tified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Name: Basic Electronics

Subject Code:

17321

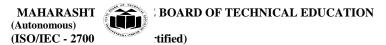
Model Answer

1

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any SIX of the following:	12- Total Marks
	(a)	State any two trivalent and pentavalent impurities each.	2M
	Ans:	Trivalent impurities are: 1) Boron (B) 2) Gallium (G) 3) Indium(In) 4) Aluminium(Al). Pentavalent impurity are: 1) Phosphorus (P) 2) Arsenic (As) 3) Antimony (Sb) 4) Bismuth (Bi)	 mark for any 2 Trivalent impuriti es mark for any 2 Pentaval ent impuriti es


WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

(b)	Draw the symbol of (i) PN junction diode (ii) Zener diode.	2M
Ans:	PN junction diode Zener diode	1M each
	Anode Cathode Cathode Cathode (A) (K)	
(c)	State the application of LED and photodiode.	2M
	Application of LED are:	1 mar
Ans:	1) Indicator in AC circuit.	for any two applicat
	2) Alphanumeric and Numeric display.	ons o each
	3) For indicating power ON/OFF conditions	diode
	4) Optical switching	
	5) In burglar alarm	
	6) Indicate digital logic state	
	Application of photodiode are:	
	1. Photo detection(both visible and invisible	
	2. Demodulation	
	3. Logic circuits	
	4. Switching	
	5. Optical communication systems6. Encoders	
(d)	State the need of filter circuit and state its types.	2M

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer

Ans:	Need of	filter circuit:	1Mark for nee		
		ircuit is required to remove the ac component present in the rectified output and nly the dc component to reach the load.	1Mark for		
	Types of Filter:				
	-		Types		
e)	Define th	ne following with respect to rectifier:	2M		
	(i) (ii)	Ripple factor TUF			
Ans:	i)	Ripple factor: Ripple Factor is the ratio of rms value of ac component present in the rectified output to the average value of rectified output.	1mark for eac		
		Ripple Factor, Y = RMS value of AC component present in Rectifier Output	definit n		
	ii)	Average Value of Rectifier Output $= \frac{V_{rms}}{V_{dc}}$ TUF: Transformer Utilization Factor (TUF) is defined as the ratio of DC power output of a rectifier to the effective Transformer VA rating used in the same rectifier.			
		= Pdc			
		Effective VA Rating of Transformer			
		where Pdc is the dc power output			
	Note: Formulas are optional.				
f)	Draw syr	nbol of UJT and transistor.	2M		
Ans:	Symbol:		1M ea		

WINTER-19 EXAMINATION

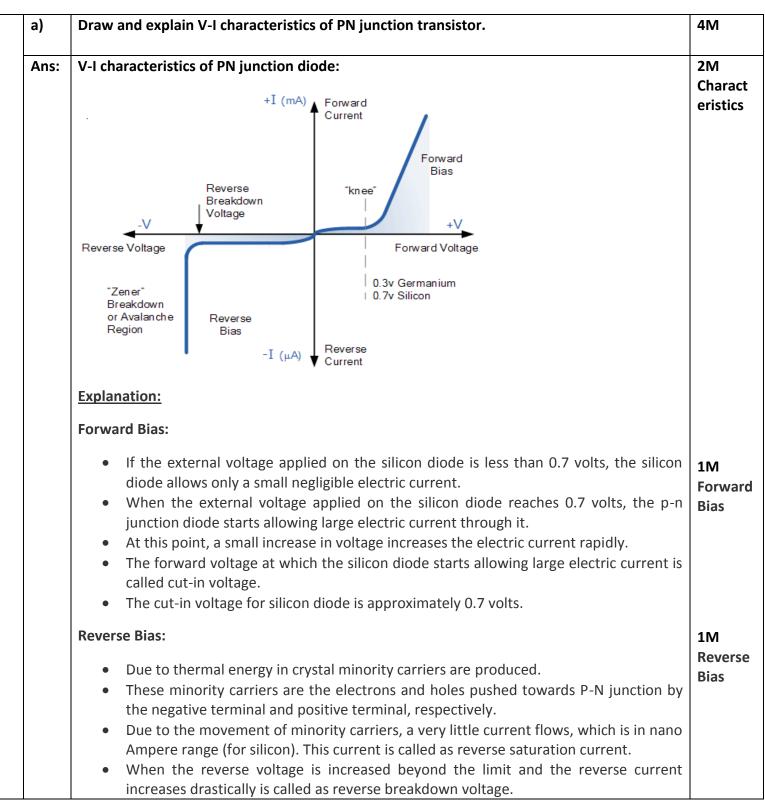
Subject Code:

17321

Model Answer

collector current (output current) to the emitter current (input current). for a $\alpha = \frac{Collector current}{Emitter current}$ for a $\alpha = \frac{I_C}{I_E}$ Beta (β): It is a current gain factor in the common emitter configuration. It is the ratio of collector current (output current) to base current (output current). for a $\beta = I_C / I_B$ Formulas are optional. formulas are optional. h) Define operating point of transistor. 2M Ans: The point which is obtained from the values of the I _C (collector current) or V _{CE} (collector-emitter voltage) when no signal is given to the input is known as the operating point or Q-point in a transistor. 2M		UJT Transistor	
Ans: ALPHA (α): It is a large signal current gain in common base configuration. It is the ratio of collector current (output current) to the emitter current (input current). Image: for example, and the emitter current (input current). $\alpha = \frac{Collector current}{Emitter current}$ $\alpha = \frac{I_C}{I_E}$ Image: for example, and the emitter current (input current). $\alpha = \frac{I_C}{I_E}$ Beta (β): It is a current gain factor in the common emitter configuration. It is the ratio of collector current (output current) to base current (output current). $\beta = I_C / I_B$ Formulas are optional. Formulas are optional. Image: formulas are optional is given to the input is known as the operating point or Q-point in a transistor. 2M		(Emitter) (Base ₂) B ₁ (Emitter) (Base ₂) (Base ₂)	
collector current (output current) to the emitter current (input current).for a defin n $\alpha = \frac{Collector current}{Emitter current}$ for a defin n $\alpha = \frac{I_C}{I_E}$ Beta (β): It is a current gain factor in the common emitter configuration. It is the ratio of collector current (output current) to base current (output current). $\beta = I_C / I_B$ Formulas are optional.Formulas are optional.h)Define operating point of transistor.Ans:The point which is obtained from the values of the I _c (collector current) or V _{CE} (collector- emitter voltage) when no signal is given to the input is known as the operating point or Q- point in a transistor.	g)	Define α and β for transistor.	2M
h) Define operating point of transistor. 2M Ans: The point which is obtained from the values of the I _c (collector current) or V _{CE} (collector- emitter voltage) when no signal is given to the input is known as the operating point or Q- point in a transistor. 2M	Ans:	collector current (output current) to the emitter current (input current). $\alpha = \frac{Collector current}{Emitter current}$ $\alpha = \frac{I_C}{I_E}$ Beta (β): It is a current gain factor in the common emitter configuration. It is the ratio collector current (output current) to base current (output current).	for eac definiti n
Ans: The point which is obtained from the values of the I _c (collector current) or V _{CE} (collector- emitter voltage) when no signal is given to the input is known as the operating point or Q- point in a transistor. 2M		•	
emitter voltage) when no signal is given to the input is known as the operating point or Q- point in a transistor.	h)	Define operating point of transistor.	2M
	Ans:	emitter voltage) when no signal is given to the input is known as the operating point or	
	Sub		Markin

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
	В)	Attempt any TWO of the following:	8-Total Marks



WINTER-19 EXAMINATION

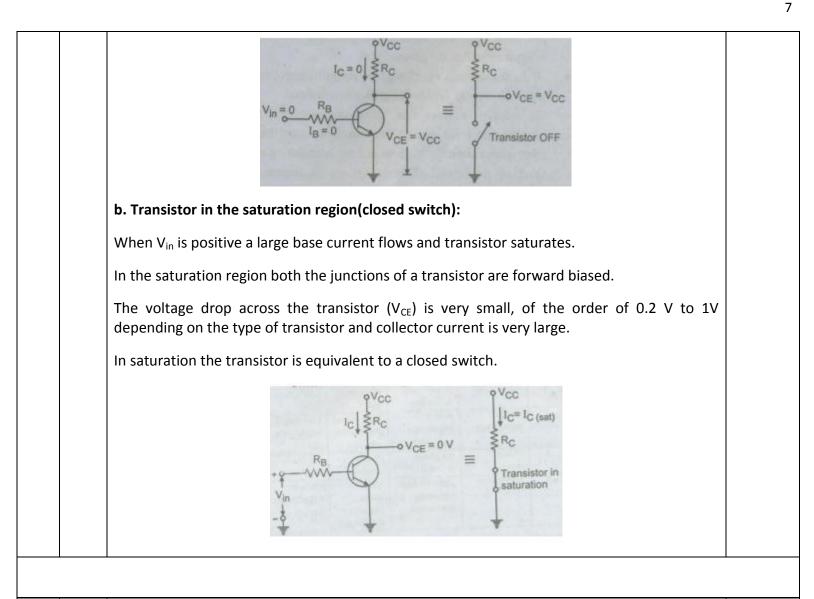
Subject Code:

```
17321
```

Model Answer

WINTER-19 EXAMINATION

Subject Code:


17321

b)	Compare H	alf wave , Full wave and Bridg	ge rectifier (Fou	r points)		4M
Ans:	Any Four Poi	nts				1M for any 4
	SI.No	Parameter	Т	ype of the rectifi	er	points
	51.NO	Parameter	Halfwave	Fullwave	Bridge	
	1.	Number of diodes	1	2	4	
	2.	V _{dc}	V_m/π	$2V_m/\pi$	$2V_m/\pi$	
	3.	Peak inverse voltage	Vm	2Vm	Vm	
	4.	Ripple factor	1.21	0.48	0.48	
	5.	Rectifier efficiency	40.6%	81.2%	81.2%	
	6.	Transformer Utilization factor	0.287	0.693	0.812	
	7.	Form factor	1.57	1.11	1.11	
c)	Draw circui	t diagram of transistor as a sv	witch and descri	be its working.		4M
Ans:	For switching applications transistor is biased to operate in the saturation or cut off region.					2marks for
	a. Transisto	r in cut- off region (open swit	(CN):			circuit diagram
		off region both the junctions rent flows through the transis		are reverse bia	sed and very small	
		-				2marks for
	-	drop across the transistor (V _c to an open switch.	$_{CE}$) is high. Thus,	in the cut off reg	ion the transistor is	working

WINTER-19 EXAMINATION

Subject Code:

```
17321
```


Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR of the following :	16- Total Marks
	a)	State and Explain any four specifications of diode.	4M
	Ans:	 Cut in voltage: The forward voltage at which the silicon diode starts allowing large electric current is called cut-in voltage. Peak Inverse Voltage (PIV): The maximum value of the reverse voltage that a PN junction or diode can withstand without damaging itself is known as its Peak Inverse 	1Mark for any four specifica

tified)

Subject Name: Basic Electronics

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

17321

		8
	 Voltage. 3) Maximum Power Rating: It is defined as the maximum power that a PN junction or diode can dissipate without damaging the device itself. 4) Maximum Forward Current: The Maximum value of the forward current that a PN junction or diode can carry without damaging the device is called its Maximum Forward Current. 5) Effective (or) R.M.S current: The effective (or) R.M.S. current squared of a periodic function of time is given by the area of one cycle of the curve, which represents the square of the function divided by the base. Any relevant four specifications should be considered. 	tion
b)	Draw circuit diagram of bridge type rectifier and describe its working with input/output waveform.	4M
Ans:	Circuit Diagram: Waveform: AC input Voltage Voltag	2M – circuit diagram 1M – Wavefor m
	 Working: During positive half cycle: The end A of the secondary winding becomes positive and end B negative. This makes diode D1 and D2 forward biased while diode D3 and D4 are reverse biased. The conventional current direction is as follows. A – D1 – RL – D2 – B making load voltage positive. During negative half cycle: 	1M – Working
	The end B is positive and A is negative.	

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer

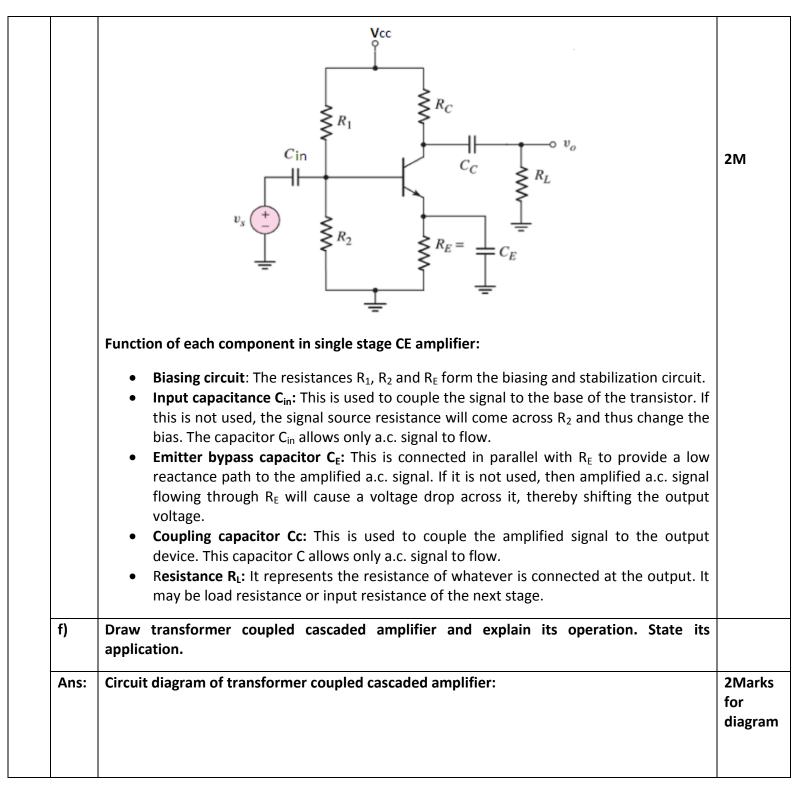
	 The conventional current through diode D2 and D3 when it is conducting is as follows. B – D3 – RL – D4 – A making load voltage negative. 	
c)	State the need for biasing and explain fixed bias circuit.	4M
Ans:	Need for biasing: Transistor Biasing is the process of setting a transistors DC operating voltage or current conditions to the correct level so that any AC input signal can be amplified correctly by the transistor.	1Mark for need
	Explanation: $ac \\ input \\ signal \\ c_1 \\ c_1 \\ c_2 $	1Mark for explanat ion 2M Circuit Diagram
	 In this method, a resistor RB of high resistance is connected in base, as the name implies. The required zero signal base current is provided by Vcc which flows through RB. The base emitter junction is forward biased, as base is positive with respect to emitter. The required value of zero signal base current and hence the collector current (as IC = βIB) can be made to flow by selecting the proper value of base resistor RB. Hence the value of RB is to be known. 	
d)	Draw the characteristics of zener diode in forward and reverse bias. Explain reverse bias characteristics.	4M
Ans:	Characteristics of zener diode in forward and reverse bias:	2Marks for diagram

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

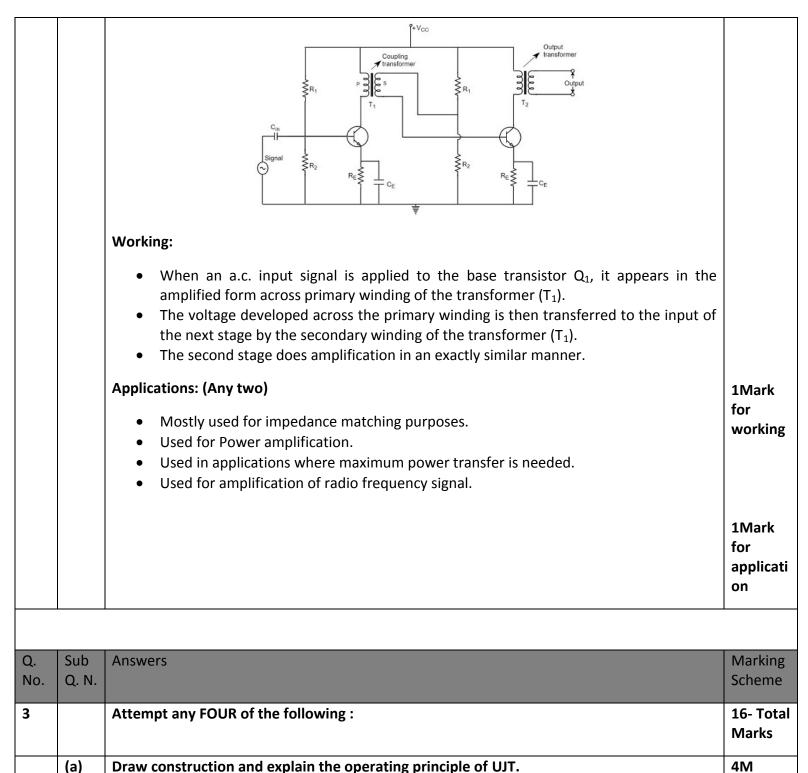

	V _R V _Z (Zener voltage) O V _R V _Z (Zener voltage) O V _R V _F V _F Breakdown or Regulation region I _Z (min.) I _Z (max.) I _R	2Marks for explanat
	 When reverse biased voltage is applied to a zener diode, it allows only a small amount of leakage current until the voltage is less than zener voltage. When reverse biased voltage applied to the zener diode reaches zener voltage, it starts allowing large amount of electric current. At this point, a small increase in reverse voltage will rapidly increases the electric current. Because of this sudden rise in electric current, breakdown occurs called zener breakdown. The zener breakdown voltage of the zener diode depends on the amount of doping applied. 	ion
-	Draw the circuit diagram of single stage CE amplifier and state the function of each component.	4M
Ans: 0	Circuit diagram of single stage CE amplifier:	2M

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer

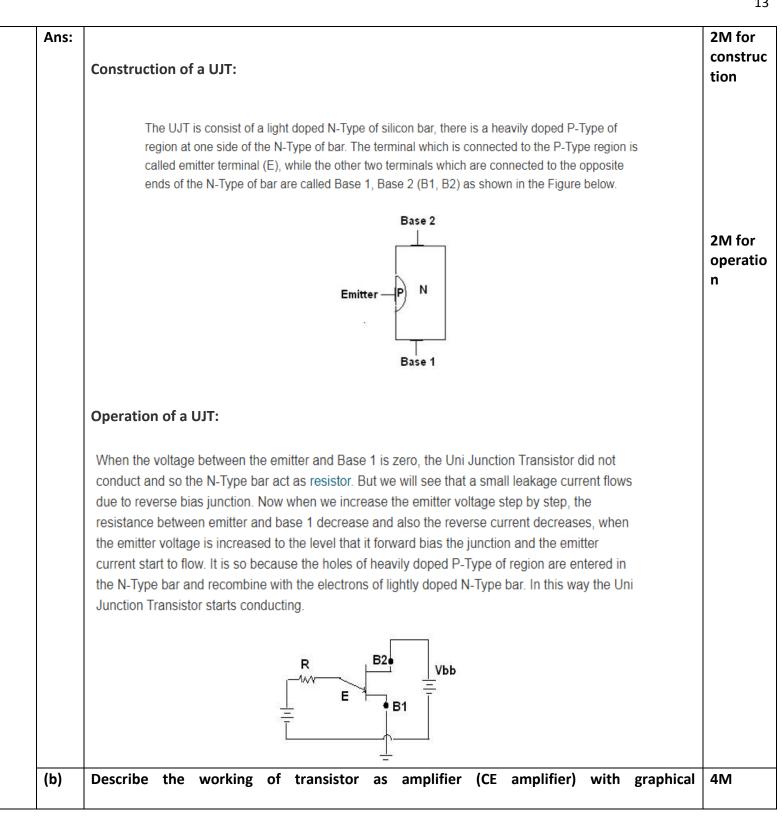


WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer



WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

WINTER-19 EXAMINATION

Subject Code:

17321

	representation.			
Ans:	Operation of Common Emitter Amplifier	2M for		
	When a signal is applied across the emitter-base junction, the forward bias across this	workin		
	junction increases during the upper half cycle. This leads to increase the flow of electrons			
	from the emitter to a collector through the base, hence increases the collector current. The			
	increasing collector current makes more voltage drops across the collector load resistor RC.			
	The negative half cycle decreases the forward bias voltage across the emitter-base junction.			
	The decreasing collector-base voltage decreases the collector current in the whole collector			
	resistor Rc. Thus, the amplified load resistor appears across the collector resistor. The			
	common emitter amplifier circuit is shown below figure (a).			
	CE Amplifier circuit			
	$ \begin{array}{c} & & & \\ & $	2M for graphic I represent		

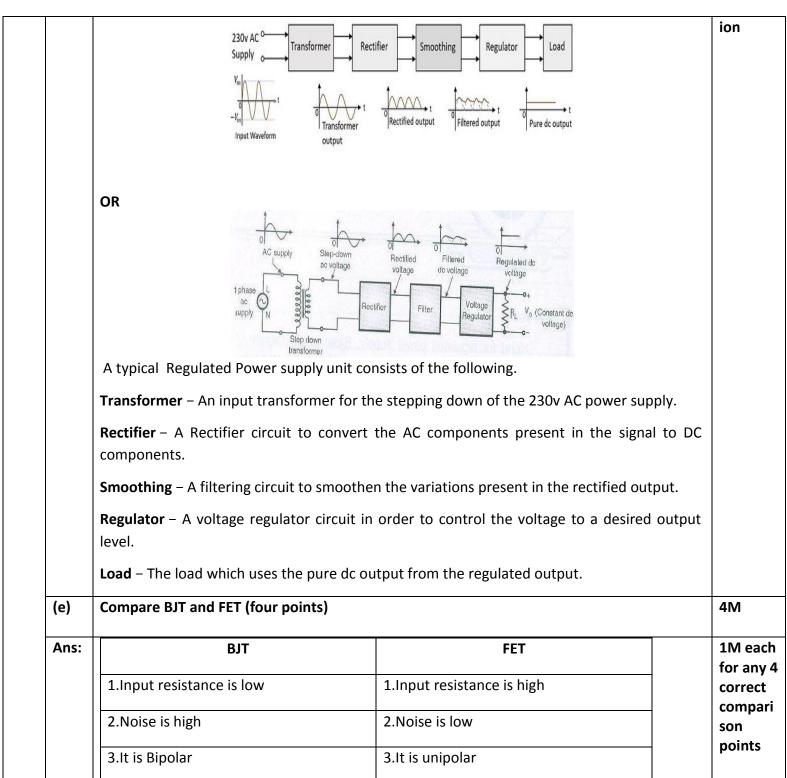
tified)

Subject Name: Basic Electronics

WINTER-19 EXAMINATION

Subject Code:

17321


(c)	 Emitter Bypass Capacitor (C_E) An Emitter bypass capacitor C_E is used parallel with R_E to provide a low reactance path to the amplified AC signal. If it is not used, then the amplified AC signal following through R_E will cause a voltage drop across it, thereby dropping the output voltage. Coupling Capacitor (Cc) The coupling capacitor Cc couples one stage of amplification to the next stage. This technique used to isolate the DC bias settings of the two coupled circuits. State the need of cascading of amplifier. Draw RC coupled cascaded amplifier. 	4M
Ans:	Need of cascading of amplifier: Most systems a single transistor amplifier does not provide sufficient gain or bandwidth or will not have the correct input or output impedance matching .Hence cascade amplifier is used which consist more than one stages of amplification. RC Coupled cascaded amplifier: RC Coupled cascaded amplifier: $RT = \frac{RT}{RC} = \frac{RT}{$	2M for need 2M for diagram of RC coupled cascade amplifie r
(d) Ans:	Draw block diagram of DC regulated power supply and explain the function of each block. The block diagram of a Regulated Power supply unit is as shown below.	4M 2M for block
		diagrai 2M for

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer

WINTER-19 EXAMINATION

Subject Code:

17321

	4.size is large compare to FET	4.size is small compare to BJT	
	5.Bipolar junction Transistor	5.Field effect Transistor	
	6.Types:NPN,PNP	6.N channel & P channel FET	
f)	Draw the circuit diagram of Hartley of frequency.	oscillator and explain its working. State the formula	for 4M
Ans:	R1	RFC Cout Cout Cout Cout Cout Cout Cout Cou	2M for diagrar
	Figure 1 Circu	uit Diagram of Hartley Oscillator	
	which is made up of two induce parallel to this series combination value of capacitor and inducto	agram for hartley's oscillator. It consist of tank circ ctors connected in series and an capacitor is connect ation. The frequency of oscillator is determined by t or. is used to prevent high frequency oscillations passi	ed he 1M for explan
	 In this circuit resistor R1 and F Cin is the input DC decoup capacitor. Re is the emitter resistor 	R2 provides voltage divider biasing to the transistor Coling capacitor while Cout is the output decoupli esistor which is bypassed by capacitor Ce. The bypa construction of the state of the state of the bypa duces gain.	ng ass
	 When the power supply is s collector current increases. As capacitor C is fully charged it 	witched ON the transistor starts conducting and t s a result the capacitor C starts charging and when t t starts discharging through coil L1. This charging a damped oscillations in the tank circuit.	he

a)

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer

4M

$F = \frac{1}{2\pi\sqrt{LC}}$ Where, C= Capacitance of capacitor in tank circuit L= Effective inductance of inductors of tank circuit=L1+L2. If they are wound on same core then consider the mutual inductance M, hence L=L1+L2+2M. Q. Sub Answers Marking Scherer	4.		Attempt any Four of the following:	16- Total Marks
8. So the total phase difference between input and output is 360° and this is a condition for creating sustained oscillations. 1M for frequency of oscillations of the colpitt's oscillator is given by, $F = \frac{1}{2\pi\sqrt{LC}}$ IM for frequency of oscillations of the colpitt's oscillator is given by, 1M for frequency of predict of the colpitt's oscillator is given by, Where, C= Capacitance of capacitor in tank circuit L= Effective inductance of inductors of tank circuit=L1+L2. If they are wound on same core then consider the mutual inductance M, hence L=L1+L2+2M.	No.	Q. N.		Scheme
8. So the total phase difference between input and output is 360° and this is a condition for creating sustained oscillations. 9. The frequency of oscillations of the colpitt's oscillator is given by, $F = \frac{1}{2\pi\sqrt{LC}}$ Where, C= Capacitance of capacitor in tank circuit L= Effective inductance of inductors of tank circuit=L1+L2.	Q.	Sub	Answers	Marking
 appears in the amplified form across the collector and emitter of the transistor. 6. The output voltage of the transistor (voltage across collector and emitter) will be in phase with the voltage across inductor L1. Since the junction of two inductors is grounded, the voltage across L2 will be 180° out of phase to that of the voltage across L1. 7. The voltage across L2 is actually fed back to the base of Q1. The feedback voltage is 180° out of phase with the transistor and also the transistor itself will create another 			 6. The output voltage of the transistor (voltage across collector and emitter) will be in phase with the voltage across inductor L1. Since the junction of two inductors is grounded, the voltage across L2 will be 180° out of phase to that of the voltage across L1. 7. The voltage across L2 is actually fed back to the base of Q1. The feedback voltage is 180° out of phase with the transistor and also the transistor itself will create another 180° phase difference. 8. So the total phase difference between input and output is 360° and this is a condition for creating sustained oscillations. 9. The frequency of oscillations of the colpitt's oscillator is given by, <i>F</i> = 1/(2π√<i>LC</i>) Where, C= Capacitance of capacitor in tank circuit L= Effective inductance of inductors of tank circuit=L1+L2. 	1M for frequen cy formula

Compare positive and negative feedback. (four points)

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

Ans:	SR. NO.	PARAMETER	POSITIVE FEEDBACK	NEGATIVE FEEDBACK	1M ead for any correct
	1.	Overall phase shift	0° or 360°	180°	compa
	2.	Feedback and input signal		Are out of phase	son points
	3.	Input signal	Increases due to feedback	Decreases due to feedback	
	4.	Output signal	Increases due to feedback	Decreases due to feedback	
	5.	Gain	Increases due to feedback	Decreases due to feedback	
	6.	Stability	Becomes poor as feedback increases	Becomes better as feedback increases	
	7.	Application	Oscillators, Schmitt trigger	Amplifier, regulated power supply, bootstrapping	
	8.	Noise	Increases with feedback	Decreases with feedback	
	9.	Bandwidth	Decreases	Increases	
	10.	Input impedance	Decreases	Increases	
	11.	Output impedance	Increases	Decreases	
b)	Draw circ	uit diagram of trans	sistorized series voltage re	gulator and describe its worl	king. 4M
Ans:		Transistor	ized Series Voltage regulator:		2M for diagrar
	10 BUT 10 10 10	Pregulated voltage	$\begin{array}{c} & & \\$	Regulated voltage	

tified)

Subject Name: Basic Electronics

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

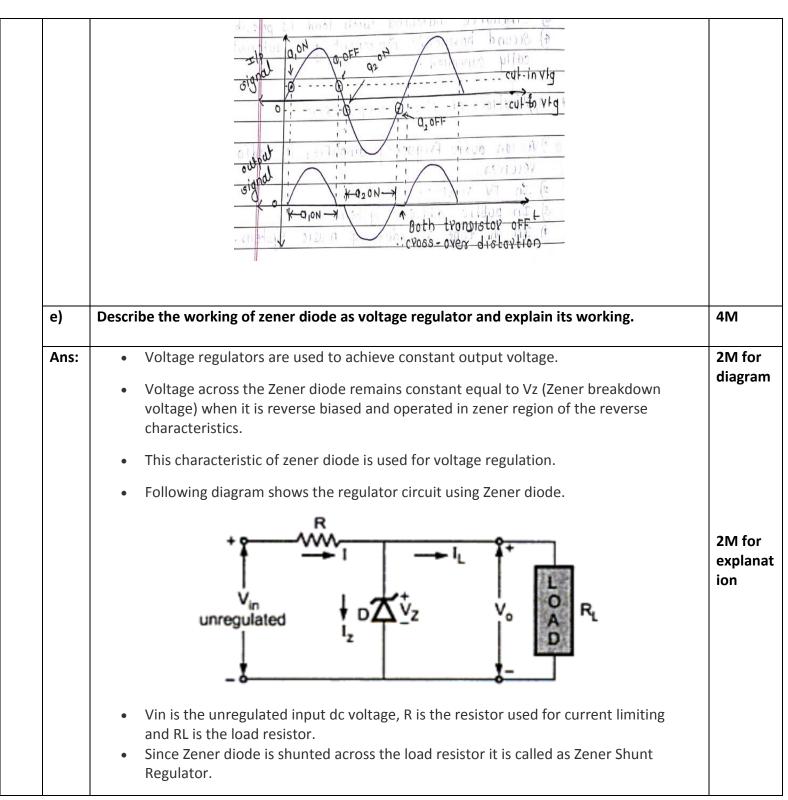
	 The transistor behaves as variable resistances whose value is determined by the amount of base current. V_L = V_Z - V_{BE} OR V_{BE} = V_Z - V_L WORKING:- Suppose that value of load resistance is increased. Because of this, the load current decreases and load voltage (V_L) tend to increase. From equation (1) that any increase in V_L will decrease V_{BE} because V_Z value is fixed. 	2M for working
	 As a result of this the forward bias of the transistor is reduced which reduces its level of conduction. This increases V_{CE} of transistor which will slightly decrease the input current for the increase in the value of load resistance so that load voltage remains constant. The output of a transistor series regulator is approximately equal to zone voltage (V_Z) This regulator can also be used for larger load currents. 	
c)	Define power amplifier. State its types. How are they classified?	4M
Ans:	 Definition of power amplifier: A power amplifier is an amplifier, which is capable to providing a large amount of power to the load such as Loudspeaker, or motor etc. power amplifier are also known as large signal amplifiers. Types of power amplifier: 	2M for definitio n
	 Class A 	
	 Class B 	
	 Class C 	
	 Class AB 	
	Classification is based on frequencies	2M for types
	Audio power amplifier	and
	Radio power amplifier	classific
		ation
	Classification is based on mode of operation	ation
	Classification is based on mode of operation	ation
	Classification is based on mode of operation Class A Class B 	ation
	Classification is based on mode of operation Class A Class B Class C 	ation
	Classification is based on mode of operation Class A Class B 	ation

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer


	(ii) Describe the concept of crossover distortion.	
Ans:	(i)Need of Heat Sink in power amplifier:	2M for
	• Heat sinks are used with high-power semiconductor devices such as power transistors and opto-electronics such as lasers and light emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.	need o heat sink in power
	• In case of transistor or power transistors if the temperature of collector base junction increases due to increase in temperature, the collector leakage current increases. Due to this the collector current increases.	amplif r
	• The increase in collector current produces an increase in the power dissipated at the collector junction. This, in turn, further increases the temperature of the junction and so gives further increase in collector current. The process is cumulative. This action of increase in current and further increase in temperature eventually destroys the transistor. This is known as thermal runaway.	2M fo
	• To prevent thermal runaway, the power handling capacity can be increased if suitable provision for rapid conduction of heat away from junction. This is achieved by using Heat Sink.	conce of crosso r
	(ii) Concept of cross-over distortion:	distor n
	1. In class B amplifiers, the transistors are biased at cut off.	
	2. These transistor can enter the active region if and only if their base emitter junction is forward biased.	
	3. To forward bias these junctions the input voltage must be greater than the cut in voltage of the junction. The cut in voltage is 0.2V for Ge and 0.7V for the Si transistor.	
	4. Thus as long as the input voltage is less than the cut in voltage, the transistors will remain in the off state and the output will be zero as shown in figure.	
	5. The output signal gets distorted near the zero crossings. Therefore this distortion is called as the "cross over distortion".	

WINTER-19 EXAMINATION

Subject Code:

17321

WINTER-19 EXAMINATION

Subject Code:

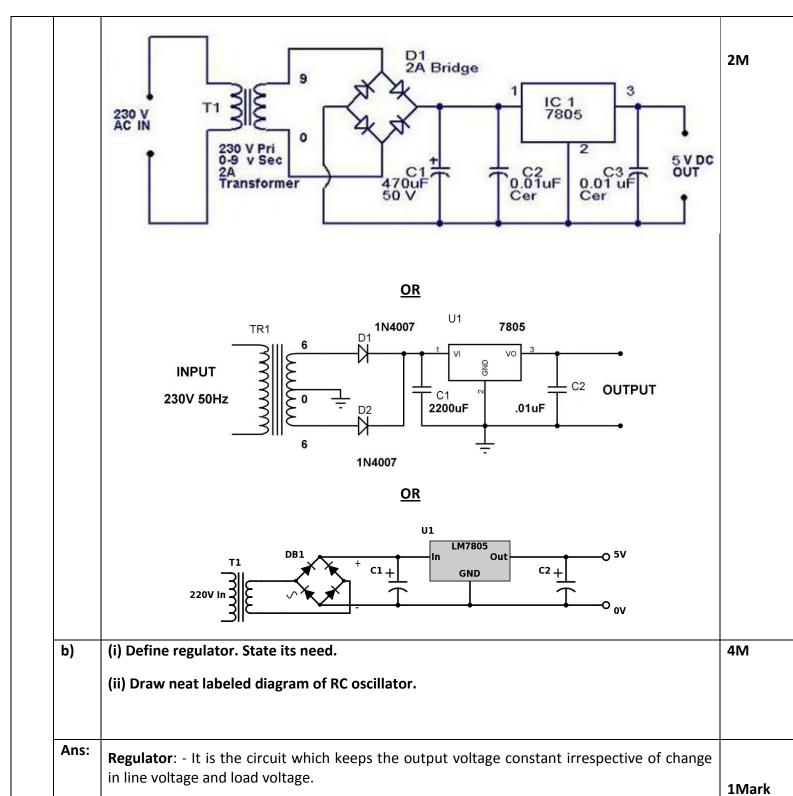
17321

	• The input voltage should always be higher than the breakdown voltage.	
	When $V_{in} > V_Z$ and $I_{Z(MIN)} < I_z < I_{Z(MAX)}$ constant voltage is obtained across the	
	zener diode equal to the breakdown voltage V_Z which is the regulated output voltage.	
f)	Define oscillator. Draw block diagram of oscillator and explain its working.	4M
Ans:	An oscillator is a electronic circuit that produces periodic waveform of desired frequency with only dc supply voltage as an input that is without any ac input signal The block diagram of oscillator is shown in following figure. $\underbrace{180^{\circ} phase \ shift}_{(A)} \\ \underbrace{4mplifier}_{(A)} \\ \underbrace{4mplifier}_{(A)} \\ \underbrace{4mplifier}_{(A)} \\ \underbrace{4mplifier}_{(B)} \\ \underbrace{4mplifier}_{(B)$	2M for definition 2M for block diagram of oscillato r and working

WINTER-19 EXAMINATION

Subject Code:

17321

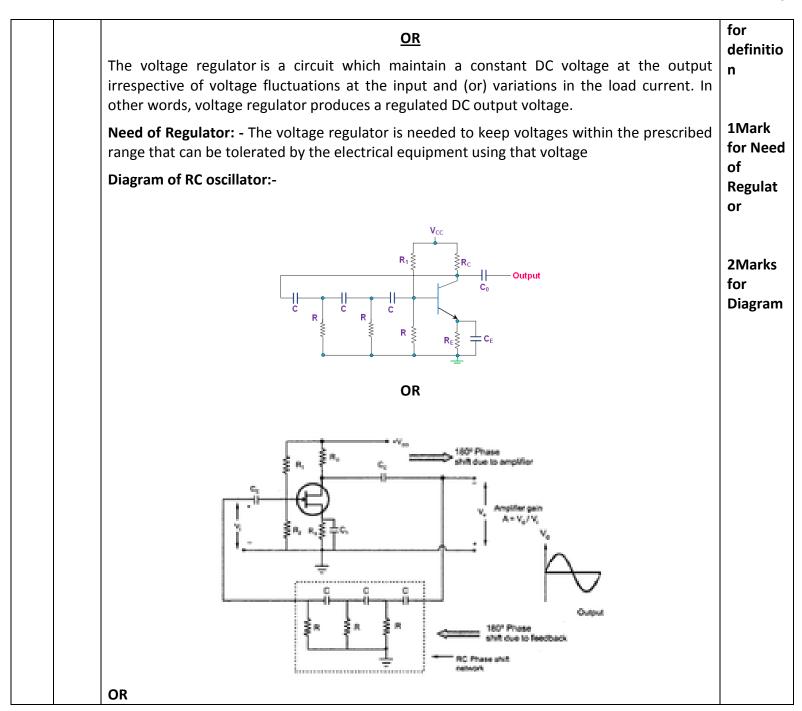

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any FOUR of the following :	16- Total Marks
Q. No.	Sub Q. N.	Answers	Marking Scheme
	a)	Draw the functional pin diagram of IC 78XX and state the function of each pin. Draw +5V regulator using 7805 IC.	4M
	Ans:	Functional pin diagram of IC 78XX:-	1M
		Function of each pin of 78XX:-	1M
		Pin No. 1:- In this pin of the IC positive unregulated voltage is given in regulation.	
		Pin No. 2:- In this pin where the ground is given. This pin is neutral for equally the input and output.	
		Pin No.3:- The output of the regulated voltage is taken out at this pin of the IC regulator.	
		+5V regulator using 7805 IC:-	

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

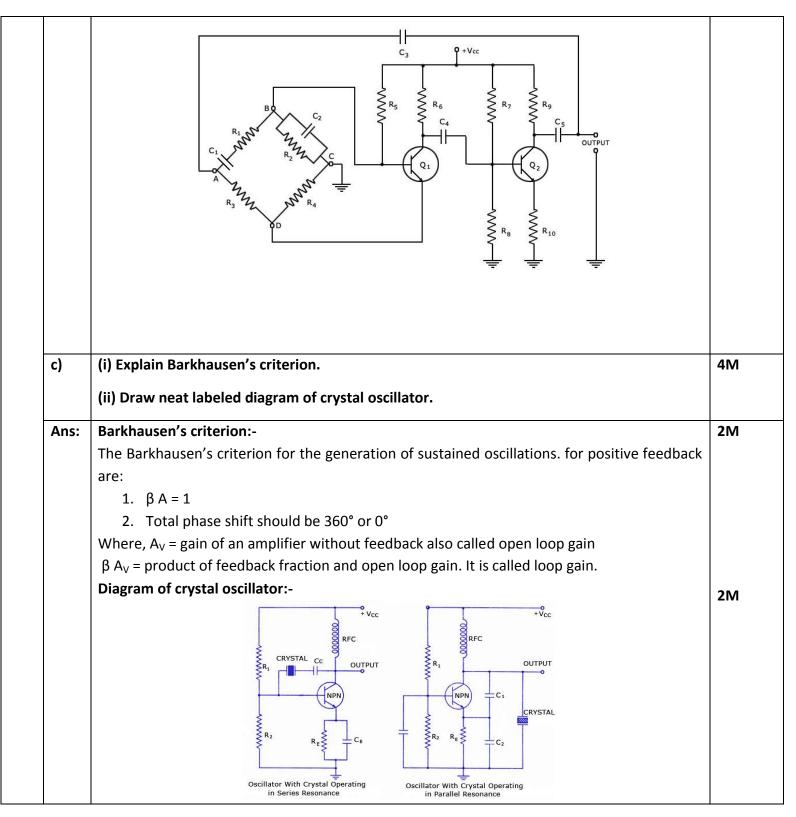


WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

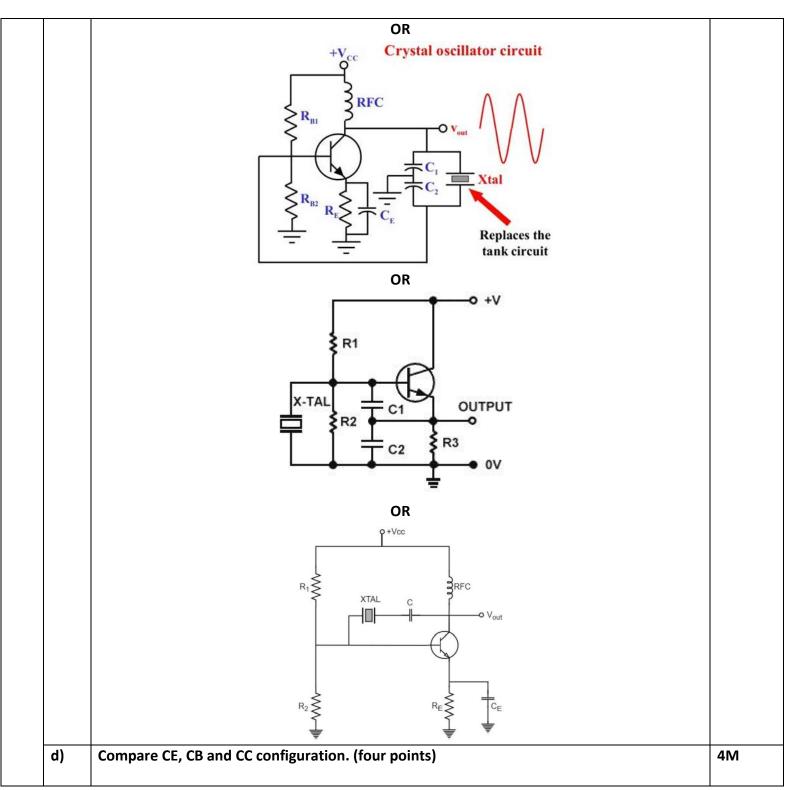


WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer


WINTER-19 EXAMINATION

Subject Code:

17321

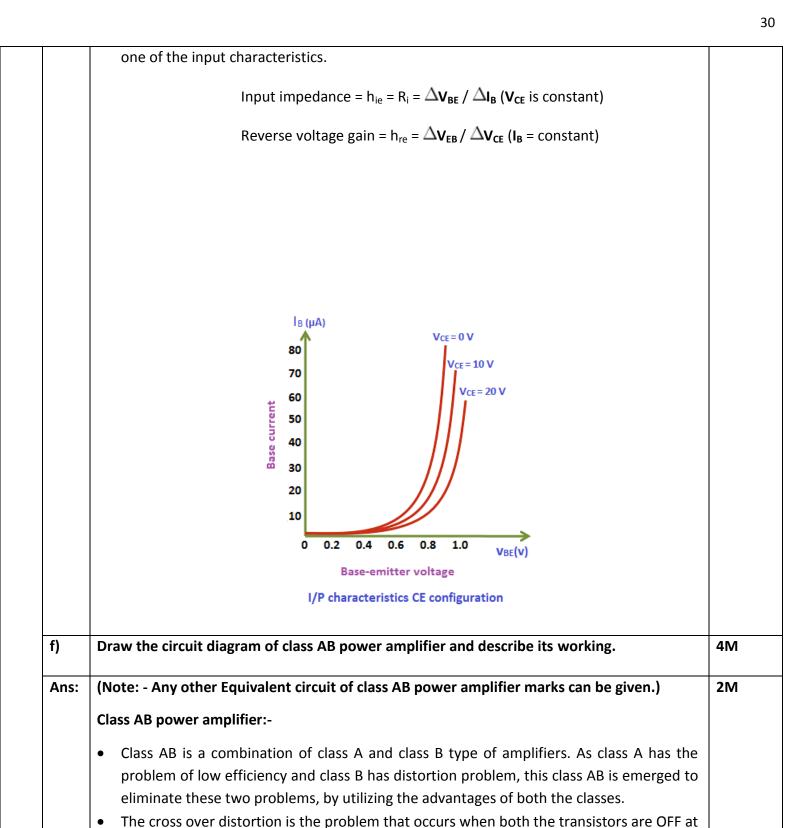
Subject Name: Basic Electronics

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer


Ans:	Sr. No.	Characteristics	CE configuration	CB configuration	CC configuration	Any 4 relevant
	1	Input resistance	Low (50 Ω)	Very Low (40 Ω)	Very High (750K)	points
	2	Output resistance	High (10KΩ)	Very High (1MΩ)	Low (50 Ω)	1M eacl
	3	Current Gain	High(100)	Less than unity	High(100)	
	4	Voltage Gain	High(500)	Small (150)	Less than unity	
	5	Phase shift between i/p and o/p	180 degree	0 degree	0 degree	
e)	Draw	and explain input cha	racteristics of CE co	nfiguration.		4M
	In Con betwe Input • Th (I _B • To	en the base and the e characteristic – e input characteristic) and input voltage or determine the input	figuration, the emitter emitter while the ou s describe the relation base-emitter voltaget c characteristics, the	tput is between the co onship between input e (V _{BE}). e output voltage V _{CE} is	ninal. Hence, the input is ollector and the emitter. current or base current s kept constant at zero erent voltage levels. For	
	ea • Th an vo • Th vo	ch voltage level of inp e output voltage (V_{CF} d the output voltage ltage (V_{CE}), the input v e output voltage (V_{CE})	but voltage (V _{BE}), the) is increased from (V _{CE}) is kept const voltage (V _{BE}) is kept constant at 10 volt tage levels. For e	corresponding input of zero volts to certain ant at 10 volts. While constant at zero volts. s, the input voltage V _B ach voltage level o	current (I_B) is recorded. voltage level (10 volts) e increasing the output	
	• Th	is process is repeated	for higher fixed value	ues of output voltage (V _{CE}) on is forward biased by	
	inp the	out voltage (V _{BE}), the	emitter-base junct	ion acts like a normal	p-n junction diode. So aracteristics of a normal	

WINTER-19 EXAMINATION

Subject Code:

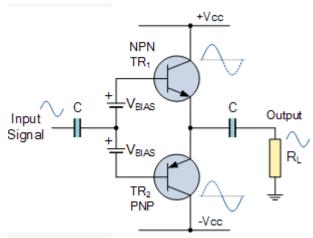
```
17321
```


tified)

Subject Name: Basic Electronics

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

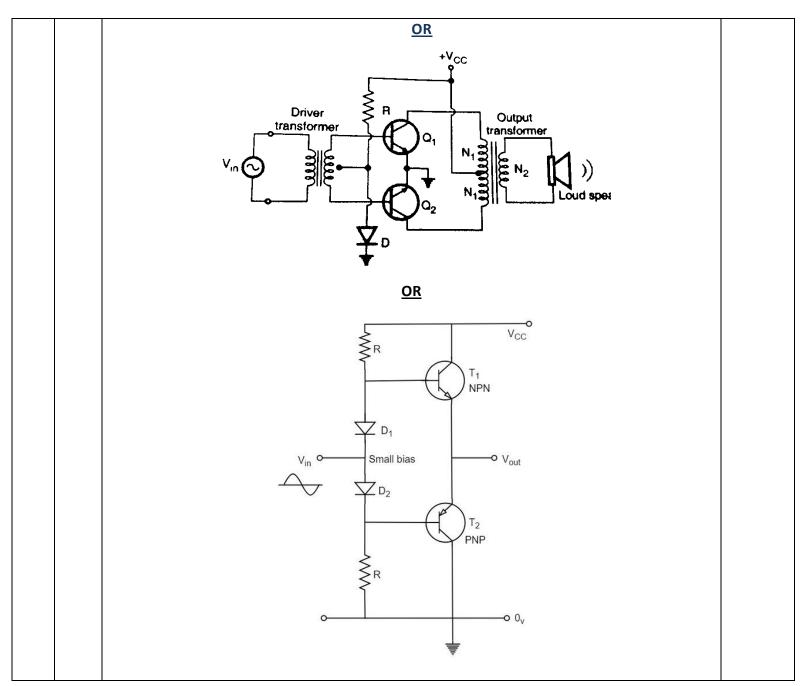

Subject Code:

```
17321
```

Model Answer

the same instant, during the transition period.

- In order to eliminate this, the condition has to be chosen for more than one half cycle. Hence, the other transistor gets into conduction, before the operating transistor switches to cut off state. This is achieved only by using class AB configuration, as shown in the following circuit diagram.
- The conduction angle of class AB amplifier is somewhere between 180° to 360° depending upon the operating point selected.
- Here the biasing of the transistors is achieved by using a suitable fixed bias voltage applied the bases of TR1 and TR2.
- When the input signal goes positive, the voltage at the base of TR1 increases producing a positive output of a similar amount which increases the collector current flowing through TR1 sourcing current to the load, R_L. However, because the voltage between the two bases is fixed and constant, any increase in the conduction of TR1 will cause an equal and opposite decrease in the conduction of TR2 during the positive half cycle.
- As a result, transistor TR2 eventually turns off leaving the forward biased transistor, TR1 to supply all the current gain to the load. Likewise, for the negative half of the input voltage the opposite occurs. That is, TR2 conducts sinking the load current while TR1 turns off as the input signal becomes more negative.
- Then we can see that when the input voltage, V_{IN} is zero, both transistors are slightly conducting due to their voltage biasing, but as the input voltage becomes more positive or negative, one of the two transistors conducts more either sinking of sourcing the load current. As the switching between the two transistors occurs nearly instantly and is a smooth one, the crossover distortion which affects the Class B configuration is greatly reduced.

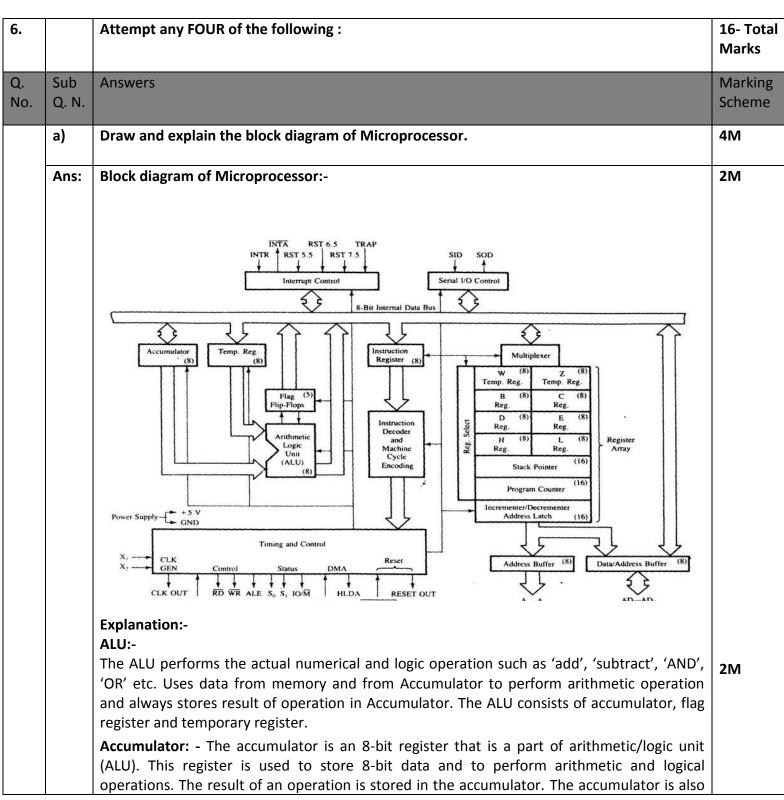


WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer


Q.	Sub	Answers	Marking
No.	Q. N.		Scheme

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

Model Answer

WINTER-19 EXAMINATION

Subject Code:

17321

	S	Z		AC		Р		CY
				8085 fl	ag register			
-	-	-	ich are use etion of op		cate the s	tatus of th	ne accumul	ator and oth
These	e flip-flo	-	et or reset		g to the	data condi	ition of the	e result in t
		ontrol unit	-					
yncł	nronizes	all the M		ons with	the clock	and gene	•	tion. This u control sign
nstru	uction r	egister and	decoder:-					
mem estab	ory, it i olishes t	s loaded ir	n the instru ce of even	uction regi	ster. The	decoder de	ecodes the	is fetched fro instruction a and cannot
-	ter arra	-		_				
The r	-		5 consists o					
	-		ose data re	-	C,D,E,H,L			
		-	isters W an ess register		ram count	er) and SP	(stack point	er)
			decrement				(otuen penne	
		-	lexer (MUX	•				
	_		e registers d HL to per				They can b	e combined
		-	ers W and Z CHG instru		to hold 8-	bit data du	ring the exe	ecution of sor
		egisters use top of the		the addre	ss of data	stored in tl	he stack me	mory. It alwa
		register us red in the r	•	t the add	ress of the	e next inst	ruction to l	be fetched a
Syste	m bus:-							
			•		etween M	P and oth	er external	units, such
			8 or 16 bits dress' of op					
1 4 4	000 0		lucco' of co		in o m / ± o +			

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer

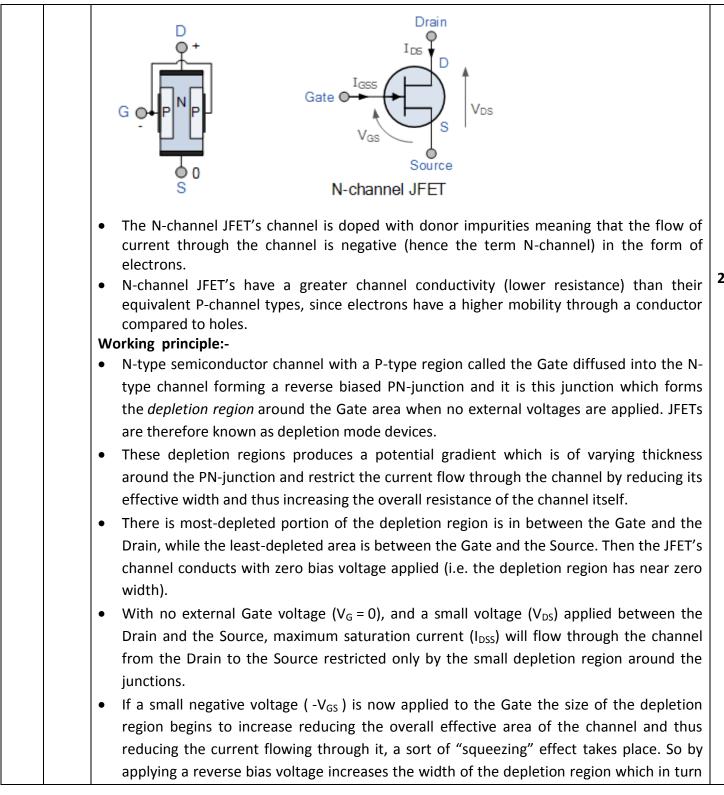
	A	
Ans:	(i) AND gate:-	2M each
	(i) AND gate (ii) OR gate	
c)	B NAND B Draw symbol, truth table and state its logic expressions for the following gates:	4M
	A = A + B $A = A + B$ $B = OR + B$	2M
	A universal gate is a gate which can implement any Boolean function without need to use any other gate type. The NAND and NOR gates are universal gates. Implementation of OR gates using NAND:-	
Ans:	Universal Gates:-	2M
b)	What are universal Gates? Implement OR gates using NAND only.	4M
	Serial I/O Control:- The MP performs serial data input or output (one bit at a time). In serial transmission, data bits are sent over a single line, one bit at a time. The 8085 has two signals to implement the serial transmission: SID (serial input data) and SOD (serial output data).	
	May be hardware or software interrupts. Some interrupts may be ignored (maskable), some cannot (non-maskable). E.g. INTR, TRAP, RST 7.5, RST 6.5, RST 5.5	
	operations. E.g. Read/Write control line. Interrupt Control:- Interrupt is a signal, which suspends the routine what the MP is doing, brings the control to perform the subroutine, completes it and returns to main routine.	

WINTER-19 EXAMINATION

Subject Code:

17321

Model Answer


	Truth table of AND					
			Input	Output		
		А	В	F = A.B		
		0	0	0		
		0	1	0		
		1	0	0		
		1	1	1		
				F = A + B		
	Truth table of OR G	iate:-	B			
	Truth table of OR G				1	
	Truth table of OR G	In	- /	Output]	
	Truth table of OR G			Output F = A+B		
	Truth table of OR G	In	- /			
	Truth table of OR G	A In	nput B	F = A+B		
	Truth table of OR G	A 0	nput B 0	F = A+B		
	Truth table of OR G	A 0 0	nput B 0 1	F = A+B 0 1		
d)	Truth table of OR G	A 0 0 1 1 1	- /	F = A+B 0 1 1 1 1		4M
d) Ans:		A 0 0 1 1 1 section and worki	- /	F = A+B 0 1 1 1 1		4M 2M

WINTER-19 EXAMINATION

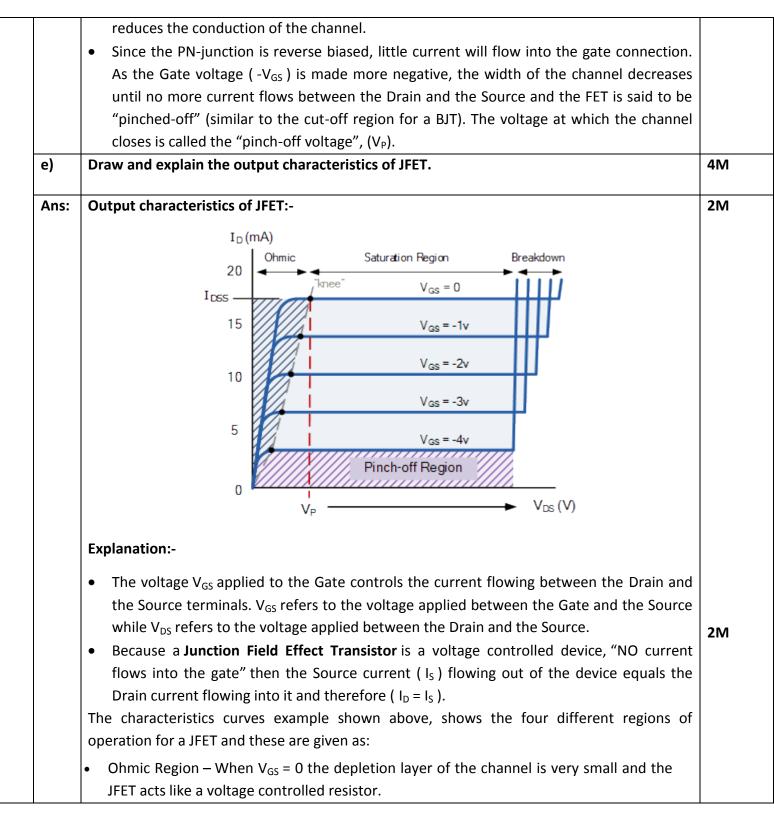
Subject Code:

17321

Model Answer

37

2M


tified)

Subject Name: Basic Electronics

WINTER-19 EXAMINATION

Subject Code:

17321

WINTER-19 EXAMINATION

Subject Code:

17321

	 Cut-off Region – This is also known as the pinch-off region were the Gate voltage, V_{GS} is sufficient to cause the JFET to act as an open circuit as the channel resistance is at maximum. 					
	 Saturation or Active Region – The JFET becomes a good conductor and is controlled by the Gate-Source voltage, (V_{GS}) while the Drain-Source voltage, (V_{DS}) has little or no effect. 					
	 Breakdown Region – The voltage between the Drain and the Source, (V_{DS}) is high enough to causes the JFET's resistive channel to break down and pass uncontrolled maximum current. 					
f)	(i) What is MOSFET? State its types.	4M				
	(ii) State applications of FET and MOSFET.					
Ans:	 The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device which is widely used for switching and amplifying electronic signals in the electronic devices. The MOSFET is a four terminal device with source(S), gate (G), drain (D) and body (B) terminals. The body of the MOSFET is frequently connected to the source terminal so making it a three terminal device like field effect transistor. The MOSFET is very far the most common transistor and can be used in both analog and digital circuits. 					
	terminals. The body of the MOSFET is frequently connected to the source terminal so making it a three terminal device like field effect transistor. The MOSFET is very far the most common transistor and can be used in both analog and digital circuits.					
	terminals. The body of the MOSFET is frequently connected to the source terminal so making it a three terminal device like field effect transistor. The MOSFET is very far the most common transistor and can be used in both analog and digital circuits. Types of MOSFET:- MOSFET Depletion n-type p-type n-type p-type	1M				
	terminals. The body of the MOSFET is frequently connected to the source terminal so making it a three terminal device like field effect transistor. The MOSFET is very far the most common transistor and can be used in both analog and digital circuits. Types of MOSFET:- MOSFET Depletion Enhancement	1M				

tified)

Subject Name: Basic Electronics

MAHARASHT (Autonomous)

(ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

```
17321
```

1	n
т	U

variable resistors.	
4. It is commonly used as input amplifiers in devices i.e. voltmeters, oscilloscopes, and	
other measuring devices, due to their high input Impedance.	
5. It is also used in radio frequency amplifiers for FM devices.	½ M
6. It is used for mixer operation of FM and TV receiver.	each
7. It is used in large scale integration (LSI) and computer memories because of its small size.	
Applications of MOSFET:- (Any 2)	
1. MOSFET is used for switching and amplifying electronic signals in the electronic	
devices.	
2. It is used as an inverter.	
3. It can be used in digital circuit.	
4. It can be used as a high frequency amplifier.	
5. It can be used as a passive element e.g. resistor, capacitor and inductor.	
6. It can be used in electronic DC relay.	
7. MOSFET amplifiers are extensively used in radio frequency applications.	
8. High switching speed of MOSFETs makes it an ideal choice in designing chopper circuits.	½ M
9. DC motors can be regulated by power MOSFETs.	² ivi each
	each