

WINTER - 19 EXAMINATION

Subject Name: Thermal EngineeringModel AnswerSubject Code:17410Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

0.1.		Attempt any <u>SIX</u> of the following:	12
	.		Marks
a)	i)	In a boiler enthalpy of water supplied was 2000 kJ/kg. Enthalpy being added by fuel	
		compusition is 3200 kJ/kg. Using first law of thermodynamics, find amount of heat supplied if steep generation rate is 10 tens per hour	
	Sol	Heat supplied	
	501.		01 Mark
		$Q = m (h_2 - h_1) \dots (Steady flow energy equation for boiler);$	UI WIATK
		$h_2=3200 \text{ KJ/kg} h_1=2000 \text{ KJ/kg}$	
		$m = 10 \text{ Tons /hour} = (10 \times 1000)/3600 \text{ kg/sec} = 2.77 \text{ Kg/sec}$	01 Mark
		Q = 2.77(3200-2000) = 3324 KJ/sec heat supplied for 10 Tons/hr steam generation	
	ii)	i) Find molar volume of air when volume of a container in which air is contained	
	<u> </u>	3 m ³ where as mass of air is 3.81 kg. Take molecular weight of air 29.	
	Sol.	Molar Volume:-	
		Volume = 3 m^3 ; mass = 3.81 kg	01 Mark
		3.81 kg in 3 m ³ ; 3810 gm in 3 m ³	
		3810/29 moles in 3m ³	
		Molar volume = $3810 / (3 \times 29) = 43.79 \text{ mol/m}^3$	
Molar volume = Volume occupied by 1 mole		Molar volume = Volume occupied by 1 mole	
	43.79 moles in 1 m^3		01 Mark
		1 mole in $(1/43.79)$ m ³ = 0.0228m ³ = 22.8 Litre	

	iii)	Steam is available at turbine inlet at 10 bars and 250°C. Locate point on T-S diagram. Find degree of superheat				
	Sol.	T-S Diagram				
			01 mark			
		TT p -> Corresponding point				
		on T-s diagram				
		400- 1MP.	A1 mark			
			VI IIIal K			
		-250010				
		179				
		100				
		Entropy				
		Degree of supermean t				
		At 10 bar, using steam labes,				
		Tsat = 179.9 C				
		Transe of Superheat				
		- Degree of Superior				
		$= 250^{\circ} \text{C} - 179^{\circ} 9^{\circ} \text{C}$				
		$= 70.1^{\circ}C$				
	iv)	Comment on Mach number of steam in impulse and reaction turbines.				
	Sol.	Mach number, in fluid mechanics, ratio of the velocity of a fluid to the velocity of sound in that	01 mark			
		fluid. Mach numbers less than one indicate subsonic flow; those greater than one, supersonic	01 mark			
		flow.				
	V)	State two factors on which efficiency of cooling tower depends.	A			
	501.	1 Losses in duct, piping and joints, pipes should be free from scale/rust	Affy two 1 mark			
		2 Efficient heat transfer, maintenance of piping. Ensure fill is clean and free of debris	each			
		3.Sufficient airflow and correct fan speed.				
	vi)	Identify modes of heat transfer involved applications with brief explanation.				
		(1) Radiator of automobile				
		(2) Condenser of domestic refrigerator.				
	Sol.	Modes of heat transfer	01 1			
Automobile radiator-A		Automobile radiator-A radiator is a type of heat exchanger. It is designed to transfer heat from the	01 mark			
		a radiator occurs by all the usual mechanisms: thermal radiation convection into flowing air or				
		liquid, and conduction into the air or liquid.	01 mark			
		Condenser of refrigerator- The Condenser is a heat transferring device. It is used to				
		remove heat from hot refrigerant vapour. Using air cooling method condenser changes the				
		vapour to a liquid. Convection mode of heat transfer plays very important deciding				
		factor transferring heat from condenser tube to atmosphere.				

	vii)	Categorize point and path functions from following. (pressure, heat, internal energy temperature, work total enthalpy)	
	Sol.	Point function-Pressure, temperature, internal energy, total enthalpy Path function-Heat, Work	01 mark 01 mark
	viii)	A gas is compressed from 1 bar and 30°C to 5 bars and 30°C. Identify process and show on PV diagram.	
	Sol.	Gas is compressed from (1) 1 bar 30 °C to (2) 5 bar 30 °C Temp is constant. Hence process is isothermal. P x V = Constant P_{2} $P_{1}V_{1} = P_{2}V_{2}$ $P_{1}V_{1} = P_{2}V_{2}$ V_{2} V_{2} V_{1} $Volume, V$	01 mark 01 mark
b)		Attempt any TWO of the following:	08 Marks
~)	i)	Describe thermodynamic equilibrium with two suitable examples.	
	Sol.	Thermodynamic equilibrium with two examples	
		Thermodynamic equilibrium , condition or state of a thermodynamic system, the properties of which do not change with time and that can be changed to another condition only at the expense of effects on other systems. For a thermodynamic equilibrium, Mechanical equilibrium, Electrical equilibrium, Chemical equilibrium, and thermal equilibrium need to be satisfied. It is a state of a physical system in which it is in mechanical, chemical, and thermal equilibrium and in which there is therefore no tendency for spontaneous change. For example, a cup of water sitting on your desk, defined by the center 50% of its volume is very likely in thermal equilibrium. Deep ocean water is typically in thermal equilibrium with its	02 mark
		surroundings, barring thermal vents or strong ocean currents. Motorcycle engine must be at very high temperature while running. After we stop it, it is cooled by the surrounding air which is cooler as compared to the engine temperature. After some time engine reaches the surrounding air temperature. This condition is said to be thermal equilibrium. The moment when the temperature of the engine reaches the surrounding air temperature, it is said to be at thermal equilibrium.	02 mark

	ii)	Use equation of state to find density of air when atmospheric conditions are 760				
		mm of Hg and 30° C. Take R = 287 J/kg K.				
	Sol.	Using the equation of state				
		760 mm of Hg = 1 bar = 100 KPa ; Take R= 287 J/ KgK = 0.287 KJ/KgK				
		PV = mRT				
		100 V = m x 0.287 (30+273)				
		m/V = 1.15 kg/m3 = Density of air	02 marks			
	iii)	Represent generation of steam on H-S diagram. Show constant dryness fraction				
	Sol	lines, constant temperature lines, saturated line and superheated region on the same.				
	501.	Typical Mollier Enthalpy - Entropy Diagram				
		n-S Diagram				
			02 marks			
		/ - / - / - 37 T=C				
		Const. Temp Lines	00 1			
			02 marks			
		Superheated region				
		Ten Critical Point				
		E Critical Point				
		i Ban X				
		States Sales				
		Hinese Wapour Line				
		Jui Jas				
		Entropy				
) .2.	Attempt any <u>FOUR</u> of the following:	16 Marks			
	a)	Write continuity equation for nozzles. State involved with their units. meaning of	IVIAI KS			
		all terms				
	Sol.	Continuity equation for nozzle				
		Mass flow rate = Density x Area x Velocity (Density = $1/v$)				
		$m = (AC/v) = A_1C_1/v_1) = (A_2C_2/v_2)$				
		where,				
		m = mass flow rate of steam in kg/s				
		A= cross sectional area of nozzle at given section in m^2				
		v = specific volume of steam at given section in m3/kg				

	C = velocity of steam in m/s				
b)	In surface condensers write role of				
	(i) Water tubes				
	(ii) Shell				
	(iii) Baffle plate				
	(iv) Tube sheet				
Sol.	Function of parts in surface condensers		01 mark		
	1. Water tubes- Cooling water flows through the steam outside the tubes	ough it, for convective heat transfer to occur with	eacn		
	2. Shell- Outer body, all components are	enclosed in it			
	3. Baffle plate- baffles provide support to tubes and also deflect the fluid flow approximately normal to tubes. This increases turbulence of shell side fluid and improves heat transfer				
	4. Tube sheet- All tubes are supported at	t the end in tube sheet			
c)	A typical application has wall made t	ip of two different materials with inner			
	across wall is 35°C Thermal conductiv	ity of inner layer material is 0.1 W/m K			
	and outer layer material is 20 W 1m K	Ly of miler layer material is 0.1 with K			
	the wall will take place across the wall	•			
Sol.	Rate of heat transfer per m^2				
	$Q/A = (T_1-T_2) / [(L_1/K_1) + (L_2/K_2)]$				
	= 35/[(0.02/0.1)+(0.003/20)]				
	$=174.86 \text{ W/m}^2$				
d)	State two similarities and two dissimilarities between heat and work.				
Sol.	Sol. Heat and work				
			02 marks		
	Similarities- Both are not properties of system	h, both are boundary phenomena, both are path			
	functions, both are form of energy				
	Dissimilarities-Work is high grade energy be	at is low grade energy . Entire heat cannot be	02 marks		
	converted into work, but entire work can be converted into heat : System can possess heat, but				
	it never possess work				
e)	Differentiate between isothermal and isentropic processes(any four points)				
Sol.	Isothermal Vs Isentropic (Any 4 points)				
	Isothermal process	Isentropic Process	each		
	Tomp remains constant	Entrony remains constant			
	Temp Temains constant	Entropy remains constant			
	Piston displacement required is very slow,	Piston displacement required is very fast.			
	quasi static process				
	To carry out the process, thermal reservoir	To carry out the process, perfect thermal			
		insulation is required, no heat transfer			

		is required	should take place	
		Law is PV = Constant	Law is PV^{γ} =Constant	
		$d\Omega = dW = P_1 V_1 \log_2(V_2/V_1)$	$dO = 0 : dW = (P_1V_{1-}P_2V_2)/Y_{-1}$	
			uQ = 0, uw = (1 + 1 + 1 + 2 + 2) + 1 + 1	
	f)	In a constant pressure process steam is gen become dry and saturated. Determine amo steam table at 10 bar Tsat = 179.9°C hf =	erated from 10 bar and 0.8 dry condition till it ount of heat added per kg of steam. From = 762.6 kl/kg, hg = 2776.2 kJ/kg	
	Sol.	Constant pressure process		
		Final condition of steam is dry saturated		
		Enthalpy of dry steam = $hg = hf + hfg = 2776$.	2 KJ/KgGiven	
		Latent heat of vaporization = $hfg = hg - hf = 2$	2776.2-762.6 =2013.6 KJ/Kg	
		Initial condition of steam is 0.8 dry		
		Enthalpy of wet steam = $hw = hf + x$. $hfg = 76$	2.6+0.8 X 2013.6 =2373.48 KJ/Kg	02 mark
		Heat added = $hg-hw = 402.72 \text{ KJ/kg}$		02 mai k
		Attempt any <u>FOUR</u> of the following:		16
	2	With next skatch describe working of read	ion turking	Marks
So	a) .	Working principle of reaction turbine-	ion turbine.	
		 -A turbine in which steam pressure decreases gradually while expanding through the moving as well as through the fixed blade is known as reaction turbine. -In pure reaction turbine , the drop of pressure with expansion and generation of kinetic energy take place in moving blades the steam jet leaves the moving blades at greater velocity than that they enter blades. -The jet of steam leaving the moving blade with greater velocity reacts on the blades and turn them round. The passage through moving blade of reaction turbine is made convergent so the steam expand as is passes through moving blades. -The expansion causes the steam to leave the moving blade as higher velocity than as which it enternel. 		
		Which it entered.		2 Marks
		Fired	Moving	
		blades	blades	
		R	plor	
			- The second sec	
		Fixed blades	Moving	
		Pressure	Velocity 3 Velocity	
		Graph	8	
			4	
		Figure: Reac	tion turbine	

	b)	Find condenser efficiency when following readings were obtained on a steam surface		
		condenser.		
		(i) Atmospheric pressure = 760 mm of Hg		
		(ii) Vacuum in condenser = 690 mm of Hg		
		(iii) Cooling water inlet temperature $= 28^{\circ}C$		
		(iv) Cooling water outlet temperature $= 39^{\circ}C$		
Sol	l .	Condenser Efficiency		
		$h_v = 690 \text{ mm of Hg}; h_b = 760 \text{ mm of Hg}; T_{wo} = 39 \text{ °C}; T_{wi} = 28 \text{ °C}$	2 Marks	
		Pressure in condenser $P_c = h_b - h_v$		
		= $760-690 = 70 \text{ mm of Hg} = [(70/760) \times 1.01325] = 0.0933 \text{ bar}$		
		At 0.0933 bar condenser pressure, saturation temperature $I_s = 45^{\circ}$ C	2Marks	
		Condenser efficiency = $(1_{w0} - 1_{wi})/(1S - 1_{wi})$		
		= (39-28)/(43-28)		
		= 0.64 /		
		Condenser enciency = 04.7%		
	c)	State Fourier's law of 'conduction and Stefan Boltzmann law of		
	()	radiation Express mathematically		
Sol		Taulation. Express mathematically.		
50	•	Fourier law of heat conduction. It state that 'for homogeneous material, the rate heat transfer		
		in steady state in any direction is linearly proportional to temperature gradient in that direction	1 Marks	
		$\Omega \alpha dt/dx$	1 Marks	
		Q = -k dt/dx	1 Wants	
		Stefan Boltzman Law- Stefan concluded from experimental data that" total radiation by block	1 Marks	
		body par unit area per unit time is proportional to fourth power of absolute temperature of the	1 Marks	
		body par unit area per unit unit is proportional to routin power of absorate temperature of the		
		$E \alpha T^4$ $E = \sigma T^4$		
	d)	d) State first law of thermodynamics for		
	,	(i) closed system and cyclic process		
		(ii) closed system and non-cyclic process		
Sol		First Law of Thermodynamics:		
50	1.	i) Closed System Cyclic Process ·-		
		It states that if a system executes a cycle transferring work and heat through its boundary the	2 Marks	
		net heat transfer is equivalent to the network transfer and does not place any restriction on the		
		direction of flow but the reversal of the process not violet the first law		
		According to this statement of first law the potential energy can be converted into kinetic	2 Marks	
		energy and kinetic energy can be converted into potential energy but in natural practice this		
		does not happen.		
		ii) Closed system Non cyclic process:-		
		The principle of conservation of energy leads to first law of thermodynamics. This principle		
		states thatenergy can neither be created nor be destroyed though it can be transformed from		
		one form to another form of energy. According to this law, when a system undergoes a change		
		of state (thermodynamic process) both heat and work transfer takes place. The net energy		
		transfer is stored within the system and is known as stored energy or total energy of system.		
		$Q = \Delta U + W$		
	e)	Air is heated at constant volume from initial condition of 1 bar and 30°C		

		to 5 bar.	
		Calculate	
		(i) Final Temperature	
		(ii) Work done	
		(iii) Change in Enthalpy.	
		Take for air $R = 287$ J/kg °K, Cp = 1.005 kJ/kg K	
Sol	 .		02 marks
		Given:	
		Constant volume process	
		So,	
		$V_1 = V_2$	
		$P_1=1$ bar	01 marks
		$T_1 = 30^{\circ}C = 273 + 30 = 303K$	
		$P_2=5$ bar	
		$C_p=1.005 \text{ kJ/Kg}^0\text{K}$	
		$R = 287 J/Kg^{0}K = 0.287 kJ/Kg^{0}K$	
		Calculate;	
		Final Temp $T_2=?$	
		Work done=?	
		Change in enthalpy $\Delta h=?$	01 marks
		We Know that at constant volume process;	
		$P_1/P_2 = T_1/T_2$	
		$T_2 = (P2/P1)*T1$	
		$T_2 = (5/1) * 303$	
		$T_2 = 1515^{0}K$	01 marks
		At Constant volume process	
		Work done= 0	
		Change in enthalpy	01 marks
		$\Delta h = m C_P \Delta T$	
		$=1 \times 1.005 \times (1515-303)$	
		Change in Enthalpy= $\Delta h = 1218.06 \text{ kJ/Kg}$	
	<i>a</i>		
	f)	State regulations for boilers which fall under IBR boiler.	
Sol	 .	(Any Tour) Boiler Regulations : (Any 4 Points)	
		1. A boiler cannot be put to use unless it has been registered with the Chief Inspector of	

	 Boilers. 2. The maximum working pressure of the boiler has to be determined by Boiler Inspector w will issue certificate for this. Owner cannot exceed this pressure limit in any case. 3. In case of accident, it should be reported by owner within 24 hours with full details. 4. The rules, regulations and bye-laws governing the upkeep and maintenance of boile procedure of registration, inspection and certification of maximum pressure, safety condition etc. are subject to a revision by a Central Board under control of Govt. of India. 5. The boiler house plan, chimney design (Max height 30.48 m from floor) should be approved by boiler inspector. 6. Owner should apply for registration in prescribed format, inspector should fix date inspection within 30 days, conduct inspection/examination of boiler, Issue the certificate registration not exceeding 12 months period. 7. Following inspections are carried out by Boiler Inspector at various stages/ levels /ne 		
	steam, Internal inspection, Accident inspection, Casual inspection		
	8. Violation of law is liable to prosecution and punishment with fine.	16 Morka	
Q.4.	Attempt any <u>FOOR</u> of the following:		
a) Sol	Draw a neat sketch of regenerative feed heating.		
	Regenerative Feed Heating	4 Marks	
b)	Describe with neat sketch working of natural draft cooling towers.		
501.	 -In natural draught cooling tower: -In natural draught cooling tower, the circulation of air is produced by the pressure difference of air inside the tower and outside atmospheric air Hot cooling water falls down in a form of sprays and atmospheric air enters from bottom of the tower. -The falling water gives up its heat to the rising column of air and temperature of circulating 	2 Marks	
	 water reduces -In natural draught cooling tower, hot water is pumped to ring troughs. Trough sprays water in the form of droplets, which is placed at bottom of towers. -Most advantage is of no use of fan, for air circulation. An air circulation takes place by the pressure difference of air inside and outside of cooling tower (natural flow). 	2 Marks	

d)	Compare performance of refrigerator and heat pump when both are operating				
	between 9°C and 35°C. Assume both are working on reversible Carnot cycle.				
Sol.					
	Given;				
	$T_L=9^{0}C=9+273=282 \ ^{0}K$				
	$T_{H}=9^{0}C=35+273=308^{0}K$	02 marks			
		02 11101 11 5			
	For refrigerator; COP(refrigerator) = $T_L/(T_{H-}T_L)$				
	=282/(308-282)				
	COP(refrigerator) = 10.8461				
	$COP(heat nump) = T_{II}/(T_{II}, T_{I})$				
	-209/(209, 292)	02 marks			
	COP(heat pump)=11.8461				
	There for,				
	COP(heat pump)=1 + COP(refrigerator)				
	From above result COP of Heat pump is gretter than COP of refrigerator.				
e)	Describe anyone safety mounting used in boilers with sketch.				
Sol.	Boiler Mounting :				
	Function:				
	It is very important safety device of a steam boiler, which protects the fire tube boiler	1 Marks			
	against overheating.				
	Location: It is located just above the furnace in the boiler. It consists of gun metal plug fixed in a	1 Marks			
	gun metal body with fusible molten metal.	1 Walks			
	Construction:				
	It is fitted on the fire box brown plate or over the combustion chamber. The fusible plug				
	screwed to the fire box crown plate of boiler. Another hollow gun metal is screwed to the first	1 Marks			
	body. Third plug is made from copper is locked with the second plug by pouring metal in to the				
	grooves provided on the both plugs.				
		1 Marks			

f) So	 Working Principle: In normal working condition, the upper surface of fusible plug is covered with water which keeps the temperature of the plug below its melting point while other end of plug is exposed to fire or hot gases. The low melting point (tin or lead) does not melt till the upper surface of plug is submerged in water. But in case of water level in boiler falls below the danger levels, the fusible plug uncovered by the water and get exposed to steam. This overheats the plug and the fusible plug uncovered by the water and get exposed to steam. This overheats the plug and use cond hollow gun became open, the steam rushes into the furnace and puts out the fire (stop). Describe four losses in steam turbines in 1/2 sentences each. Energy losses in steam turbines [Any four points with explanation 01 mark each] (ii) Losses in regulating valves-Due to throttiling action in valve, steam pressure drop occurs. Hence steam pressure at entry to urbine is less than the boiler pressure. (ii) Losses due to friction in nozzle-Friction occurs both in nozzle and turbine blades. In nozzle, nozzle efficiency is considered, whereas in turbines, blade velocity coefficient is taken into account. This loss is about 10% (v) Loss due to mechanical friction-This occurs in bearings and stationary diaphragms carrying the nozzles in case of impulse turbines. In reaction turbine the leakage occurs at blade tips. This is about 1-2%. (v) Loss due to mechanical friction-This occurs in bearings and may be reduced by lubrication (vi) Loss due to mechanical friction-This occurs in bearings and may be reduced by lubrication (vi) Radiation loss-As turbines are nealigible. 	04 Marks 1 Mark for each point (any 4)
Q.5.	Attempt any <u>TWO</u> of the following:	16 Marks
a)	Describe any two sources of air leak in surface condenser. Also describe effect of	
~	air leak on latent heat of steam and cooling water requirements.	00 -
So	. ✓ The main sources of air leakage found in condenser are given below:	02 marks
	1) There is leakage of air from atmosphere at the joint of the parts which are internally	
	under a pressure less than atmospheric pressure.	
	2) Air is also accompanied with steam from the boiler into which it enters dissolved in	

feed water.					
3) In jet condensers, a little quantity of air accompanies the injection water.				02 marks	
	✓ Effects of Air Leakage in Condenser				0
	1) Tł	ne performance of cond	enser is affected by air leakage:		
	2) Tl	ne increased amount of	air in the condenser, the conde	nser pressure or back pressure	
	is	increased; this reduces	the useful work done in the prin	ne mover.	
	3) Pr	esence of air also lowe	rs the partial pressure of steam	which decreases the saturation	
	te	mperature of steam and	hence evaporation enthalpy of	steam increases therefore more	
	an	nount of cooling water	required in the condenser.		
b) Differentiate induced draft and forced draft cooling towers based on (i) Location of fan (ii) Corrosion of blades (iii) Efficiency (iv) Fan size					
Sol.					01mark
	Sr. No.	Particular	Forced Draft	Induced Draft Mounted at the top of the	each
	1.	Location of fair	of the tower.	tower.	
	ii.	Corrosion of blades	As it handles dry air, problem of fan blade erosion is avoided.	As it handles wet air, proble of fan blade erosion is not avoided.	
	iii.	Efficiency	It is more efficient.	It is not efficient.	
	iv.	Fan size	The fan size is limited to 4 meters.	The fan size of 20 m in diameter can be used of fan.	
c)	A typica much en 0.8.	l shape when perfe ergy will it radiate v	ct black emits 150 W/m2 when it is not perfectly black	energy by radiation. How k and have emissivity of	
Sol. Data: Emissive power of black body= $E_b=150 \text{ W/m}^2$ Emissive power of non black body= $E=?$ Emissivity = $\epsilon=0.8$ There for, $\epsilon = E/E_b$ $E = 0.8 \times 150$ $= 120 \text{ W/m}^2$ When body is not perfectly black it will radiate 120 W/m ² energy.					
d)	An engin work. W other kin	e is supplied with 4 Which kind of perpetu Id of perpetual macl	kW of heat energy. It is for al machine it is? Which law nine you know.	und that it produce 4 kW of v is violated? Also describe	
	PMM-I A heat en known as	I: gine which violates Kel Perpetual Motion Mac	vin plank statement of the secon hine of the second kind (PMM-I	nd law of thermodynamics is I). Or 100 percent efficient	02 marks
 	Known as respetual Motion Machine of the second Knu (FMM-H). Of 100 percent efficient				

		Hence steady flow equation can be expressed as:	
		Internal Energy at 1 + Potential Energy at 1 + Kinetic Energy at 1 + Flow work at 1 + Heat supplied = Internal Energy at 2 + Potential Energy at 2 + Kinetic Energy at 2 + Flow work at 2 + Work done	02 marks
		Hence the steady flow energy equation is,	
		$h_1 + \frac{c_1^2}{2} + Z_1g + Q = h_2 + \frac{c_2^2}{2} + Z_2g + W$	
		Where.	
		$h_1 \& h_2 = Enthalpy at inlet and outlet in \frac{J}{Kg}$	02 marks
		$C_1 \& C_2 =$ velocity at inlet and out of fluid $\frac{m}{s}$	
		Z_1 and Z_2 = height of inlet & outlet above datum m	
		Q = heat supplied perJoule	
		W = work done by 1 kg of fluid Joule	
		PV = Flow work N-m or Joule	
	f)	An ideal gas is heated at constant volume and then expanded isothermally. Show processes on P-V & T-S diagrams.	
Sol	•		02 mark
		P	P-V
		13 2	
		To and the	02 mark
			T-S
		3	
			with the
			5
		Figure: Constant volume and isothermal process	
		Process 1-2 : Constant volume process	
		Process 2-3 : Constant temperature process (Isothermal process)	

	9. The superheated steam is passed to main steam to supply for required application. Lement boilers generates 45 to 50 tones steam per hour at 120 her with 500° C	
c)	State necessity of super heater in steam boilers. State advantages of	
	economizer. (two each)	
Sol	Necessity of super heater in steam boilers:	02 marks
	1. The efficiency of the boiler is increase with the use of superheated steam.	
	2. It eliminates the erosion of the turbine blades.	
	3. It reduces specific steam consumption of engine and turbine.	
	Advantages of economiser:	
	1. Saving of fuel.	02 marks
	2. Dissolved gases as air and CO_2 are removed by preheating the feed water; so reducing	
	corrosion and pitting.	
	3. There will be less temp, strain in the boiler plates as the feed water enters the boiler at a	
	higher temp	
	A Circulation of the water is very well maintained as quick evaporation is possible	
	+. Circulation of the water is very wen maintained as quick evaporation is possible	
	5 This unit improves the overall efficiency of the boiler by reducing the fuel	
	s. This unit improves the overall efficiency of the boner by reducing the fuer	
d)	Consumption.	
u) Sol	Describe velocity compounding with neat sketch.	Figuro
501		rigure
	N MB FB MB Steam exhaust	02 mark
	Steam in	
	Exit velocity	
		02 mark
		for
	N = Nozzle	explanati
	MB = Moving Blade	on
	FD - Fixed blade	
	ii) Velocity Compounding:	
	\checkmark In velocity compounding arrangement of blades and normales are made as below:	
	N-M-F-M	
	Where;	
	N = Nozzle	
	M = Moving blade	
	F = F1xed blade	

		\checkmark Steam expanded through nozzle from boiler to condenser pressure.	
		\checkmark K.E. increases of the steam increases due to increasing velocity.	
		\checkmark Fixed blades redirect the steam flow without altering its velocity.	
		\checkmark The changes in pressure and velocity are shown in figure.	
		\checkmark This method has advantage that the initial cost is low so its efficiency is low.	
	e)	Explain Dalton's law in respect to steam condensers.	
	Sol.	It states that' "The pressure exerted by mixture of air and steam is equal to sum of partial	
		pressures, which each constitute would exert, if it occupies the same volume".	a
		P _a P _a P _s	Statement 2 marks Mathmati
		+ Steam = Air + Steam Figure: Dalton's law of partial pressure	cal expressio n 2 marks
		Mathematically,	- mu ny
		$P_c = P_a + P_s$	
		Where; D Dressure in condensor containing minture of air and steam	
		$P_c = Pressure in condenser containing mixture of air and steam P_c = Partial pressure of air$	
		$P_s = Partial pressure of steam$	
	f)	Define heat exchanger. Classify heat exchangers based on geometry, direction of fluids, method of heat exchange.	
Sol	•	1. A heat exchanger is a device, which transfers thermal energy between two fluids at	Definition 1 Mark
		2 In most common engineering applications, both fluids are in motion and the main mode	
		of transferring heat is convection	
		Heat exchanger can be classified based on:	
		1. According to the geometry:	
		i. Tubular	
		ii. Plate	
		iv Tube fin	Classifica
		2. According to the direction of fluid:	tion
		i. Parallel flow	3 Marks
		ii. Counter flow	
		iii. Cross flow	
		3.According to the method of heat exchange:	
		i. Single phased free or forced convection	
		ii. Boiling or condensation	

