = 0.5 mole fraction   | of benzene    |                            |
| 3-с          | <b>Basis:</b> Feed containing 40% benzene and 60      | )% toluene            |               |                            |
|              | $X_F$ = mole fraction of benzene in the feed          |                       |               |                            |
|              | = 40/100 =0.4                                         |                       |               |                            |
|              | Similarly $X_D = 90/100 = 0.9$                        |                       |               |                            |
|              | Xw= 10/100=0.1                                        |                       |               | 2                          |
|              | Relative volatility $\alpha = 2.4$                    |                       |               |                            |
|              | With the help of relative volatility, generate assume | e x-y data For gene   | erating x-y d | ata                        |
|              | $X = 0, 0.1, 0.2, \dots$ and find the corresponding   | ng values of y from   | the relation  |                            |



| t Title: I | Mass Ti                                            | ransfer  | Operat     | ion     |           |         |           | Subje        | ect cod  | e      | 17648 P   |       | Page <b>10</b> of <b>22</b> |
|------------|----------------------------------------------------|----------|------------|---------|-----------|---------|-----------|--------------|----------|--------|-----------|-------|-----------------------------|
|            | X                                                  | 0        | .1         | .2      | .3        | .4      | .5        | .6           | .7       | .8     | .9        | 1     |                             |
|            | У                                                  | 0        | .21        | .38     | .51       | .62     | .71       | .78          | .85      | .91    | .95       | 1     |                             |
|            |                                                    |          |            | 1       | 1         |         | 1         |              |          | 1      |           |       |                             |
|            | Draw                                               | diagor   | al and     | plot th | e equil   | ibrium  | diagra    | m.           |          |        |           |       |                             |
|            | Start                                              | constr   | ucting     | stages  | from      | point   | (0.9,0    | .9) on       | diago    | nal ti | 11 (0.1,0 | ).1)  | on                          |
|            | diago                                              | nal be   | tween      | diago   | nal ar    | nd equ  | uilibriu  | m dia        | gram.    | Cou    | nt num    | ber   | of                          |
|            | comp                                               | leted tr | iangles    |         |           |         |           |              |          |        |           |       |                             |
|            | From                                               | the gra  | ph the     | theore  | etical st | ages re | equired   | includ       | ling rel | ooiler | n =6      |       |                             |
|            | Num                                                | ber of s | tages re   | equirec | l in col  | umn=    | n - 1 = 6 | ·1= <b>5</b> |          |        |           |       |                             |
| 4 a        | Atter                                              | npt ang  | y <b>3</b> |         |           |         |           |              |          |        |           |       | 1                           |
| 4a-i       | Diffe                                              | rentiat  | e betw     | een dis | stillatio | on and  | extra     | ction        |          |        |           |       | 1 mar                       |
|            | Poir                                               | nts      |            |         | Disti     | llation | l         |              | Extr     | actio  | n         |       | eac                         |
|            | Puri                                               | ty of pr | oduct      |         | Give      | s al    | most      | pure         | Does     | n't    | give      | pu    | re                          |
|            |                                                    |          |            |         | produ     | ıct     |           |              | produ    | ıct    |           |       |                             |
|            | Ope                                                | rating c | ost        |         | Cost      | is Low  | 7.        |              | Cost     | is hig | jh.       |       |                             |
|            | Phas                                               | ses invo | olved      |         | Phase     | es in   | volved    | are          | Phase    | es i   | nvolved   | aı    | re                          |
|            |                                                    |          |            |         | liquio    | d and v | vapour    |              | liquio   | ł      |           |       |                             |
|            | Tem                                                | peratur  | e cond     | itions  | Need      | s he    | eating    | and          | Does     | not    | need h    | eatin | ıg                          |
|            |                                                    |          |            |         | cooli     | ng      | prov      | sions.       | and      | coolir | ng provi  | sion  | s.                          |
|            |                                                    |          |            |         | High      | tem     | peratu    | e is         | Take     | s pla  | ace at    | rooi  | m                           |
|            |                                                    |          |            |         | requi     | red     |           |              | temp     | eratu  | e         |       |                             |
| 4a-ii      | Analogy between mass and heat transfer operations  |          |            |         |           |         |           |              |          |        |           |       |                             |
|            | 1                                                  | ) Gene   | eral mo    | olecula | r tran    | sport e | equatio   | n            |          |        |           |       |                             |
|            | Rate of transfer process=Driving force/ resistance |          |            |         |           |         |           |              |          |        |           |       |                             |
|            | 2)                                                 | ) Mole   | cular      | diffusi | on equ    | ations  |           |              |          |        |           |       |                             |
|            | 2) Indecular diffusion equations.                  |          |            |         |           |         |           |              |          |        |           |       |                             |



| t Title: N | lass Transfer Operation                                                                                                                             | Subject code                    | 17648           | Page <b>11</b> of <b>22</b> |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|-----------------------------|
|            | For Mass diffusion Fick's equat                                                                                                                     | tion is $J_A = -D_{AB} dC_A/dZ$ |                 |                             |
|            | 3) Turbulent diffusion equations                                                                                                                    | 5:                              |                 |                             |
|            | Heat transfer $q/A=(k+\epsilon_H) d/d$                                                                                                              | z(T)                            |                 |                             |
|            | Mass transfer $J_A = -(D_{AB} + \epsilon_D) d$                                                                                                      | $C_A/dZ$                        |                 |                             |
| 4a-iii     | Derive $Y = \alpha . x / [1 + x(\alpha - 1)]$                                                                                                       |                                 |                 |                             |
|            | Relative volatility ( $\alpha$ ) is the ratio of vol                                                                                                | atility of more volatile co     | mponent to t    | hat                         |
|            | of less volatile component                                                                                                                          |                                 |                 |                             |
|            | $\boldsymbol{\alpha} = \mathbf{p}_{\mathrm{A}}.\mathbf{x}_{\mathrm{B}} / \mathbf{x}_{\mathrm{A}}.\mathbf{p}_{\mathrm{B}}$                           |                                 |                 |                             |
|            | But $P.y_A = p_A$ and $P.y_B = p_B$                                                                                                                 |                                 |                 |                             |
|            | Therefore $\boldsymbol{\alpha} = \mathbf{P} \cdot \mathbf{y}_{A} \cdot \mathbf{x}_{B} / \mathbf{x}_{A} \cdot \mathbf{P} \mathbf{y}_{B}$             |                                 |                 |                             |
|            | $= (y_A/y_B) / (x_A/x_B)$                                                                                                                           |                                 |                 |                             |
|            | Thus relative volatility is the ratio of                                                                                                            | concentration ratio of A        | to B in vapo    | our                         |
|            | phase to that in liquid phase.                                                                                                                      |                                 |                 |                             |
|            | $\mathbf{A} = \mathbf{y}_{\mathrm{A}} \mathbf{x}_{\mathrm{B}} / \mathbf{x}_{\mathrm{A}} \mathbf{y}_{\mathrm{B}}$                                    |                                 |                 |                             |
|            | But $y_B = 1$ - $y_A$ and $x_B = 1$ - $x_A$                                                                                                         |                                 |                 |                             |
|            | Therefore $\boldsymbol{\alpha} = \mathbf{y}_{A}.(1-\mathbf{x}_{A}) / \mathbf{x}_{A}.(1-\mathbf{y}_{A})$                                             |                                 |                 |                             |
|            | $\boldsymbol{\alpha} \mathbf{x}_{\mathbf{A}.} (1-\mathbf{y}_{\mathbf{A}}) = \mathbf{y}_{\mathbf{A}}.(1-\mathbf{x}_{\mathbf{A}})$                    |                                 |                 |                             |
|            | $\boldsymbol{\alpha} \mathbf{x}_{A.} - \boldsymbol{\alpha} \mathbf{x}_{A} \mathbf{y}_{A}) = \mathbf{y}_{A.}(1-\mathbf{x}_{A})$                      |                                 |                 |                             |
|            | $\boldsymbol{\alpha} \mathbf{x}_{\mathrm{A}} = \mathbf{y}_{\mathrm{A}} + \mathbf{y}_{\mathrm{A}} \mathbf{x}_{\mathrm{A}} (\boldsymbol{\alpha} - 1)$ |                                 |                 |                             |
|            | $= y_{A}[1 + x_{A}(\alpha - 1)]$                                                                                                                    |                                 |                 |                             |
|            | $y_A = \boldsymbol{\alpha} x_A / [1 + x_A(\boldsymbol{\alpha} - 1)]$                                                                                |                                 |                 |                             |
|            | or y = $\alpha x / [1 + x(\alpha - 1)]$                                                                                                             |                                 |                 |                             |
| 4a-iv      | Selection criteria for solvent in gas a                                                                                                             | <b>bsorption</b> : (any 4)      |                 | 1 mar                       |
|            | While selecting a particular solvent for                                                                                                            | r absorption operation, th      | e following     | eac                         |
|            | properties of the solvent are considered                                                                                                            | l.                              |                 |                             |
|            | 1) Gas solubility : the solubility of so                                                                                                            | blute gas in a solvent shou     | lld be high . t | he                          |
|            | solvent selected should have a high                                                                                                                 | n solubility for the solute     | to be absorbe   | d                           |



| ct Title:  | Mass Transfer Operation                                                                                                                                                                                                                                                                                                                                                                                                                                               | Subject code                                                                                                                                                                                                                                        | 17648                                                                                                                       | Page <b>12</b> of <b>22</b> |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|            | <ol> <li>Volatility : As the gas leaving an abs<br/>the solvent, there will be a loss of the<br/>operation, hence to minimize the solv<br/>volatile.</li> <li>Corrosive nature : the solvent should<br/>materials of construction so that the operation<br/>equipment will not be too expensive.</li> <li>Viscosity : the solvent should have a<br/>rates, low pumping cost and better he<br/>viscous.</li> <li>Cost and availability : the solvent should</li> </ol> | orption unit is generally<br>e solvent with the gas leavent loss, the solvent sh<br>not be corrosive toward<br>construction material for<br>low viscosity for rapid<br>eat transfer. The solvent                                                    | y saturated wi<br>aving the uni<br>ould be less<br>ds common<br>r an absorption<br>absorption<br>should be no               | ith<br>it<br>on<br>on       |
|            | 6) Miscellaneous : the solvent should be                                                                                                                                                                                                                                                                                                                                                                                                                              | e non-toxic, non-flamma                                                                                                                                                                                                                             | able, non-                                                                                                                  |                             |
|            | foaming, and chemically stable from                                                                                                                                                                                                                                                                                                                                                                                                                                   | a handling and storage                                                                                                                                                                                                                              | point of view                                                                                                               | ν.                          |
| <b>4</b> b | Attempt any 1                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |                                                                                                                             | 6                           |
|            | In a packed column there are two flows f<br>Liquid fed at the top of column flows dow<br>in the packings, the same time gas mixtur<br>by using a blower or a compressor. To m<br>must be less than that at the bottom. In pa<br>available for liquid down flow & gas up f<br>function of both phase flow rates & is im<br>The variation of pressure drop with<br>as shown in fig.                                                                                     | lowing in counter current<br>wn the column through the<br>re is forced up through the<br>aintain flow of gas, pre-<br>acked column as same controls and the<br>flow, the gas pressure due<br>portant in design of pact<br>gas velocity is plotted o | nt direction.<br>the void spac<br>he void spac<br>ssure at the t<br>hannels are<br>rop is a<br>ked column.<br>n log-log gra | ees<br>es<br>op<br>2<br>aph |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / Flooding Poi                                                                                                                                                                                                                                      | nt Y                                                                                                                        |                             |



| ct Title: N | Aass Transfer Operation                                   | Subject code               | 17648           | Page <b>13</b> of <b>22</b> |
|-------------|-----------------------------------------------------------|----------------------------|-----------------|-----------------------------|
|             | Log ΔP Dry Pa                                             | acking                     |                 |                             |
|             |                                                           | Loading point X            |                 | 1                           |
|             | Log Vg                                                    |                            |                 |                             |
|             | In case of dry packing, the relationship be               | etween pr.drop and gas     | velocity is     |                             |
|             | represented by a straight line indicating th              | hat pressure drop is proj  | portional to    |                             |
|             | G <sup>1.8-2</sup> . For wet packing, the relationship is | s indicated by straight li | ne, but for a   | 1                           |
|             | given velocity, pressure drop will be more                | e than that for dry pack   | ing.            |                             |
|             | With the liquid flow down the tower at lo                 | w and moderate gas vel     | locities, pr.di | rop                         |
|             | is proportional to 1.8 <sup>th</sup> power of gas veloc   | city. Up to point X the a  | mount of        |                             |
|             | liquid held up in packing is constant. At p               | point X the gas flow beg   | gins to imped   | le 1                        |
|             | the down flow of liquid and local accumu                  | lation of liquid appears   | here and the    | ere                         |
|             | in packings.                                              |                            |                 |                             |
|             | As the gas velocity increases further liqui               | d hold up progressively    | v increases du  | ıe                          |
|             | to which free area for gas flow becomes s                 | smaller and pressure dro   | op rises much   | 1                           |
|             | more quickly. At gas flow rates beyond Y                  | , pr.drop rises very stee  | eply. At poin   | t                           |
|             | Y, entrainment of liquid by gas leaving th                | ne top of tower increase   | s and tower i   | s 1                         |
|             | then said to be flooded. The gas velocity of              | corresponding to the flo   | ooding          |                             |
|             | conditions is called as flooding velocity.                |                            |                 |                             |
| 4.b ii      | Rotary drum Dryer:                                        |                            |                 |                             |
|             | A rotary vacuum filter consists of a large                | rotating drum covered      | by a cloth. T   | The                         |
|             | drum is suspended on an axial over a trou                 | igh containing liquid/sc   | olids slurry w  | vith                        |
|             | approximately 50-80% of the screen area                   | immersed in the slurry.    |                 |                             |
|             | Working: As the drum rotates into and                     | out of the trough, the s   | slurry is suck  | ked                         |



| t Title: | Mass Transfer Operation                                              | Subject code               | 17648          | Page <b>14</b> of <b>22</b> |
|----------|----------------------------------------------------------------------|----------------------------|----------------|-----------------------------|
|          | on the surface of the cloth and rotated                              | l out of the liquid/solids | suspension a   | s a                         |
|          | cake. When the cake is rotating out, it                              | is dewatered in the dying  | g zone. The ca | ake 3                       |
|          | is dry because the vacuum drum is com                                | tinuously sucking the cak  | te and taking  | the                         |
|          | water out of it. At the final step of the                            | he separation, the cake    | is discharged  | as                          |
|          | solids products and the drum rotates co                              | ntinuously to another sep  | paration cycle |                             |
|          | Vapor hood<br>Vapor hood                                             |                            |                | 3                           |
| 5        | Attempt any4                                                         |                            |                | 16                          |
| 5-a      | Basis: 100 kmoles/hr Methanol – water                                | solution                   |                |                             |
|          | $X_{\rm F} = 0.36, X_{\rm D} = 0.965, X_{\rm W} = 0.1$               |                            |                | 1                           |
|          | Let D kmoles/hr distillate and W kmole                               | es/ hr residue             |                |                             |
|          | Overall balance is 100= D+W(1)                                       |                            |                | 1                           |
|          | Balance for methanol is                                              |                            |                |                             |
|          | $\mathbf{E}\mathbf{V} = \mathbf{D}\mathbf{V} + \mathbf{W}\mathbf{V}$ |                            |                |                             |

# WINTER-19 EXAMINATION **Model Answer**

| The: | Wass mansier Operation Subject code 17648 P                        |  |
|------|--------------------------------------------------------------------|--|
|      | 0.36*100 = 0.965  D + 0.1  W(2)                                    |  |
|      | Solving the above equations                                        |  |
|      | Distillate (D)= 30.05 kmoles/hr                                    |  |
|      | Residue(W) =69.95 kmoles/hr                                        |  |
| 5-b  | Bubble cap tray:                                                   |  |
|      | gas flow Rises tray<br>Bubble cap.                                 |  |
| 5-c  | Types of gas absorption:                                           |  |
|      | <b>1. Physical absorption:</b> It is a purely physical phenomenon. |  |
|      | Example: Absorption of ammonia from ammonia- air mixture by water  |  |
|      | 2. Absorption accompanied by a chemical reaction.                  |  |
| - 1  | Example: Absorption of $NO_2$ in water to produce nitric acid.     |  |
| 5-d  | Values of q lines for various feed conditions:                     |  |
|      | q = 0 (saturated vapour)                                           |  |
|      | q = 1 (saturated liquid)                                           |  |
|      |                                                                    |  |
|      | 0 < q < 1 (mix of liquid and vapour)                               |  |
|      | 0 < q < 1 (mix of liquid and vapour)<br>q > 1 (subcooled liquid)   |  |







|     | 3. Process conditions                                                                        |   |
|-----|----------------------------------------------------------------------------------------------|---|
|     | 4. Type of packing                                                                           |   |
|     |                                                                                              |   |
| 6   | Attempt any 2                                                                                | 1 |
| 6-a | Initial moisture content $X_1 = 0.35/(10.35) = 0.5385$                                       |   |
|     | Final moisture content $X_2=0.1/(1-0.1)=0.111$                                               |   |
|     | Equilibrium moisture content X <sup>*</sup> =0.04/(1-0.04)=0.0417                            |   |
|     | Critical moisture content $X_c=0.14/(1-0.14)=0.1628$                                         |   |
|     | $t = W'/ARc \{ (X_1-X_c) + (X_c - X^*) ln[ (X_c - X^*)/(X_2 - X^*)] \}$                      |   |
|     | $5 = W'/ARc \{ (0.5385-0.1628) + (0.1628 - 0.0417) ln[ (0.1628 - 0.0417)/(0.111 - 0.0417)] $ | _ |
|     | 0.0417)]}                                                                                    |   |
|     | W'/Arc = 11.28                                                                               |   |
|     | For second case $X2 = 0.06/(1-0.06)=0.0638$                                                  |   |
|     | t = 11.28 { $(0.5385-0.1628) + (0.1628 - 0.0417)\ln[(0.1628-0.0417)/(0.0638 - 0.0417)]$      | _ |
|     | 0.0417)]}                                                                                    |   |
|     | t = 6.56 hr.                                                                                 |   |
| 6-b | Time of drying under constant drying conditions:                                             |   |
|     | Consider that the wet solids are to be dried by passing the hot air over them                |   |
|     | under constant drying conditions. The time of drying required to dry the                     |   |
|     | material from initial moisture to the final moisture content of solids, is the sum           |   |
|     | of the time required during the falling rate period.                                         |   |
|     | Constant rate period :                                                                       |   |
|     | Let X1 be the initial moisture content of the wet solids and $X_2$ be the final              |   |
|     | moisture content of the wet solids during the constant rate period. Let $X_C$ be the         | e |
|     | critical moisture content of the wet solids.                                                 |   |
|     | The rate of drying is given by                                                               |   |



| Subject Titl                                 | e: Mass Transfer Operation                                                                         | Subject code                 | 17648               | Page <b>18</b> of <b>22</b> |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|---------------------|-----------------------------|--|--|
| $R = R_C = rate during constant rate period$ |                                                                                                    |                              |                     |                             |  |  |
|                                              | $\mathbf{R}_{\mathbf{C}} = -\frac{\mathbf{W}'}{\mathbf{A}} \times \frac{\mathbf{dX}}{\mathbf{dt}}$ |                              | (2)                 |                             |  |  |
|                                              | Where                                                                                              |                              |                     |                             |  |  |
|                                              | W' = mass of dry                                                                                   | solids in kg                 |                     |                             |  |  |
|                                              | A = area of dryin                                                                                  | ng surface in m <sup>2</sup> |                     |                             |  |  |
|                                              | $R_C = rate in kg/(n)$                                                                             | n <sup>2</sup> .h)           |                     |                             |  |  |
|                                              | t = time in hour                                                                                   | s (h)                        |                     |                             |  |  |
|                                              | Rearranging Equation (2), we get, Type equ                                                         | ation here.                  |                     | 1                           |  |  |
|                                              | $dt = \frac{W'}{A.RC} dX$                                                                          |                              | (3)                 |                             |  |  |
|                                              | Integrating Equation (3) between the limit                                                         | s :                          |                     |                             |  |  |
|                                              |                                                                                                    |                              |                     |                             |  |  |
|                                              | $t=0,  X=X_1$                                                                                      |                              |                     |                             |  |  |
|                                              | and $t = t$ , $X = X_2$ , we get                                                                   | t                            |                     |                             |  |  |
|                                              |                                                                                                    |                              |                     |                             |  |  |
|                                              | $\int_0^t dt = -\frac{W'}{A.RC} \int_{X1}^{X2} dX$                                                 |                              | .(4)                |                             |  |  |
|                                              |                                                                                                    |                              |                     | 1                           |  |  |
|                                              | $t = -\frac{W'}{ABC} [X_2 - X_2]$                                                                  | X <sub>1</sub> ]             | (5)                 |                             |  |  |
|                                              |                                                                                                    |                              |                     |                             |  |  |
|                                              | $t = \frac{W'}{A.RC} [X_1 - X_1]$                                                                  | [ <sub>2</sub> ]             | (6)                 |                             |  |  |
|                                              | equation (6) gives the time required for dryi                                                      | ng the material from         | $X_1$ to $X_2$ in t | he                          |  |  |
|                                              | constant rate period.                                                                              |                              |                     |                             |  |  |
|                                              | If the material is to be dried to the moisture                                                     | content of $X_C$ , then t    | he time             |                             |  |  |
|                                              | required during the entire constant rate period                                                    | od is given by               |                     |                             |  |  |
|                                              | $t_{\rm C} = \frac{W'}{A.RC} [X_1 -$                                                               | X <sub>C</sub> ]             | (7                  | ') 1                        |  |  |
|                                              | Falling rate period :                                                                              |                              |                     |                             |  |  |







| t Title: | Mass Transfer Operation                                                                                                        | Subject code                                                                                                                                                           | 17648          | Page <b>20</b> of <b>22</b> |
|----------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|
|          | Integrating Equation (11) between the limits                                                                                   | s :                                                                                                                                                                    |                |                             |
|          | $X = X_1$                                                                                                                      |                                                                                                                                                                        |                |                             |
|          | $\mathbf{X} = \mathbf{X}_2 \left[ \mathbf{X}_{1}, \mathbf{X}_{2} \right]$                                                      | $_2 < X_C$ ], we get                                                                                                                                                   |                |                             |
|          | $\int_{X1}^{X2} \frac{dX}{[X-X^*]} = \frac{RCA}{[XC-X^*]W'} \int_{X1}^{XC-X^*} \frac{dX}{[XC-X^*]W'} = \frac{RCA}{[XC-X^*]W'}$ | $\int_0^t t \qquad$                                                                                                                                                    | (12)           | 1                           |
|          | $t = \frac{[XC - X^*] W'}{RC A}$                                                                                               | $\ln \frac{X_1 - X^*}{X_2 - X^*} \qquad \qquad$ | (13            | )                           |
|          | Equation (13) gives the time of dying during material from $X_1$ to $X_2$ .                                                    | g the falling rate peri-                                                                                                                                               | od to dry the  |                             |
|          | If the material is to be dried from the critical                                                                               | moisture content X                                                                                                                                                     | r to the final |                             |
|          | moisture content $X_2$ ( $X_2 < X_C$ ), then the time                                                                          | e required for drving                                                                                                                                                  | during the     |                             |
|          | entire falling rate period is given by $t_f$ as :                                                                              | 1 7 0                                                                                                                                                                  | C              |                             |
|          | $t_{f} = \frac{[XC-X^{*}]W'}{RCA} \ln \frac{XC}{X2-}$                                                                          | <u>-X*</u><br>-X*                                                                                                                                                      | (14)           | 1                           |
|          | [As X <sub>1</sub> becomes X <sub>C</sub> ]                                                                                    |                                                                                                                                                                        |                |                             |
|          | $t_f = drying$ time during entire falling r                                                                                    | ate period.                                                                                                                                                            |                |                             |
|          | Total time of drying = $t_{\rm C} + t_{\rm f}$                                                                                 |                                                                                                                                                                        |                |                             |
|          | $t = \frac{W'}{A.RC} \left[ (X_1 - X_C) + (X_C - C) \right]$                                                                   | X*)] $\ln \frac{XC - X^*}{X2 - X^*}$                                                                                                                                   | (15)           |                             |
| 6-c      | Oslo Cooler crystallizer:                                                                                                      |                                                                                                                                                                        |                |                             |
|          |                                                                                                                                |                                                                                                                                                                        |                |                             |
|          |                                                                                                                                |                                                                                                                                                                        |                |                             |
|          |                                                                                                                                |                                                                                                                                                                        |                |                             |
|          |                                                                                                                                |                                                                                                                                                                        |                |                             |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)





| Subject Title: Mass Transfer Operation       | Subject code                                                                                                                                                  | 17648 | Page <b>22</b> of <b>22</b> |  |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|--|--|--|--|
| fed back to the bottom of the crystallizing  | fed back to the bottom of the crystallizing chamber through a central pipe (P).                                                                               |       |                             |  |  |  |  |
| Usually, nucleation takes place in the bed   | Usually, nucleation takes place in the bed of crystals in the crystallising                                                                                   |       |                             |  |  |  |  |
| chamber. The nuclei formed circulate wit     | chamber. The nuclei formed circulate with mother liquor and once they go<br>sufficiently large, they will be retained in the fluidised bed. Once the crystals |       |                             |  |  |  |  |
| sufficiently large, they will be retained in |                                                                                                                                                               |       |                             |  |  |  |  |
| grow to a required size, they are removed    | grow to a required size, they are removed as product from the bottom of the                                                                                   |       |                             |  |  |  |  |
| crystallising chamber through a valve 'V     | crystallising chamber through a valve 'V' as these cannot be retained in the                                                                                  |       |                             |  |  |  |  |
| fludised bed by the circulation velocity.    |                                                                                                                                                               |       |                             |  |  |  |  |
|                                              |                                                                                                                                                               |       |                             |  |  |  |  |