Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

	(i) $\mathbf{5 6}$ (ii) $\mathbf{8 3}$ (iii) $\mathbf{9 9}$ (iv) $\mathbf{1 0}$	
Ans:	The Number of flip flops are calculated from the formula: $2 \mathrm{n} \geq \mathrm{m}$ Where $\mathrm{n}=$ no of flip flops and m is the number of states. i) $\quad 56=6$ ii) $\quad 83=7$ iii) $\quad 99=7$ iv) $\quad 10=4$	$1 / 2$ each
(g)	List any four applications of A/D converter.	2M
Ans:	1. In a digital signal processing system, an ADC is required if the input signal is analog. For example, a fast video ADC is used in TV tuner cards. $8,10,12$, or 16 bit analog to digital controllers are common in microcontrollers. 2. They are also needed in digital storage oscilloscopes. 3. Analog to digital converters are used in music reproduction technology when done using computers. In such an application, an ADC is needed when an analog recording is used in order to create the PCM data stream that goes onto a CD or a digital music file. 4. ADC is used in Cell phones 5. Computers use analog-to-digital converters in order to convert signals from analog to digital before they can be interpreted. For example, a modem will convert signals from digital to analog before transmitting them over telephone lines that carry only analog signals. These signals are then converted back into digital form at the receiving end so that the computer can interpret the data in digital format. 6. ADC is used in digital voltmeters 7. ADC is used in digital oscilloscope	Any four Applicat ions 2M
(h)	Write any four Boolean laws used to reduce Boolean Expression.	2M
Ans:	$\begin{aligned} & \text { Boolean laws: } \mathrm{A}+1=1 \\ & \mathrm{~A}+0=\mathrm{A} \\ & \mathrm{~A} \cdot 1=\mathrm{A} \\ & \mathrm{~A} \cdot 0=0 \\ & \mathrm{~A}+\mathrm{A}=\mathrm{A} \\ & \mathrm{~A} \cdot \mathrm{~A}=\mathrm{A} \\ & \mathrm{~A}+\mathrm{B}=\mathrm{B}+\mathrm{A} \\ & \mathrm{~A} \cdot \mathrm{~B}=\mathrm{B} \cdot \mathrm{~A} \\ & (\mathrm{~A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C}) \\ & (\mathrm{A} B) \mathrm{C}=\mathrm{A}(\mathrm{~B} C) \\ & \mathrm{A}(\mathrm{~B}+\mathrm{C})=\mathrm{A}+\mathrm{B}+\mathrm{A} C \\ & \mathrm{~A}+(\mathrm{B} C)=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C}) \end{aligned}$	Any 4 Boolean laws $1 / 2$ each

	b)	Attempt any TWO of the following:	8 Marks
	(a)	Define the following terms with reference to logic families: (i) Threshold voltage	$\mathbf{4 M}$

Ans	(i) Threshold voltage: Threshold voltage is defined as the minimum voltage that required to make the transistor ON. (ii) Power dissipation: It is the amount of power dissipated in an IC. Power Dissipation is given by $\mathrm{P}=\mathrm{Vcc} \mathrm{X}$ Icc This power is in milliwatts. (iii) Operating speed: Speed of Operation: Speed of a logic circuit is determined by the time between theapplication of input and change in the output of the circuit. (iv) Logic voltage level: Positive Logic: A Logic 1 level represents a more positive of the two voltage levels while the least positive of the two voltage levels represents a logic 0 level. Example, If +5 V represents a logic 1 level And 0 V represents a logic 0 level Logic $1=$ +5 V Logic $0=0 \mathrm{~V}$ Or if logic $1=+5 \mathrm{~V}$, logic $0=+2 \mathrm{~V}$ Negative Logic: A Logic 1 level represents a most negative of the two voltage levels while the least negative of the two voltage levels represents a logic 0 level. Example, If 0 V represents a logic 1 level And +5 V represents a logic 0 level Logic $1=0 \mathrm{~V}$ Logic $0=+5 \mathrm{~V}$ Or if logic $1=+2 \mathrm{~V}$, logic $0=+5 \mathrm{~V}$							1M each
(b)	State and prove De Morgan's theorems							4M
Ans	Theorem1:It state that the, complement of a sum is equal to product of its complements. Theorem2:It states that, the complement of a product is equal to sum of the complements.							2M each

MAHARASHTE

BOARD OF TECHNICAL EDUCATION
tified)

	(C)	Add (83) $\mathbf{1 0}$ and (34) ${ }_{10}$ in BCD.	4M
	Ans		Conversio n-1M Addition1M Final Answer2M
$\begin{aligned} & \hline \mathbf{Q} . \\ & 2 \end{aligned}$		Attempt any FOUR of the following:	16 Marks
	(a)	Convert (2003.31)10 to hex equivalent.	4M
	Ans	Fractional Part $\begin{array}{l\|l} (.31 * 16)=\mathbf{4 . 9 6} \quad M B & \\ (0.96 * 16)=15.36(\mathbf{F}) \\ (.36 * 16)=\mathbf{5 . 7 6} \\ (.76 * 16)=12.16(C) \end{array} \quad \text { LSD }$ Integer part Final answer=(7D3.4F5C) ${ }_{16}$	2M fractional part 2M integer part
	(b)	Implement the following expression by minimizing the variable using Universal gate $\mathbf{Y}=\mathbf{A} \bar{B}+\mathbf{A B}+\bar{A} \mathbf{B C}+\mathbf{A B C}$	4M

Truth table

Master Slave flip flop, the master directly gets the clock pulse, whereas the slave gets the clock pulse through a NOT gate. Hence even if the output of slave is connected to input of master, the output of slave cannot change as it does not get the clock transition.

Case I: Clock=x, $\mathbf{J}=\mathrm{K}=\mathbf{0}$
For clock=1 the master is active, slave in active. As J=K=0.Therefore Output of master i.e. Q1 and will not change. Hence the S and R inputs to theslave will remain unchanged.

Case II:clock= present

, $\mathrm{J}=\mathrm{K}=\mathbf{0}$
This condition has been already discussedin case I.
Case III:
Clock=1: Master active, slave inactive.
Output of themasterbecome $\mathrm{Q} 1=0$ and $\overline{Q_{1}}=1$.Thatmeans $S=0$ and
$\mathrm{R}=1 \mathrm{Clock}=0$ slave active masterinactive
Outputs of the slave become $\mathrm{Q}=0$ and $=\overline{Q_{1}}=1$
Thus we get a stable output from the MasterSlave.

Case VI:

Clock $=1$ master active, slave inactive
Outputs of master become $\mathrm{Q} 1=1$ and $\overline{Q_{1}}=0$ i.e. $\mathrm{S}=1$,
$\mathrm{R}=0$ Clock $=0$:master inactive slaveactive.
Outputs of slave become $\mathrm{Q}=1$ and $\overline{Q_{1}}=0$.
Again if clock=1 then it can be shown that the outputs of the slave are stabilized to $\mathrm{Q}=1$ and $\quad \overline{Q_{1}}=0$

Case V:CLK: $=\quad \square, \mathrm{J}=1, \mathrm{~K}=1$
Clock $=1$: master will be active, slave inactive.
Outputs of master will toggle so S and R also will be inverted. Clock=0: master inactive, slave active

- Outputs of the slave willtoggle.

These changed outputs are returned back to the master inputs.

- But since clock=0, the master is still inactive. So it does not respond to thesechangedoutputs.
- This avoids the multiple toggling which leads to the race around condition. Thusthe master slave flip flop will avoid the race aroundcondition.

(e)	Draw symbol of D flip-flop and write down its truth table	4M
Ans		(2Msymbol 2M- truth table)

MAHARASHTF

BOARD OF TECHNICAL EDUCATION
tified)

tified)

	Ans	Convest $(6 A C)_{16}=(7)_{10}=(7)_{2}$ $\begin{array}{rl} \therefore(G A C)_{16} & =\left(6 \times 16^{2}\right)+\left(A \times 16^{2}\right)+\left(6 \times 16^{\circ}\right) \\ & =\left(6 \times 16^{2}\right)+\left(10 \times 16^{1}\right)+(12 \times 16) \\ & =1536+160+12 \\ (6 A C)_{16} & =(1708)_{10} \\ 6^{6} & \hat{b} \quad C \\ 0110 & 1010 \\ \therefore(6 A C)_{16} & =(011010101100)_{2} \end{array}$	2M each
$\begin{aligned} & \mathrm{Q} . \\ & 6 \end{aligned}$		Attempt any TWO of the following:	16 Marks
	(a)	Find the Boolean expression for logic circuit given below. (b)	8M
	Ans :	9) (i) -4 makss (ii) -4 masks (i) $\therefore Y=A \bar{B}+\bar{A} B$ (ii) $\therefore y=\overline{\bar{A}+\bar{B}}$	
	(b)	Convert following expression into standard SOP form. (i) $\bar{A}+B \bar{C} \bar{D}$ (ii) $A \bar{B} C+B \bar{D}$	8M

Ans :	(i) 4 makiks (ii) + malks = Slandard sop form $\text { (Q(b) ii) } A \bar{B} C+B \bar{D}$ $\text { tolol variables }=4 \quad(A, B, C, D)$ missing vatiable in $1^{\text {st }}$ tam $=D$ missing voriables in $2^{2 d}$ term $=A, C$	
(c)	Draw the circuit diagram of 3 bit R-2R ladder DAC. Obtain its output voltage expression.	8M

