## Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Que. <br> No. | Sub. <br> Que. | Model Answer | Marks | Total <br> Marks |
| :---: | :---: | :--- | :---: | :---: |
| Q.1 | (A) | Solve any SIX of the following: <br> (a) <br> State the parallel axis theorem. <br> Parallel Axis Theorem: The moment of inertia about any axis <br> parallel to centroidal axis is equal to moment of inertia about that <br> particular centroidal axis (Ixx or Iyy) plus product of area of figure <br> and square of distance between these parallel axes. | $\mathbf{2}$ | $\mathbf{2}$ |
| (b) | State the Hook's law. <br> Ans. <br> Hook's Law: It states that, stress developed is directly proportional to <br> strain induced within the elastic limit of material. | $\mathbf{2}$ | $\mathbf{2}$ |  |
| (c) | Explain Bulk modulus and express it. <br> Bulk Modulus (K): It is the ratio of direct (normal) stress ( $\sigma$ ) to the <br> volumetric strain (ev $)$ of material, called as Bulk Modulus. <br> Expression of Bulk Modulus: <br> K= $\frac{\sigma}{e_{v}}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ |






| Que. No. | Sub. <br> Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | (a) | Find: $\mathrm{I}_{\mathrm{XX}}, \mathrm{I}_{\mathrm{YY}}=$ ? About OX and OY <br> To find centroid $\mathrm{G}(\overline{\mathrm{x}}, \bar{y})$ $\begin{aligned} & \mathrm{A}_{1}=\frac{1}{2} \times 600 \times 600=180000 \mathrm{~mm}^{2}, \mathrm{~A}_{2}=\frac{1}{2} \times 600 \times 600=180000 \mathrm{~mm}^{2} \\ & \mathrm{x}_{1}=\frac{2}{3} \times 600=400 \mathrm{~mm}, \mathrm{x}_{2}=600+\frac{1}{3} \times 600=800 \mathrm{~mm} \\ & y_{1}=\frac{1}{3} \times 600=200 \mathrm{~mm}, y_{2}=\frac{2}{3} \times 600=400 \mathrm{~mm} \\ & \overline{\mathrm{x}}=\frac{(180000 \times 400)+(180000 \times 800)}{180000+180000}=600 \mathrm{~mm} \\ & \bar{y}=\frac{(180000 \times 200)+(180000 \times 400)}{180000+180000}=300 \mathrm{~mm} \end{aligned}$ <br> To find $\mathrm{I}_{\mathrm{xx}}$, $\mathrm{I}_{\mathrm{XX}}=\left[\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{36}+\mathrm{A}_{1} \cdot \mathrm{~h}_{1}{ }^{2}\right]+\left[\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{36}+\mathrm{A}_{2} \cdot \mathrm{~h}_{2}{ }^{2}\right]$ <br> Here, $\mathrm{h}_{1}=\mathrm{y}_{1}=200 \mathrm{~mm}$ $\begin{aligned} & \quad \mathrm{h}_{2}=\mathrm{y}_{2}=400 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{xx}}=\left[\frac{600 \times 600^{3}}{36}+180000 \times 200^{2}\right]+\left[\frac{600 \times 600^{3}}{36}+180000 \times 400^{2}\right] \\ & \mathrm{I}_{\mathrm{xx}}=\left(1.08 \times 10^{10}\right)+\left(3.24 \times 10^{10}\right) \\ & \mathrm{I}_{\mathrm{xx}}=4.32 \times 10^{9} \mathrm{~mm}^{4} \end{aligned}$ <br> To find $\mathrm{I}_{\mathrm{YY}}$, $\mathrm{I}_{\mathrm{YY}}=\left[\frac{\mathrm{h} \cdot \mathrm{~b}^{3}}{36}+\mathrm{A}_{1} \cdot \mathrm{~h}_{3}{ }^{2}\right]+\left[\frac{\mathrm{h} \cdot \mathrm{~b}^{3}}{36}+\mathrm{A}_{2} \cdot \mathrm{~h}_{4}{ }^{2}\right]$ <br> Here, $h_{3}=x_{1}=400 \mathrm{~mm}$ $\begin{aligned} & \quad h_{4}=x_{2}=800 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{YY}}=\left[\frac{600 \times 600^{3}}{36}+180000 \times 400^{2}\right]+\left[\frac{600 \times 600^{3}}{36}+180000 \times 800^{2}\right] \\ & \mathrm{I}_{\mathrm{YY}}=\left(3.24 \times 10^{10}\right)+\left(11.88 \times 10^{10}\right) \\ & \mathrm{I}_{\mathrm{YY}}=15.12 \times 10^{10} \mathrm{~mm}^{4} \end{aligned}$ | 1 <br> 1 | (16) |



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter-2019

| Que. <br> No. | Sub. <br> Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | (c) <br> Ans. | A metal rod of 20 mm diameter and 2.5 m long when subjected to a tensile force 70 kN showed an elongation of 2.5 mm and reduction in diameter 0.006 mm . Calculate modulus of elasticity and modulus of rigidity. <br> Given: $\mathrm{d}=25 \mathrm{~mm}, \mathrm{~L}=250 \mathrm{~mm}, \mathrm{P}=200 \mathrm{kN}, \delta_{\mathrm{L}}=0.45 \mathrm{~mm}, \delta_{d}=0.0052 \mathrm{~mm}$ <br> Find: $\mathrm{E}, \mathrm{G}=$ ? $\begin{aligned} & \mu=\frac{\text { Lateral Strain }}{\text { Linear Strain }}=\frac{\left(\frac{\delta_{\mathrm{d}}}{\mathrm{~d}}\right)}{\left(\frac{\delta_{\mathrm{L}}}{\mathrm{~L}}\right)} \\ & \mu=\frac{\left(\frac{0.006}{20}\right)}{\left(\frac{2.5}{2500}\right)}=\frac{3 \times 10^{-4}}{1 \times 10^{-3}} \\ & \mu=0.3 \end{aligned}$ $\mathrm{E}=\frac{\sigma}{\mathrm{E}}=\frac{\left(\frac{\mathrm{P}}{\mathrm{~A}}\right)}{\left(\frac{\delta_{\mathrm{L}}}{\mathrm{~L}}\right)}$ $\mathrm{E}=\frac{\left(\frac{70 \times 10^{3}}{\frac{\pi}{4} \times 20^{2}}\right)}{\left(\frac{2.5}{2500}\right)}=\frac{222.817}{1 \times 10^{-3}}$ $\mathrm{E}=2.228 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ <br> As, $E=2 G(1+\mu)$ $\begin{aligned} & \mathrm{G}=\frac{\mathrm{E}}{2(1+\mu)}=\frac{2.228 \times 10^{5}}{2(1+0.3)} \\ & \mathrm{G}=0.857 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ | 1 1 1 1 1 1 1 1 1 | 8 |



| Que. No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 3 | (b) <br> Ans. | An overhanging beam is supported at $A$ and $B$ with $A B=7 m \&$ $B C=2.5 \mathrm{~m} . \quad \mathrm{BC}$ being overhang. The beam is subjected to udl 80 $\mathrm{N} / \mathrm{m}$ over entire span. Draw bending moment diagram and state maximum value of bending moment and point of contra flexure. <br> Step 1: Calculation of reactions: $\begin{aligned} & \sum \mathrm{M}_{\mathrm{A}}=0 \\ & +(80 \times 9.5 \times 4.75)-\left(\mathrm{R}_{\mathrm{B}} \times 7\right)=0 \\ & \mathrm{R}_{\mathrm{B}}=515.71 \mathrm{~N} \\ & \sum \mathrm{~F}_{\mathrm{y}}=0 \uparrow+\downarrow- \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}-(80 \times 9.5)=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=760 \\ & \mathrm{R}_{\mathrm{A}}+515.71=760 \\ & \mathrm{R}_{\mathrm{A}}=244.29 \mathrm{~N} \end{aligned}$ <br> Step 2: Calculation of Shear Forces from left: <br> SF at A $=0$ $\begin{aligned} & \mathrm{A}_{\mathrm{R}}=+244.29 \mathrm{~N} \\ & \mathrm{~B}_{\mathrm{L}}=+244.29-(80 \times 7)=-315.71 \mathrm{~N} \\ & \mathrm{~B}_{\mathrm{R}}=-315.71+515.71=200 \mathrm{~N} \\ & \mathrm{C}_{\mathrm{L}}=+200-(80 \times 2.5)=0 \\ & \mathrm{C}=0 \end{aligned}$ <br> To find position (x) of Point of Contrashear i.e. pt. D from A, $\begin{aligned} & \frac{244.29}{x}=\frac{315.71}{7-x} \\ & 1710.03=560 \mathrm{x} \\ & \mathrm{x}=3.053 \mathrm{~m} \text { from } \mathrm{A} \end{aligned}$ <br> Step 3: Calculation of Bending Moments from left: <br> BM at $\mathrm{A}=0$ and $\mathrm{C}=0$ $\begin{aligned} \text { D } & =+(244.29 \times 3.053)-(80 \times 3.053 \times 1.526)=+372.98 \mathrm{~N} . \mathrm{m} \\ B & =+(244.29 \times 7)-(80 \times 7 \times 3.5)=-249.97 \mathrm{~N}-\mathrm{m} \\ \text { or } \quad B & =-80 \times 2.5 \times \frac{2.5}{2}=-250 \mathrm{~N}-\mathrm{m} \end{aligned}$ <br> Maximum Bending Moment $=+372.98$ N.m <br> To find position (y) of Point of Contraflexure i.e. pt. E from A, apply $\sum \mathrm{M}_{\mathrm{E}}=0$ $\begin{aligned} & +(244.29 \times y)-\left(80 \times y \times \frac{y}{2}\right)=0 \\ & +(244.29)=(40 \times y) \\ & y=6.107 \mathrm{~m} \text { from A } \end{aligned}$ | 1 | 8 |


| Que. <br> No. | Sub. <br> Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 3 | (b) |  |  |  |
|  |  |  |  |  |
|  |  | Beam |  |  |
|  |  |  | 1 |  |
|  |  |  |  |  |
|  |  |  | 1 | 8 |


| Que. No. | Sub. <br> Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 3 | (c) <br> Ans. | A beam section 100 mm X 200 mm is subjected to a shear force of 60 kN . Determine the shear stresses induced on a layer at 50 mm above NA and 25 mm below NA. <br> Given: $\mathrm{b}=100 \mathrm{~mm}, \mathrm{~d}=200 \mathrm{~mm}, \mathrm{~S}=60 \mathrm{kN}=60 \times 10^{3} \mathrm{~N}$. <br> Find: $q$ at 50 mm above N.A. and q at 25 mm below N.A. $\begin{aligned} & \mathrm{A}=100 \times 50=5000 \mathrm{~mm}^{2} \\ & \overline{\mathrm{y}}=50+\frac{50}{2}=75 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{NA}}=\frac{100 \times 200^{3}}{12}=66.666 \times 10^{3} \mathrm{~mm}^{4} \\ & \mathrm{q}=\frac{\mathrm{SA} \overline{\mathrm{y}}}{\mathrm{bI}} \\ & \mathrm{q}_{50}=\frac{60 \times 10^{3} \times 5000 \times 75}{100 \times 66.666 \times 10^{3}} \\ & \mathrm{q}_{50}=3.375 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $\begin{aligned} & \mathrm{A}=100 \times 75=7500 \mathrm{~mm}^{2} \\ & \overline{\mathrm{y}}=50+\frac{75}{2}=62.5 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{NA}}=\frac{100 \times 200^{3}}{12}=66.666 \times 10^{3} \mathrm{~mm}^{4} \\ & \mathrm{q}=\frac{\mathrm{S} . \mathrm{A} \cdot \mathrm{y}}{\mathrm{~b} \cdot \mathrm{I}} \\ & \mathrm{q}_{25}=\frac{60 \times 10^{3} \times 7500 \times 62.5}{100 \times 66.666 \times 10^{3}} \\ & \mathrm{q}_{25}=4.218 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ | 1 1 1 1 1 1 1 1 1 1 1 1 | 8 |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
Model Answer: Winter-2019

| Que. No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 4 | (a) <br> Ans. | Attempt any TWO of the following: <br> A tee section has a flange $210 \mathrm{~mm} \mathrm{X} \mathbf{1 2} \mathbf{~ m m}$ and a vertical web 180 $\mathrm{mm} \times 15 \mathrm{~mm}$. Calculate moment of inertia about both the axis passing through its centroid. <br> Given: Flange $(210 \times 12) \mathrm{mm}$, Web $(180 \times 15) \mathrm{mm}$. <br> Find: $\mathrm{I}_{\mathrm{XX}}, \mathrm{I}_{\mathrm{YY}}=$ ? <br> To find centroid $G(\bar{x}, \bar{y})$ $\begin{aligned} & \overline{\mathrm{x}}=\frac{210}{2}=105 \mathrm{~mm}(\text { Due to symmetry }) \\ & \mathrm{A}_{1}=15 \times 180=2700 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{2}=210 \times 12=2520 \mathrm{~mm}^{2} \\ & y_{1}=\frac{180}{2}=90 \mathrm{~mm} \\ & y_{2}=180+\frac{12}{2}=186 \mathrm{~mm} \\ & \left.\overline{\mathrm{y}}=\frac{(2700 \times 90)+(2520 \times 186)}{2700+2520}=136.34 \mathrm{~mm} \text { (From base of T- section }\right) \end{aligned}$ | 2 | (16) |


| Que. No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 4 | (a) | To find $\mathrm{I}_{\mathrm{xx}}$, $\begin{aligned} & \mathrm{I}_{\mathrm{XX}}=\left(\mathrm{I}_{\mathrm{xx}}\right)_{1}+\left(\mathrm{I}_{\mathrm{XX}}\right)_{2} \\ & \mathrm{I}_{\mathrm{Xx}}=\left(\frac{\mathrm{bd}^{3}}{12}+\mathrm{Ah}^{2}\right)_{1}+\left(\frac{\mathrm{bd}^{3}}{12}+\mathrm{Ah}^{2}\right)_{2} \end{aligned}$ <br> Here, $\mathrm{h}_{1}=\overline{\mathrm{y}}-y_{1}=136.34-90=46.34 \mathrm{~mm}$ $\begin{aligned} & \quad \mathrm{h}_{2}=y_{1}-\overline{\mathrm{y}}=186-136.34=49.66 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{Xx}}=\left(\frac{15 \times 180^{3}}{12}+2700 \times 46.34^{2}\right)_{1}+\left(\frac{210 \times 12^{3}}{12}+2520 \times 49.66^{2}\right)_{2} \\ & \mathrm{I}_{\mathrm{Xx}}=(13089219.37)_{1}+(6243599.943)_{2} \\ & \mathrm{I}_{\mathrm{xx}}=19.33282 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ <br> To find $\mathrm{I}_{\mathrm{YY}}$, $\left.\begin{array}{l} \mathrm{I}_{\mathrm{YY}}=\left(\mathrm{I}_{\mathrm{YY}}\right)_{1}+\left(\mathrm{I}_{\mathrm{YY}}\right)_{2} \\ \mathrm{I}_{\mathrm{YY}}=\left(\frac{\mathrm{db}}{}{ }^{3}\right)_{1}+\left(\frac{\mathrm{db}}{}{ }^{3}\right. \\ 12 \end{array}\right)_{2} .$ |  | 8 |



| Que. <br> No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | (a) | Attempt any TWO of the following <br> Determine M. I. of fig. given below about centroidal $x x$ and centroidal $y y$ axis. |  | (16) |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | Ans. |  |  |  |
|  |  | $\begin{aligned} & I x x=(I)_{\text {Square }}-(I)_{\text {Senicircle }} \\ & I x x=\left(\frac{b^{4}}{12}\right)_{1}-2\left(\frac{\pi d^{4}}{128}\right)_{2,3} \end{aligned}$ | 1 |  |
|  |  | $\begin{aligned} & I x x=\left(\frac{400^{4}}{12}\right)_{1}-2\left(\frac{\pi \times 200^{4}}{128}\right)_{2,3} \\ & I x x=\left(2.13 \times 10^{9}\right)_{1}-\left(78.54 \times 10^{6}\right)_{2,3} \\ & I x x=2.055 \times 10^{9} \mathrm{~mm}^{4} \end{aligned}$ | 1 |  |
|  |  | $\begin{aligned} & \text { Iyy }=(I)_{\text {Square }}-(I)_{\text {Semicircle }} \\ & \text { Iyy }=\left(\frac{b^{4}}{12}\right)_{1}-2\left(I_{G}+A h^{2}\right)_{2,3} \end{aligned}$ | 1 1 |  |
|  |  | $\text { Iyy }=\left(\frac{b^{4}}{12}\right)_{1}-2\left(0.11 R^{4}+\frac{\pi R^{2}}{2} \times\left(\frac{b}{2}-\frac{4 R}{3 \pi}\right)^{2}\right)_{2,3}$ | 1 |  |
|  |  | $\begin{aligned} & I y y=\left(\frac{400^{4}}{12}\right)_{1}-2\left(0.11 \times 100^{4}+\frac{\pi \times 100^{2}}{2} \times\left(\frac{400}{2}-\frac{4 \times 100}{3 \pi}\right)^{2}\right)_{2,3} \\ & I y y=\left(2.133 \times 10^{9}\right)_{1}-\left(0.802 \times 10^{9}\right)_{2,3} \\ & I y y=1.331 \times 10^{9} \mathrm{~mm}^{4} \end{aligned}$ | 2 1 |  |



| Que. No. | Sub. Que. | Model Answer | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | (c) <br> Ans. | Compare the crippling loads by Euler's and Rankine's formula for a strut with both ends fixed 3.0 m long, $40 \mathrm{~mm} \& 30 \mathrm{~mm}$ internal diameter, Take $\mathrm{E}=200 \mathrm{GPa}, \alpha=1 / 7500, \sigma_{\mathrm{c}}=320 \mathrm{MPa}$. <br> Given $: D=40 \mathrm{~mm}, d=30 \mathrm{~mm}, L=3 \mathrm{~m}$, $E=200 \mathrm{GPa}, \quad \alpha=\frac{1}{7500}, \quad \sigma_{c}=320 \mathrm{MPa}$ <br> Find: $\frac{P_{E}}{P_{R}}=$ ? <br> Le $=\frac{3000}{2}=1500 \mathrm{~mm}(\because$ Both ends are fixed $)$ <br> $A=\frac{\pi}{4}\left(D^{2}-d^{2}\right)=\frac{\pi}{64}\left(40^{2}-30^{2}\right)=549.779 \mathrm{~mm}^{2}$ <br> $I_{\min }=\frac{\pi}{64}\left(D^{4}-d^{4}\right)=\frac{\pi}{64}\left(40^{4}-30^{4}\right)=85902.924 \mathrm{~mm}^{4}$ <br> $K_{\min }=\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{85902.924}{549.779}}=12.5 \mathrm{~mm}$ <br> $\lambda=\frac{L e}{K_{\text {min }}}=\frac{1500}{12.5}=120$ <br> $P_{E}=\frac{\pi^{2} E I_{\min }}{(L e)^{2}}=\frac{\pi^{2} \times 200 \times 10^{3} \times 85902.924}{(1500)^{2}}=75362.478 \mathrm{~N}$ <br> $P_{R}=\frac{\sigma_{c} \cdot A}{1+\alpha \lambda^{2}}=\frac{320 \times 549.779}{1+\frac{(120)^{2}}{7500}}=60249.721 \mathrm{~N}$ $\frac{P_{E}}{P_{R}}=\frac{75362.478}{60249.721}=1.251$ | 1 <br> 1 | 8 |






