MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answers
 Winter-2019 Examinations

 Subject \& Code: Electrical Circuits \& Networks (17323)

 Subject \& Code: Electrical Circuits \& Networks (17323)}

1 Attempt any TEN of the following:
1 a) Identify /state nature of the circuit of Figure No:1

Identify / State nature of circuit.

Fig. No. 1

Ans:

Given circuit is purely capacitive type.
1 b) Define: Frequency and Cycle for AC quantities.
Ans:
(i) Frequency: It is defined as number of cycles completed by an alternating 1 Mark quantity in one second.
(ii) Cycle:

A complete set of variation of an alternating quantity which is repeated at regular interval of time is called as a cycle.

OR

Each repetition of an alternating quantity recurring at equal intervals is known as a cycle.

1 c) Define: Apparent and Reactive power.
Ans:
i) Apparent Power (S):

This is simply the product of RMS voltage and RMS current.
Unit: volt-ampere (VA) or kilo-volt-ampere (kVA) or Mega-volt-ampere (MVA)
$\mathrm{S}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{Z}$ volt-amp

ii) Reactive Power or Imaginary Power (Q):

Reactive power (Q) is given by the product of voltage, current and the sine of the phase angle between voltage and current.
Unit: volt-ampere-reactive (VAr), or kilo-volt-ampere-reactive (kVAr) or Mega-volt-ampere-reactive (MVAr)
$\mathrm{Q}=\mathrm{VIsin} \varnothing=\mathrm{I}^{2} \mathrm{X}$ volt-amp-reactive
1 d) Define: Power factor and Quality factor in RC circuit.
Ans:
i) Power Factor:

It is the cosine of the angle between the applied voltage and the resulting current.

$$
\text { Power factor }=\cos \varnothing
$$

where, \varnothing is the phase angle between applied voltage and current.
It is the ratio of True or effective or real power to the apparent power.

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

$$
\text { Power factor }=\frac{\text { True or effective or real power }}{\text { apparent power }}=\frac{V I \cos \emptyset}{V I}=\cos \emptyset
$$

It is the ratio of circuit resistance to the circuit impedance.

$$
\text { Power factor }=\frac{\text { circuit resistance }}{\text { circuit impedance }}=\frac{R}{Z}=\cos \emptyset
$$

ii) Quality factor: The ratio of capacitive reactance to the resistance is called as Quality factor for RC circuit.

$$
\text { Q-factor }=\frac{X_{C}}{R}=\frac{1}{2 \pi f C R}=\frac{1}{\omega C R}=
$$

1 e) Write equations of resonant frequency and quality factor in terms of circuit components for a parallel circuit.
Ans:
i) Equation for resonance frequency in terms of circuit components for parallel circuit.

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}
$$

ii) Equation for quality factor in terms of circuit components for parallel circuit.

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

1 f) Define: Admittance and Conductance related to parallel circuit.
Ans:
i) Admittance (Y): Admittance is defined as the ability of the AC circuit to carry (admit) alternating current. It is also defined as reciprocal of impedance.

$$
\text { Admittance }(\mathrm{Y})=\frac{1}{Z} \text { mho (}(\mathbb{)}
$$

ii) Conductance (G): It is defined as the real part of the admittance (Y). It is also defined as the ability of the purely resistive circuit to pass the alternating current.

OR

It is the ratio of resistance (R) to squared impedance $\left(Z^{2}\right)$
Conductance $(G)=\frac{R}{Z^{2}}$ siemen
1 g) State any two advantages of polyphase circuit over single phase circuit.
Ans:
i) Three-phase transmission is more economical than single-phase transmission. It requires less copper material.
ii) Parallel operation of 3-phase alternators is easier than that of single-phase alternators.
iii) Single-phase loads can be connected along with 3-ph loads in a 3-ph system.
iv) Instead of pulsating power of single-phase supply, constant power is obtained in 3-phase system.
v) Three-phase induction motors are self-starting. They have high efficiency, better power factor and uniform torque.
vi) The power rating of 3-phase machine is higher than that of 1-phase machine of the same size.
vii) The size of 3-phase machine is smaller than that of 1-phase machine of the same

1 Mark

1 Mark

1 Mark

1 Mark

1 Mark for each of any two advantages $=2$ Marks

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

power rating.
viii) Three-phase supply produces a rotating magnetic field in 3-phase rotating machines which gives uniform torque and less noise.

1 h) Draw types of three phase connection.
Ans:

Star-connection

Delta-connection

1 Mark for each diagram $=2$ Marks

2 marks for formula

1 j) Find the R_{TH} From Figure No:2

Calculate R_{TH}
Fig.No. 2
Ans:
The Thevenin's equivalent resistance R_{TH} is the resistance seen between the opencircuited load terminals with all independent sources replaced by their internal resistances, as shown below:

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

$R_{T H}=R_{A B}=20 \| 20=\frac{20 \times 20}{20+20}=\mathbf{1 0} \boldsymbol{\Omega}$
1 k) State 'Norton's' Theorem for AC circuit.

Ans:

Norton's Theorem:

It states that any linear, active network containing one or more voltage and/or current source can be replaced by an equivalent circuit containing a single current source and equivalent impedance across the current source.
The equivalent current source (Norton's current source) I_{N} is the current through the short circuited terminals of the load. The equivalent impedance Z_{N} is the impedance seen between the load terminals while looking back into the network with the load removed and internal sources replaced by their internal resistances.
If R_{L} is load resistance then current through it is $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{N}} \mathrm{R}_{\mathrm{N}} /\left(\mathrm{R}_{\mathrm{N}}+\mathrm{R}_{\mathrm{L}}\right)$.
1 l) State meaning of $t=0^{-}$and $t=0^{+}$.
Ans -

1) $t=0^{-}$is the instant just before the switching instant $t=0$
2) $t=0^{+}$is the instant just after the switching instant $t=0$
1 Mark each $=2$ Marks

$$
v=141.4 \sin 314 t
$$

$i=28.28 \sin \left(314 t+\frac{\pi}{3}\right)$
Determine: (i) RMS value of voltage and current
(ii) Average value of voltage
(iii) Frequency
(iv) Power consumed

Ans:
Data Given:
$V_{m}=141.4 \mathrm{~V}, I_{m}=28.28 \mathrm{~A}, \omega=314 \mathrm{rad} / \mathrm{sec}, \varnothing=\frac{\pi}{3}$ (leading)
i) RMS value of voltage $=V_{r m s}=\frac{V_{m}}{\sqrt{2}}=\frac{141.4}{\sqrt{2}}=99.98 \mathrm{~V}$

RMS value of current $=I_{r m s}=\frac{I_{m}}{\sqrt{2}}=\frac{28.28}{\sqrt{2}}=\mathbf{1 9 . 9 9} \mathrm{A}$
ii) Average value of voltage $=V_{\text {avg }}=0.637 \times V_{m}=0.637 \times 141.4$

$$
\begin{aligned}
& =\mathbf{9 0 . 0 7} \mathrm{V} \text { (Over half-cycle }) \\
& =\mathbf{0 ~} \mathrm{V} \text { (Over full-cycle })
\end{aligned}
$$

iii) Angular velocity $=\omega=2 \pi f$

2 Marks for statement
$1 / 2$ Mark for each RMS

1 Mark for average value

1 Mark for diagram

1 Mark for R_{TH}

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

$314=2 \times 3.14 \times f$	1 Mark for frequency
Frequency $=f=\mathbf{5 0 ~ H z}$	1 Mark

2 b) For a single loop AC generator-
(i) Draw a neat sketch.
(ii) Identify components used.
(iii) Write equation of generated emf.
(iv) Draw waveform of the output voltage.

Ans:
(i) Neat sketch of single loop AC generator

1 Mark
a) Permanent magnets.
b) Single turn coil.
c) Slip rings
d) Brushes
e) Shaft.
(iii) Equation of generated emf:
$\mathrm{e}=$ B. $\ell . v . \sin (\omega \mathrm{t})$ volt $=\mathrm{E}_{\mathrm{m}} \sin (\omega \mathrm{t})$ volt
where, $\mathrm{e}=$ Instantaneous value of the emf
$\mathrm{B}=$ Flux-density in $\mathrm{Wb} / \mathrm{m}^{2}$
$\ell=$ Active length of conductor in m
$\mathrm{v}=$ Linear velocity of conductor in m / s.
$\omega=$ Angular velocity of conductor in rad/sec
$\mathrm{t}=$ time in sec.
(iii) Waveform of output voltage.

Model Answers
Winter-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

2 c) A series circuit has lagging power factor. Draw circuit, waveform and phasor diagram.
Ans:

Circuit diagrm: Phasor diagram :

Wave form of voltage and current

2 d) State the values of power factor during resonance condition for RLC series circuit. Also state the importance of power factor.
Ans:
i) At resonance, the value of power factor is always UNITY.
ii) Importance of Power Factor:

The power factor is important for operation of electrical system because its improvement has following effects:

- The kVA rating of electrical equipment is reduced, resulting small size and less cost.
- The current is reduced for same power and voltage, resulting in reduced cross section (size) requirement of the conductor and reduced cost of conductor.
- Copper losses are reduced.

1 Mark

1 Mark for each of any three points $=3$ Marks

- Voltage regulation is improved.
- There is full utilization of full capacity of electrical equipment.
- The kVA maximum demand is reduced, resulting in reduced demand charges.
- High kW output is obtained from generators, resulting in higher kWh energy production.

2 e) A coil having a resistance of 20Ω and inductive reactance of 47.1Ω is connected in series with a capacitor of reactance 31.8Ω across an AC supply of 230 V .
Determine: (i) Current drawn from the supply
(ii) Power factor
(iii) Active and reactive components of current (iv) Voltage across the coil.

Model Answers
Winter-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

Ans:

Data Given:

$R=20 \Omega, X_{L}=47.1 \Omega, X_{C}=31.8 \Omega, \mathrm{~V}=230 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$
Impedance $=z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{20^{2}+(47.1-31.8)^{2}}=25.18 \Omega$
i) Current $=I=\frac{V}{Z}=\frac{230}{25.18}=9.13 \mathrm{~A}$
ii) Power factor $=\cos \varnothing=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{20}{25.18}=\mathbf{0 . 7 9 4}$ (lagging)
iii) Phase angle $=\varnothing=\cos ^{-1}(0.794)=37.43$
iv) Active component of current $=I \cos \varnothing=9.13 \times \cos (37.43)=7.25 \mathrm{~A}$
v) Reactive component of current $=\operatorname{Isin} \varnothing=9.13 \times \sin (37.43)=5.55 \mathrm{~A}$
vi) Voltage across the coil $=I \times$ Impedance of coil

$$
=9.13 \times \sqrt{R^{2}+\left(X_{L}\right)^{2}}=9.13 \times \sqrt{20^{2}+(47.1)^{2}}=467.18 \mathrm{~V}
$$

$1 / 2$ Mark for Z
$1 / 2$ Mark for I 1 Mark for pf

1/2 Mark
$1 / 2$ Mark
1 Mark
2 f) An Inductive coil $(10+j 40) \Omega$ impedance is connected in series with a capacitor of 100 $\mu \mathrm{F}$ across $230 \mathrm{~V}, 50 \mathrm{~Hz}, 1$ ph supply.
Find:(i) Current through circuit
(ii) Power factor
(iii) power dissipated in circuit
(iv) Draw phasor diagram.

Ans: Given

$R=10 \Omega, X_{L}=40 \Omega, C=100 \mu \mathrm{~F}=100 \times 10^{-6} \mathrm{~F}, \mathrm{~V}=230 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$
Capacitive reactance $=X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \times 3.14 \times 50 \times 100 \times 10^{-6}}=31.83 \Omega$
Impedance $=z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{10^{2}+(40-31.84)^{2}}=12.91 \Omega$
Current $=I=\frac{V}{Z}=\frac{230}{12.91}=\mathbf{1 7 . 8 2 ~ A}$
Power factor $=\cos \varnothing=\frac{R}{Z}=\frac{10}{12.91}=\mathbf{0 . 7 7 4 6}$ (lagging)
Power dissipated in circuit= $P=V I \cos \emptyset=230 \times 17.82 \times 0.7746=\mathbf{3 1 7 4 . 7 8} \mathbf{~ W}$ Phasor Diagram=

$1 / 2$ mark
$1 / 2$ mark
$1 / 2$ mark
$1 / 2$ mark 1 mark

1 mark

3 Attempt any FOUR of the following:
3 a) Compare series and parallel AC circuit.
Ans:
Comparison between Series and Parallel AC Circuit:

Sr. No.	Series Circuit	Parallel Circuit
1	A series circuit is that circuit in	A parallel circuit is that circuit in

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

	which the current flowing through each circuit element is same.	which the voltage across each circuit element is same.
3	The sum of the voltage drops in series resistances is equal to the applied voltage V . $\therefore \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$	The sum of the currents in parallel resistances is equal to the total circuit current I. $\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
4	The effective resistance R of the series circuit is the sum of the resistance connected in series. $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots$	The reciprocal of effective resistance R of the parallel circuit is the sum of the reciprocals of the resistances connected in parallel. $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots$
5	For series R-L-C circuit, the resonance frequency is, $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$	For parallel R-L-C circuit, the resonance frequency is, $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$
6	At resonance, the series RLC circuit behaves as purely resistive circuit.	At resonance, the parallel RLC circuit behaves as purely resistive circuit.
7	At resonance, the series RLC circuit power factor is unity.	At resonance, the Parallel RLC circuit power factor is unity.
8	At resonance, the series RLC circuit offers minimum total impedance $\mathrm{Z}=\mathrm{R}$	At resonance, the parallel RLC circuit offers maximum total impedance $\mathrm{Z}=\mathrm{L} / \mathrm{CR}$
9	At resonance, series RLC circuit draws maximum current from source, $I=(V / R)$	At resonance, parallel RLC circuit draws minimum current from source, $I=\frac{V}{\left[L / C_{R}\right]}$
10	At resonance, in series RLC circuit, voltage magnification takes place.	At resonance, in parallel RLC circuit, current magnification takes place.
11	The Q-factor for series resonant circuit is $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$	The Q-factor for parallel resonant circuit is, $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$
12	Series RLC resonant circuit is Accepter circuit.	Parallel RLC resonant circuit is Rejecter circuit.

1 Mark for each of any four points $=4$ Marks

3 b) Derive the expression for resonant frequency for the series combination of RL in parallel C
Ans:
Resonance frequency for a RL-C parallel circuit:-

Model Answers

Winter-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

circuit diagram

1 Mark for phasor diagram

The circuit is said to be in electrical resonance when the reactive component of line current becomes zero. The frequency at which this happens is known as resonance frequency.
Net reactive component $=I_{C}-I_{L} \sin \emptyset_{L}$
As at resonance, its value is zero, hence

$$
I_{c}-I_{L} \sin \emptyset_{L}=0 \quad \text { OR } \quad I_{C}=I_{L} \sin \emptyset_{L}
$$

Now, $I_{L}=\frac{V}{Z} \quad$ and $I_{c}=\frac{V}{X_{c}}$

2 Marks for derivation

Hence condition for resonance becomes
$\frac{V}{X_{c}}=\frac{V}{Z} \times \frac{X_{L}}{Z} \quad$ OR $\quad X_{C} X_{L}=Z^{2}$ where $\mathrm{Z}=\left(\mathrm{R}+\mathrm{j} X_{\mathrm{L}}\right)$
Now, $X_{L}=\omega \mathrm{L}, \quad X_{c}=\frac{1}{\omega C}$
$\frac{\omega \mathrm{L}}{\omega \mathrm{C}}=Z^{2} \quad$ OR $\quad \frac{L}{C}=Z^{2}$
$\frac{L}{c}=R^{2}+X_{L}{ }^{2}=R^{2}+\left(2 \pi f_{0} L\right)^{2}$
$\left(2 \pi f_{0} L\right)^{2}=\frac{L}{C}-R^{2}$
$2 \pi f_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
\therefore The resonant frequency $f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
3 c) An inductor of 0.5 H inductance and 90Ω resistance is connected in parallel with a $20 \mu \mathrm{~F}$ capacitor. This circuit supplied by $1 \mathrm{ph}, 230 \mathrm{v}, 50 \mathrm{~Hz}$ AC supply. Find:
(i) The total current
(ii) P.F of Parallel circuit
(iii) Power taken from source
(iv) Draw the vector diagram

Ans:
Data Given:
Branch I: $\mathrm{R}=90 \Omega$ and $\mathrm{L}=0.5 \mathrm{H}$
Branch II: $\mathrm{C}=20 \mu \mathrm{~F}=20 \times 10^{-6} \mathrm{~F}$

$$
\mathrm{V}=230 \mathrm{~V}, \quad \mathrm{f}=50 \mathrm{~Hz}
$$

Branch impedances $\left(Z_{1}\right.$ and $\left.Z_{2}\right)$:

Inductive reactance $X_{L}=2 \pi \mathrm{fL}$

$$
\begin{aligned}
& =2 \times \pi \times 50 \times 0.5 \\
& \mathbf{X}_{\mathbf{L}}=\mathbf{1 5 7 . 0 7 9} \mathbf{\Omega}
\end{aligned}
$$

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)
Capacitive reactance $\mathrm{X}_{\mathrm{C}}=1 /(2 \pi \mathrm{fC})$

$$
\begin{gathered}
\mathrm{X}_{\mathrm{C}}=1 /\left(2 \pi \times 50 \times 20 \times 10^{-6}\right) \\
\mathbf{X}_{\mathbf{C}}=\mathbf{1 5 9 . 1 5 \Omega}
\end{gathered}
$$

Impedance $\mathrm{Z}_{1}=(90+\mathrm{j} 157.079) \Omega=\mathbf{1 8 1 . 0 3 5} \angle \mathbf{6 0 . 1 8}{ }^{\circ} \boldsymbol{\Omega}$
Impedance $Z_{2}=0-\mathrm{j} 159.15 \Omega=\mathbf{1 5 9 . 1 5 ~} \angle \mathbf{- 9 0 ^ { \circ }} \Omega$
1/2 Mark
$1 / 2$ Mark
(i) Branch currents (I_{1} and I_{2}):

Branch 1 current $\left(\mathrm{I}_{1}\right): \mathrm{I}_{1}=\mathrm{V} / \mathrm{Z}_{1}=230 \angle 0^{\circ} / 181.035 \angle 60.18^{\circ}$
$\mathrm{I}_{\mathbf{1}}=\mathbf{1 . 2 7} \angle-\mathbf{6 0 . 1 8}{ }^{\circ} \mathrm{A}=\mathbf{(0 . 6 3 1}-\mathbf{j 1 . 1 0)} \mathrm{A}$
Branch 2 current $\left(\mathrm{I}_{2}\right): \mathrm{I}_{2}=\mathrm{V} / \mathrm{Z}_{2}=230 \angle 0^{\circ} / 159.15 \angle-90^{\circ}$
$\mathrm{I}_{\mathbf{2}}=\mathbf{1 . 4 4 \angle 9 0 ^ { \circ } \mathrm { A } = (0 + \mathrm { j } 1 . 4 4) \mathrm { A } , ~}$
Total Current (I):I $=I_{1}+I_{2}=(\mathbf{0 . 6 3 1}-\mathbf{j 1 . 1 0})+(\mathbf{0}+\mathbf{j 1 . 4 4})$

$$
=0.631+\mathrm{j} 0.34=0.7168 \angle 28.31^{\circ} \mathrm{A}
$$

1 Mark
Angle between V and I is $\{0-(28.31)\}=-28.31^{\circ}$
(ii) P.F of Parallel Circuit $(\cos \phi)$:
$\cos \phi=\cos \left(-28.31^{\circ}\right)=\mathbf{0 . 8 8 0 3}$ leading
1 Mark
(iii) Power taken from source:
$\mathrm{P}=\mathrm{V} \times \mathrm{I} \times \cos \phi=230 \times 0.7168 \times 0.8803$
$P=145.129$ watt
1 Mark
3 d) Find I, I_{1}, I_{2} and power factor of ckt in Figure No:3.

Ans:
Let us consider,
$\mathrm{Z}_{1}=(6+\mathrm{j} 8)=10 \angle 53.13^{\circ} \Omega$
$\mathrm{Z}_{2}=(4-\mathrm{j} 7)=8.06 \angle-60.25^{\circ} \Omega$
$\mathrm{Z}_{3}=(3+\mathrm{j} 5)=5.83 \angle 59.03^{\circ} \Omega$
Now Impedance Z_{1} and impedance Z_{2} are connected in parallel.
\therefore Equivalent Impedance of Z_{1} and Z_{2}

$$
\begin{gathered}
\begin{array}{c}
\mathrm{Z}_{12}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}=\frac{10 \angle 53.13^{\circ} \times 8.06 \angle-60.25^{\circ}}{(6+\mathrm{j} 8)+(4-\mathrm{j} 7)} \\
=\frac{10 \angle 53.13^{\circ} \times 8.06 \angle-60.25^{\circ}}{10.04 \angle 5.71^{\circ}}
\end{array} \\
=\mathbf{8 . 0 3 \angle - \mathbf { 1 2 . 8 3 }}{ }^{\circ}=\mathbf{7 . 8 3 - \mathbf { j 1 . 7 8 } \Omega}
\end{gathered}
$$

Now Z_{12} and Z_{3} are in series,
\therefore Equivalent Impedance of Z_{12} and Z_{3}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

$$
\begin{aligned}
\mathrm{Z}_{\text {Total }}=\mathrm{Z}_{12}+\mathrm{Z}_{3} & =(7.83-\mathrm{j} 1.78)+(3+\mathrm{j} 5) \\
\mathrm{Z}_{\text {Total }} & =\mathbf{1 0 . 8 3}+\mathbf{j} \mathbf{3 . 2 2}=\mathbf{1 1 . 3} \angle \mathbf{1 6 . 5 6 ^ { \circ }}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\mathrm{I} & =\mathrm{V} / \mathrm{Z}_{\text {Total }} \\
& =\frac{230 \angle 0^{\circ}}{11.3 \angle 16.56^{\circ}}=20.35 \angle-16.56^{\circ} \mathrm{A}=(19.51-\mathbf{j} 5.8) \mathrm{A}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathbf{I}_{1}=\mathrm{I} \times \frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}} & =20.35 \angle-16.56^{\circ} \times \frac{8.06 \angle-60.25^{\circ}}{6+j 8+4-j 7} \\
& =20.35 \angle-16.56^{\circ} \times \frac{8.06 \angle-60.25^{\circ}}{10.04 \angle 5.71^{\circ}} \\
& =\mathbf{1 6 . 3 4} \angle-\mathbf{8 2 . 5 2} \mathbf{~} \mathbf{B N}^{\circ}=(\mathbf{2 . 1 3}-\mathbf{j 1 6 . 2}) \mathbf{A}
\end{aligned}
$$

1 Mark

1 Mark
1 Mark
(iii) $\quad \mathbf{I}_{\mathbf{2}}=\mathrm{I}-\mathrm{I}_{1}$

$$
=19.51-\mathrm{j} 5.8-(2.13-\mathrm{j} 16.2)=(\mathbf{1 7 . 3 8}-\mathbf{j} 10.4)=\mathbf{2 0 . 2 5} \angle-\mathbf{3 0 . 8 9}{ }^{\circ} \mathbf{A}
$$

(iv) Power factor of the circuit: $\cos \left(-16.56^{\circ}\right)=\mathbf{0 . 9 5 8 5}$ lagging

3 e) Define crest factor and form factor. State value of each for a pure sine wave.
Ans:
i) Crest Factor:

It is defined as the ratio of the peak or crest value to the RMS value of an alternating quantity.
$\begin{array}{ll}\text { Crest factor }=\frac{\text { Peak Value }}{\text { RMS Value }} & \text { 1 Mark }\end{array}$
Value of Crest Factor for Pure Sine Wave is 1.414.
ii) Form Factor:

It is defined as the ratio of RMS value to average value of an alternating quantity.
Form factor $=\frac{R M S \text { Value }}{\text { Average Value }}$
Value of Form Factor for Pure Sine Wave is 1.11.
1 Mark
1 Mark
3 f) A resistance of 100Ω and $50 \mu \mathrm{~F}$ capacitor are connected in series across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find:
i) Impedance
ii) Current flowing
iii) Voltage across R and C
iv) PF and power

Ans:
Data Given: $\mathrm{R}=100 \Omega, \mathrm{C}=50 \mu \mathrm{~F}, \mathrm{~V}=230 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$.
The Capacitive reactance is given by, $\mathrm{Xc}=\frac{1}{2 \pi \mathrm{fC}}$

$$
\begin{gathered}
=\frac{1}{2 \pi \mathrm{ft}} \\
2 \pi(50)\left(50 \times 10^{-6}\right) \\
=63.66 \Omega .
\end{gathered}
$$

i) The impedance of Circuit:

1 Mark

$$
\mathrm{Z}=\sqrt{\left(\mathrm{R}^{2}+(-\mathrm{Xc})^{2}\right.}=\sqrt{(100)^{2}+(-63.66)^{2}}=118.54 \Omega
$$

ii) Current flowing through the circuit (I):

$$
\mathrm{I}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{Z}}=\frac{230}{118.54}=\mathbf{1 . 9 4 A}
$$

1 Mark
iii) Voltage across Capacitance and Resistance

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

Voltage across capacitance $=\mathrm{V}_{\mathrm{c}}=\mathrm{I} \times \mathrm{Xc}$

$$
\begin{array}{rlr}
=1.94 & \times 63.66 & 1 / 2 \text { Mark } \\
= & \mathbf{1 2 3 . 5 V} & \\
\text { Voltage across } & \\
& =1.94 \times 100 & 1 / 2 \text { Mark } \\
& =\mathbf{1 9 4 V} &
\end{array}
$$

iv) Power factor and Power:

Phase angle between voltage and current (ϕ)
$\Phi=\tan ^{-1} \frac{(-X c)}{R}=\tan ^{-1} \frac{(-63.66)}{100}=-32.48^{\circ}=\mathbf{3 2 . 4 8}$ leading.
Power factor $=\cos \Phi=\cos 32.48=\mathbf{0 . 8 4 3 6}$
$1 / 2$ Mark
Power $=$ VIcos $\Phi=230 \times 1.94 \times 0.8436=376.41 \mathbf{W}$
$1 / 2$ Mark

$4 \quad$ Attempt any FOUR of the following.

4 a) Compare balanced and unbalanced three phase load.
Ans:
Comparison of Balanced and Unbalanced Three Phase Load:

Sr. No.	Balanced load	Unbalanced load
1	Balanced three phase load is defined as star or delta connection of three equal impedances having equal real parts and equal imaginary parts.	When the magnitudes and phase angles of three impedances are differ from each other, then it is called as unbalanced load.
2	All the phase voltages have equal magnitude but displaced from each other by 120°. Similar is the case with phase currents.	All the phase voltages do not have equal magnitude and may not be displaced by 120°. Similar is the case with phase currents.
3	All the line voltages have equal magnitude but displaced from each other by 120°. Similar is the case with line currents.	All the line voltages do not have equal magnitude and may not be displaced by 120°. Similar is the case with line currents.
4	Phase angle of impedances are equal.	Phase angles of impedances are not equal.
5	Example circuit:	Example circuit:

1 Mark for each of any four points $=4$ Marks

Model Answers
Winter-2019 Examinations
\section*{Subject \& Code: Electrical Circuits \& Networks (17323)}

4 b) A balanced Y connected load with phase impedance of $14 \angle 45^{\circ} \Omega$ is connected to a 3 ph, 4 wire supply having phase voltage of 231 V at 50 Hz . Determine:
(i) Line current
(ii) Current in neutral wire
(iii) Power drawn
(iv) Power factor

Ans:
i) Line Current I_{L} :

Phase current $\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}_{\mathrm{ph}}=\left(231 \angle 0^{\circ}\right) /\left(14 \angle 45^{\circ}\right)=16.5 \angle-45^{\circ} \mathrm{A}$
For star connection, Line current $=$ Phase current
1 Mark
\therefore Line current $=\mathbf{I}_{\mathrm{L}}=\mathbf{1 6 . 5} \mathrm{A}$
ii) Current in neutral wire:

Since the 3-ph load is balanced and supply voltage is also balanced, the current in neutral wire $\mathbf{I}_{\mathbf{N}}=\mathbf{0} \mathrm{A}$

1 Mark
iii) Power factor:

Phase current is lagging behind the respective phase voltage by 45°.
\therefore Power factor $=\cos \left(45^{\circ}\right)=\mathbf{0 . 7 0 7}$ lagging
1 Mark
iv) Power Drawn:

Power $=3 V_{p h} I_{p h} \cos \varnothing=3(231)(16.5) \cos \left(45^{\circ}\right)=\mathbf{8 0 8 4 . 1 9} \mathrm{W}$
1 Mark

4 c) A 3ph Y connected load having $\mathrm{R}=15 \Omega, \mathrm{~L}=0.04 \mathrm{H}, \mathrm{C}=50 \mu \mathrm{~F}$ in each phase. It is supplied by 440 V , $3 \mathrm{ph}, 50 \mathrm{~Hz}$ AC. Find:
i) $2 \mathrm{pH} \mathrm{Z}_{\mathrm{ph}}$
ii) Line current
iii) Power factor
iv) Power Consumed.

Ans:
Data Given: $\mathrm{R}=15 \Omega, \mathrm{~L}=0.04 \mathrm{H}, \mathrm{C}=50 \mu \mathrm{~F}, \mathrm{~V}=440 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$.
In star connected load $\mathrm{V}_{\mathrm{L}}=\sqrt{3} \mathrm{Vph}$ and $\mathrm{I}_{\mathrm{L}}=\mathrm{Iph}$.
$\mathrm{V}_{\mathrm{ph}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}}=\frac{440}{\sqrt{3}}=254.034 \mathrm{~V}$
The Capacitive reactance is given by, $\mathrm{Xc}=\frac{1}{2 \pi \mathrm{fC}}$

$$
\begin{gathered}
=\frac{1}{2 \pi(50)\left(50 \times 10^{-6}\right)} \\
=63.69 \Omega .
\end{gathered}
$$

The inductive reactance is given by, $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$

$$
\begin{aligned}
& =2 \times 3.14 \times 50 \times 0.04 \\
& =12.56 \Omega
\end{aligned}
$$

i) Impedance per phase:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{ph}}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) . \\
& \mathrm{Z}_{\mathrm{ph}}=15+\mathrm{j}(12.56-63.69)
\end{aligned}
$$

$$
=15-\mathrm{j} 51.13=53.28 \angle-73.64^{\circ} \Omega
$$

1 Mark
ii) Line Current:

$$
\mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{V}_{\mathrm{ph}}}{\mathrm{Z}_{\mathrm{ph}}}=\frac{254.034 \angle 0^{\circ}}{53.28 \angle-73.64^{\circ}}=4.76 \angle 73.64^{\circ} \mathrm{A}
$$

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

In Star connection Line current $=$ Phase current
\therefore Line current $\mathbf{I}_{\mathrm{L}}=\mathbf{I}_{\mathrm{ph}}=\mathbf{4 . 7 6 ~ A} \quad 1$ Mark
iii) Power factor:

$$
\cos \phi=\frac{\mathrm{Rph}}{\mathrm{Zph}}=\frac{15}{53.28}=\mathbf{0 . 2 8} \text { (lead). }
$$

1 Mark
iv) Power Consumed:

$$
\begin{aligned}
\mathrm{P} & =\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi=\sqrt{3}(440)(4.76)(0.28) \\
& =1015.73 \mathrm{~W}
\end{aligned}
$$

4 d) Derive the relation for star to delta transformation.
Ans:

Star-delta Transformation:

(a) Star Circuit

(b) Delta Circuit

If the star circuit and delta circuit are equivalent, then the resistance between any two terminals of the circuit must be same.
For star circuit, resistance between terminals $1 \& 2$, say $R_{1-2}=R_{1}+R_{2}$
For delta circuit, resistance between terminals $1 \& 2, \mathrm{R}_{1-2}=\mathrm{R}_{12} \|\left(\mathrm{R}_{31}+\mathrm{R}_{23}\right)$

$$
\begin{gather*}
\therefore \mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{R}_{12} \|\left(\mathrm{R}_{31}+\mathrm{R}_{23}\right)=\frac{\mathrm{R}_{12}\left(\mathrm{R}_{31}+\mathrm{R}_{23}\right)}{\mathrm{R}_{12}+\left(\mathrm{R}_{31}+\mathrm{R}_{23}\right)}=\frac{\mathrm{R}_{12}\left(\mathrm{R}_{31}+\mathrm{R}_{23}\right)}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\quad \therefore \mathrm{R}_{1}+\mathrm{R}_{2}=\frac{\mathrm{R}_{12} \mathrm{R}_{31}+\mathrm{R}_{12} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1)} \tag{1}
\end{gather*}
$$

Similarly, the resistance between terminals $2 \& 3$ can be equated as,

$$
\begin{equation*}
\therefore \mathrm{R}_{2}+\mathrm{R}_{3}=\frac{\mathrm{R}_{12} \mathrm{R}_{23}+\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} . \tag{2}
\end{equation*}
$$

And the resistance between terminals $3 \& 1$ can be equated as,

$$
\begin{equation*}
\therefore \mathrm{R}_{3}+\mathrm{R}_{1}=\frac{\mathrm{R}_{23} \mathrm{R}_{31}+\mathrm{R}_{12} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \tag{3}
\end{equation*}
$$

Subtracting eq. (2) from eq.(1),

$$
\begin{equation*}
\therefore \mathrm{R}_{1}-\mathrm{R}_{3}=\frac{\mathrm{R}_{12} \mathrm{R}_{31}-\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \text {. } \tag{4}
\end{equation*}
$$

Adding eq.(3) and eq.(4) and dividing both sides by 2 ,

$$
\begin{equation*}
\therefore \mathrm{R}_{1}=\left[\frac{\mathrm{R}_{12} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}\right] . \tag{5}
\end{equation*}
$$

Similarly, we can obtain,

$$
\begin{align*}
& \therefore \mathrm{R}_{2}=\left[\frac{\mathrm{R}_{12} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}\right] . \tag{6}\\
& \therefore \mathrm{R}_{3}=\left[\frac{\mathrm{R}_{31} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}\right] . \tag{7}
\end{align*}
$$

Multiplying each two of eq.(5), (6) and (7),

Model Answers

Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

$$
\begin{align*}
& \therefore \mathrm{R}_{1} \mathrm{R}_{2}=\left[\frac{\left(\mathrm{R}_{12}\right)^{2} \mathrm{R}_{31} \mathrm{R}_{23}}{\left(\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}\right)^{2}}\right] \ldots \tag{8}\\
& \therefore \mathrm{R}_{2} \mathrm{R}_{3}=\left[\frac{\left(\mathrm{R}_{23}\right)^{2} \mathrm{R}_{31} \mathrm{R}_{12}}{\left(\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}\right)^{2}}\right] \ldots \tag{9}\\
& \therefore \mathrm{R}_{3} \mathrm{R}_{1}=\left[\frac{\left(\mathrm{R}_{31}\right)^{2} \mathrm{R}_{12} \mathrm{R}_{23}}{\left(\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}\right)^{2}}\right] \ldots \tag{10}
\end{align*}
$$

Adding the three equations (8), (9) and (10),

$$
\begin{align*}
\therefore \mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1} & =\frac{\left(\mathrm{R}_{12}\right)^{2} \mathrm{R}_{31} \mathrm{R}_{23}+\left(\mathrm{R}_{23}\right)^{2} \mathrm{R}_{31} \mathrm{R}_{12}+\left(\mathrm{R}_{31}\right)^{2} \mathrm{R}_{12} \mathrm{R}_{23}}{\left(\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}\right)^{2}} \\
& =\frac{\mathrm{R}_{12} \mathrm{R}_{31} \mathrm{R}_{23}\left(\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}\right)}{\left(\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}\right)^{2}} \\
\therefore \mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{3} \mathrm{R}_{1} & =\frac{\mathrm{R}_{12} \mathrm{R}_{31} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \ldots \tag{11}
\end{align*}
$$

1 mark for eq. 11
Dividing eq.(11) by eq.(6), (dividing by respective sides)

$$
\begin{array}{r}
\quad \therefore \mathrm{R}_{1}+\mathrm{R}_{3}+\frac{\mathrm{R}_{3} \mathrm{R}_{1}}{\mathrm{R}_{2}}=\mathrm{R}_{31} \\
\therefore \mathrm{R}_{31}=\mathrm{R}_{3}+\mathrm{R}_{1}+\frac{\mathrm{R}_{3} \mathrm{R}_{1}}{\mathrm{R}_{2}} \ldots \tag{12}
\end{array}
$$

Similarly, we can obtain,

$$
\begin{align*}
& \therefore \mathrm{R}_{12}=\mathrm{R}_{1}+\mathrm{R}_{2}+\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{3}} \tag{13}\\
& \therefore \mathrm{R}_{23}=\mathrm{R}_{2}+\mathrm{R}_{3}+\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{1}} . \tag{14}
\end{align*}
$$

1 mark for (eq. 12, 13 \&

Thus using known star connected resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3}, the unknown resistors R_{12}, R_{23} and R_{31} of equivalent delta connection can be determined.

4 e) Calculate the node voltage V_{B} using the nodal analysis. Refer Figure No. 4.

Find V_{B} By using (Nodal analysis).
Fig. No. 4

Ans:

1 Mark

Model Answers

Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

Let the voltage at Node B be V_{B}
$\begin{array}{ll}\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} & 1 \text { Mark }\end{array}$
$\frac{10-V_{B}}{6}=\frac{V_{B}-4}{4}+\frac{V_{B}}{2}$
$\frac{10}{6}-\frac{V_{B}}{6}=\frac{V_{B}}{4}-1+\frac{V_{B}}{2}$
$\frac{10}{6}+1=\frac{V_{B}}{4}+\frac{V_{B}}{2}+\frac{V_{B}}{6}$
$\therefore \frac{16}{6}=\frac{11}{12} V_{B}$
$\therefore V_{B}=2.91$ volt

1 Mark
1 Mark

4 f) Find current I through 2Ω using mesh analysis. Refer figure No: 5.

Find current I (By using Mesh analysis).

Fig. No. 5

Ans:

Analysis:

i) There are two meshes in the network.
ii) Mesh currents I_{1} and I_{2} are marked anti-clockwise as shown.
iii) By tracing mesh 1 anticlockwise, KVL equation is, $2-2\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)-10 \mathrm{I}_{1}=0$
$\therefore 2-12 \mathrm{I}_{1}+2 \mathrm{I}_{2}=0$
$\therefore 12 \mathrm{I}_{1}-2 \mathrm{I}_{2}=2$

By tracing mesh 2 anticlockwise, KVL equation is,
1 mark for
Eq. (1)
$4-10 \mathrm{I}_{2}-2\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=0$
$4-12 \mathrm{I}_{2}+2 \mathrm{I}_{1}=0$
$\therefore 2 \mathrm{I}_{1}-12 \mathrm{I}_{2}=-4$
1 mark for
iv) Expressing eq.(1) and (2) in matrix form,
$\left[\begin{array}{cc}12 & -2 \\ 2 & -12\end{array}\right]\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2}\end{array}\right]=\left[\begin{array}{c}2 \\ -4\end{array}\right]$
$\therefore \Delta=\left|\begin{array}{cc}12 & -2 \\ 2 & -12\end{array}\right|=-144-(-4)=-140$
By Cramer's rule,
$\mathrm{I}_{1}=\frac{\left|\begin{array}{cc}2 & -2 \\ -4 & -12\end{array}\right|}{\Delta}=\frac{(2 \times-12)-(-4 \times-2)}{-140}=\frac{-24-8}{-140}=\mathbf{0 . 2 2 8 6 A}$

1 mark for finding loop currents

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

$$
\mathrm{I}_{2}=\frac{\left|\begin{array}{cc}
12 & 2 \\
2 & -4
\end{array}\right|}{\Delta}=\frac{(12 \times-4)-(2 \times 2)}{-140}=\frac{-48-4}{-140}=\mathbf{0 . 3 7 1 4} \mathbf{A}
$$

v) The current flowing through 2Ω is,
$\mathrm{I}=\mathrm{I}_{1}-\mathrm{I}_{2}=0.2286-0.3714=-\mathbf{0 . 1 4 2 8} \mathrm{A}$
$\mathrm{I}=0.1428 \mathrm{~A}$ in the direction of I_{2}.
5 Attempt any TWO of the following:
5 a) With the help of necessary phasor diagram derive the relationship between line and phase current in balanced Y connected load, connected to 3ph AC supply.
Ans:
Relationship Between Line Current and Phase Current in Balanced Star Connected load:

Let $\mathrm{V}_{\mathrm{RN}}, \mathrm{V}_{\mathrm{YN}}$ and V_{BN} be the phase voltages.
$V_{R Y}, V_{Y B}$ and $V_{B R}$ be the line voltages.
Referring to the circuit diagram above, it is clear that the supply current I_{R} is the current flowing through line R, hence it is also termed as line current I_{L}. However, it is also clear that the same current further flows through the phase impedance Z_{ph} across which the phase voltage is V_{RN}. Therefore, this current is also termed as phase current I_{ph}. In phasor diagram, the phase voltages are drawn first with equal amplitude and displaced from each other by 120°. Then phase currents are drawn lagging behind the respective phase voltage by some angle ϕ, assuming inductive load.
Thus Line Current $=$ Phase Current

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{Ph}}
$$

5 b) i) State Thevenins theorem and write its procedural steps to find current in a branch.(Assume any simple ckt)

Ans:

Thevenin's Theorem:

Any two terminal circuit having number of linear impedances and sources (voltage, current, dependent, independent) can be represented by a simple equivalent circuit consisting of a single voltage source V_{Th} in series with an impedance Z_{Th}, where the source voltage V_{Th} is equal to the open circuit voltage appearing across the two terminals due to internal sources of circuit and the series impedance Z_{Th} is equal to the impedance of the circuit while looking back into the circuit across the two terminals, when the internal independent voltage sources are replaced by short-circuits and independent current sources by open circuits.

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

Procedural steps to find current in a branch using Thevenin's theorem:

Consider a simple circuit shown below in which we need to find the current flowing through 10Ω resistor.

Step I: Identify the load branch: It is the branch whose current is to be determined.
Step II: Calculation of V_{Th} : Remove R_{L} and find open circuit voltage across the load terminals A and B.

2 Marks for stepwise procedure
Current through circuit will be $=10 /(15+7)=0.45 \mathrm{Amp}$
$\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{AB}}=0.45 \times 7=3.18 \mathrm{~V}$
Step III: Calculation of R_{Th} :

Resistances $15 \& 7$ are in parallel $=15 \times 7 /(15+7)=4.77 \Omega$
$\mathrm{R}_{\mathrm{Th}}=7+4.77=11.77 \Omega$
Step IV: Thevenin's equivalent circuit:

Step V: Determination of Load current:

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Th}} /\left(\mathrm{R}_{\mathrm{Th}}+\mathrm{R}_{\mathrm{L}}\right)=3.18 /(11.77+10)=0.146 \mathrm{Amp}
$$

5 b) ii) Develop Thevenins equivalent across A and B in the network shown in Figure No:6

Find Thevenin's equivalent circuit
Fig. No. 6

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

Ans:

1) Converting current source of 12 A with 16Ω as internal resistance into voltage source $\mathrm{V}=12 \times 16=192 \mathrm{~V}$.

1 Mark
2) Determination of Thevenin's equivalent voltage $\mathbf{V}_{\mathbf{T h}}$:

Due to open circuit between A \& B, the current is zero and voltage drop across all resistors is zero. The open circuit voltage between A \& B can be obtained by KVL as,
$\mathrm{V}_{\mathrm{AB}}=8(0)+16(0)+192+8(0)-10=182$
$\therefore \mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{AB}}=182 \mathrm{~V}$.
3) Determination of Thevenin's equivalent resistance $R_{T h}$:

It is the resistance seen between the open circuited terminals A \& B with all internal independent voltage sources replaced by short circuit and all internal independent current sources by open circuit.

$$
\mathrm{R}_{\mathrm{Th}}=8+16+8=32 \Omega
$$

4) Thevenin's Equivalent Circuit:

1 Mark

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

5 c) State the maximum power transfer theorem. In following network shown in Figure No: 7, find the value of R_{L} so that maximum power will transfer through it and also calculate this power.

$$
\text { Calculate } \mathrm{R}_{\mathrm{L}} \text { (By using Max power transfer theorem) }
$$

Fig. No. 7

Ans:

Maximum Power Transfer Theorem:

The maximum power transfer theorem states that the source or a network transfers maximum power to load only when the load resistance is equal to the internal resistance of the source or the network.
The internal resistance of the network is the Thevenin equivalent resistance of the network seen between the terminals at which the load is connected when:
i) The load is removed (disconnected)
ii) All internal independent sources are replaced by their internal resistances.

Maximum power will be transferred when load resistance is equal to internal resistance i.e. $R_{L}=R_{T h}$

Resistances of $6 \& 4$ are in parallel $=8 \times 8 /(8+8)=4 \Omega$ and circuit is simplified as

2 Marks for finding $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{Th}}$
$\mathrm{R}_{\mathrm{Th}}=4+10=14 \Omega$
Hence in the given circuit maximum power will be transferred when
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{Th}}=14 \Omega$

Maximum Power Calculations:

Maximum power transferred to load resistance R_{L} can be obtained by first simplifying the circuit into its Thevenin's equivalent circuit.
A) Determination of Thevenin's equivalent source \mathbf{V}_{Th} :

Current through 8Ω is $\mathrm{I}_{1}=15 /(8+8)=15 / 16=0.9375 \mathrm{~A}$

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

Current through 10Ω is $\mathrm{I}_{2}=4 \mathrm{~A}$
By KVL, we can write $\mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{AB}}=10 \mathrm{I}_{2}-8 \mathrm{I}_{1}=10(4)-8(0.9375)=40-7.5$
$V_{\text {Th }}=32.5 \mathrm{~V}$

B) Determination of Thevenin's equivalent resistance $T_{T h}$:

It is already determined. $\mathrm{R}_{\mathrm{Th}}=14 \Omega$
C) Thevenin's Equivalent Circuit:

The load current is given by, $\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Th}} /\left(\mathrm{R}_{\mathrm{Th}}+\mathrm{R}_{\mathrm{L}}\right)=32.5 /(14+14)$

$$
=1.16 \mathrm{~A}
$$

Maximum power transferred to load is given by, $\mathrm{P}_{\max }=\mathrm{I}_{\mathrm{L}}{ }^{2} \times \mathrm{R}_{\mathrm{L}}$

$$
P_{\max }=(1.16)^{2}(14)=\mathbf{1 8 . 8 4} \mathbf{W}
$$

6 Attempt any FOUR of the following:
6 a) Find current I_{AB} flowing through 4Ω resistance using Norton's theorem as shown in Figure No. 8

Calculate I_{AB} (By using Norton's theorem)
Fig. No. 8

Ans:

Norton's Theorem:

According to Norton's theorem, the circuit between load terminals excluding load resistance can be represented by simple circuit consisting of a current source I_{N} in parallel with a resistance R_{N}, as shown in the following figure.

1 Mark for $\mathrm{P}_{\text {max }}$

Model Answers
 Winter-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)

Determination of Norton's Equivalent Current Source ($\mathbf{I}_{\mathbf{N}}$):
Norton's equivalent current source I_{N} is the current flowing through a short-circuit across the load terminals due to internal sources, as shown in fig.(a).

Total resistance across 10 V source is,

$$
R=6+(6 \| 7)=6+\frac{(7 \times 6)}{6+7}=9.23 \Omega
$$

Therefore, current supplied by source,
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{10}{9.23}=1.083 \mathrm{~A}$
The resistances 7Ω and 6Ω are in parallel. By current division, the current flowing through 7Ω is same as I_{N}.
$\mathbf{I}_{\mathrm{N}}=\mathrm{I} \frac{6}{7+6}=(1.083) \frac{6}{13}=\mathbf{0 . 5 A}$
1 Mark for I_{N}
Determination of Norton's Equivalent Resistance (\mathbf{R}_{N}):
Norton's equivalent resistance is the resistance seen between the load terminals while looking back into the network, with internal independent voltage sources replaced by short-circuit and independent current sources replaced by open-circuit. Referring to fig.(b),

$\mathbf{R}_{\mathbf{N}}=12\|(7+(6| | 6))=12| |(7+3)=12\| 10=\frac{12 \times 10}{12+10}=\mathbf{5 . 4 5 \Omega}$
1 Mark for R_{N}
Determination of Load Current $\left(I_{L}\right)$:

1 Mark for I_{L}
Referring to fig.(c), the load current is
$\mathbf{I}_{\mathbf{L}}=\mathrm{I}_{\mathrm{N}} \frac{\mathrm{R}_{\mathrm{N}}}{\mathrm{R}_{\mathrm{N}}+\mathrm{R}_{\mathrm{L}}}=0.5 \frac{5.45}{5.45+4}=\mathbf{0 . 2 8 8 ~ A}$

Model Answers
Winter-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

6 b) Apply superposition theorem shown in Figure No. 9 for determinig the current I in 100Ω resistance.

Calculate I (By using Superposition theorem)

$$
\text { Fig. No. } 9
$$

Ans:

(A) Consider Voltage source of 50 V acting alone:

The total resistance appearing in series with 20Ω is given by
$=80 \| 100=\frac{80 \times 100}{80+100}=44.44 \Omega$.
Total resistance acrioss 509 V source is $=20+44.44=64.44 \Omega$
The current $I=50 / 64.44=0.7759 \mathrm{~A}$.
\therefore Current flowing through 100Ω resistor is

$$
\mathrm{I}_{1}=\mathrm{I} \times \frac{80}{80+100}=0.7759 \times \frac{80}{180}=\mathbf{0 . 3 4 4 8 A}
$$

(B) Consider Voltage source of $\mathbf{1 0 0 V}$ Acting alone:

$1 / 2$ Mark for circuit diagram

The total resistance appearing in series with 80Ω is given by
$=20| | 100=\frac{20 \times 100}{20+100}=16.67 \Omega$.
Total resistance across 100 V source is $=80+16.67=96.67 \Omega$
The current $\mathrm{I}=100 / 96.67=1.0344 \mathrm{~A}$.
\therefore Current flowing through 100Ω resistor is

$$
\mathrm{I}_{2}=\mathrm{I} \times \frac{20}{20+100}=1.0344 \times \frac{20}{120}=\mathbf{0 . 1 7 2 A}
$$

By Superposition theorem, the current through 100Ω due to both sources is given by,

$$
\mathrm{I}=\mathrm{I}_{2}-\mathrm{I}_{1}=(0.172-0.3448)=\mathbf{- 0 . 1 7 2 4 A}
$$

Model Answers
 Winter-2019 Examinations
 Subject \& Code: Electrical Circuits \& Networks (17323)

6 c) Using Nodal voltage method, find the current I in the 3Ω resistance in Figure No: 10

Calculate I (By using Node voltage method)
Fig. No. 10

Ans:

The nodes are marked on the circuit diagram as follows:

The node voltage can be identified as:

$$
\mathrm{V}_{\mathrm{C}}=4 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{B}}=4 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{AD}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{D}}=2 \mathrm{~V}
$$

$\therefore \mathrm{V}_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{A}}-2\right)$
Considering Supernode consisting of node A, node D and 2V source as shown below, the node voltage equation at supernode can be written as:

1 Mark for
$\frac{\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}}{2}+\frac{\mathrm{V}_{\mathrm{A}}}{2}+\frac{\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{C}}}{(2+3)}=0$

$$
\begin{gathered}
\frac{\mathrm{V}_{\mathrm{A}}-4}{2}+\frac{\mathrm{V}_{\mathrm{A}}}{2}+\frac{\left(\mathrm{V}_{\mathrm{A}}-2\right)-4}{(2+3)}=0 \\
\mathrm{~V}_{\mathrm{A}}\left[\frac{1}{2}+\frac{1}{2}+\frac{1}{5}\right]-\frac{4}{2}-\frac{6}{5}=0 \\
\mathrm{~V}_{\mathrm{A}}\left[\frac{[12}{10}\right]=\frac{4}{2}+\frac{6}{5} \\
\mathrm{~V}_{\mathrm{A}}[1.2]=3.2 \\
\therefore \mathrm{~V}_{\mathrm{A}}=2.67 \mathrm{~V}
\end{gathered}
$$

$\therefore \mathrm{V}_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{A}}-2\right)=(2.67-2)=0.67 \mathrm{~V}$
Current through 3Ω resistor, $\mathrm{I}=\left(\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{D}}\right) /(2+3)=(4-0.67) / 5=0.666 \mathrm{~A}$

$$
\mathrm{I}=0.666 \mathrm{~A}
$$

$1 / 2$ Mark for
node marking
$1 / 2$ Mark for node voltage identification
diagram

1 Mark for stepwise calculation of V_{A}

1 Mark for stepwise solutuion of I

Model Answers
Winter-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

6 d) Current drawn by a 3ph Y connected load of 10Amp, 0.87 PF lagging when connected across $3 \mathrm{ph}, 440 \mathrm{~V}$ AC supply. Find active, reactive and apparent power.

Ans:

Data given:

Line Voltage $\mathrm{V}_{\mathrm{L}}=440 \mathrm{~V}$
Line current $\mathrm{I}_{\mathrm{L}}=$ Phase current $\mathrm{I}_{\mathrm{Ph}}=10 \mathrm{~A}$ for star connection

Power factor $\cos \phi=0.87$ lagging $\quad \therefore \sin \phi=0.493$
i) Active power $\mathrm{P}=\sqrt{3} V_{L} I_{L} \cos \emptyset=\sqrt{3}(440)(10)(0.87)=\mathbf{6 6 3 0} \mathbf{2 9} \boldsymbol{W}$
ii) Reactive power $\mathrm{Q}=\sqrt{3} V_{L} I_{L} \sin \emptyset=\sqrt{3}(440)(10)(0.493)=3757$. 16 VAr
iii) Apparent power $S=\sqrt{3} V_{L} I_{L}=\sqrt{3}(440)(10)=7621.023 V A$

1 Mark
1 Mark
1 Mark
1 Mark
½ Mark
At any time it acts like resistor only, with no change in condition.

ii) Inductor:

The current through an inductor cannot change instantly. If the inductor current is zero just before switching, then whatever may be the applied voltage, just after switching the inductor current will remain zero. i.e the inductor must be acting as open-circuit at instant $t=0$. If the inductor current is I_{0} before switching, then just after switching the inductor current will remain same as I_{0}, and having stored energy hence it is represented by a current source of value I_{0} in parallel with open circuit.
As time passes the inductor current slowly rises and finally it becomes constant.
Therefore the voltage across the inductor falls to zero $\left[\mathrm{v}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=0\right]$.

iii) Capacitor:

The voltage across capacitorcannot change instantly.If the capacitor voltage is zero initially just before switching, then whatever may be the current flowing, just after switching the capacitor voltage will remain zero. i.e the capacitor must be acting as short-circuit at instant $t=0$. If capacitor is previously charged to some voltage V_{0}, then also after switching at $t=0$, the voltage across capacitor remains same V_{0}. Since the energy is stored in the capacitor, it is represented by a voltage source V_{0} in series with short-circuit.
As time passes the capacitor voltage slowly rises and finally it becomes constant.
Therefore the current through the capacitor falls to zero $\left[\mathrm{i}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{dv} \mathrm{v}_{\mathrm{C}}}{\mathrm{dt}}=0\right]$.
The initial conditions are summarized in following table:

Element and condition at $\mathrm{t}=0^{-}$	Initial Condition at $\mathrm{t}=0^{+}$
~~~~~~~	~~~~~~
-	$0 .$

## Model Answers <br> Winter-2019 Examinations

## Subject \& Code: Electrical Circuits \& Networks (17323)



6 f) Define RMS value and average value of AC quantities. State the RMV RMS value and average value in terms of maximum value of sinusoidal waveform.
Ans:

1) RMS Value: The RMS value is the Root Mean Square value. It is defined as the square root of the mean value of the squares of the instantaneous values of alternating quantity over one cycle.

## OR

For an alternating current, the RMS value is defined as that value of steady current (DC) which produces the same power or heat as is produced by the alternating current during the same time under the same conditions.

RMS Value $=0.707 \times$ Maximum value
1 Mark
2) Average Value: The Average value is defined as the arithmetical average or mean

## OR

For an alternating current, the average value is defined as that value of steady current (DC) which transfers the same charge as is transferred by the alternating current during the same time under the same conditions.

Average Value $=0.637 \times$ Maximum value

