

WINTER – 19 EXAMINATION ery Model Answer

Subject Name: Fluid Mechanics & Machinery

Subject Code:

17411

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub. Q. No.	Answer	Marking Scheme
1.		Attempt any <u>SIX</u> of the following:	12 Marks
	i)	Define kinematic viscosity.	
	Ans	A quantity representing the dynamic viscosity of a fluid per unit density. The ratio of dynamic viscosity to its density	02 Mark
	ii)	Draw a neat sketch of differential manometer.	
	Ans		02 Mark
	iii)	State Bernoulli's theorem.	
	Ans	The theorem states, in effect, that the total mechanical energy of the flowing fluid, comprising the energy associated with fluid pressure, the gravitational potential energy of elevation, and the kinetic energy of fluid motion, remains constant. Bernoulli's theorem is the principle of energy conservation for ideal fluids in steady, or streamline, flow and is the basis for many engineering applications. $p/w+v^2/2g+z = constant$ where $p/w = Pressure$ energy, $v^2/2g = kinetic$ energy, $Z = datum$ energy	02 Mark
	iv)	List out different types of draft tube.	

Ans	Types of draft tube- 1.conical draft tube 2.Simple elbow draft tube	02 Mark
	3.Elbow draft tube with circular inlet and rectangular outlet	
v)	Define turbulent flow.	
Ans	Flow of fluid in which fluid particles have a zig-zag path during flow is called turbulent flow.	02 Mark
vi)	Draw a neat sketch of centrifugal pump.	
Ans	Dictangle laws Dictangle laws	02 Mark
vii)	State the concept of cavitation in turbine.	
Ans	The cavitation may occur at inlet of draft tube where the pressure is considerably reduced which may be below the vapour pressure of the liquid flowing through the turbine. It is formation of vapour filled bubbles of flowing fluids in a region where the pressure of liquid falls below its vapour pressure. The vapour pressure of a liquid is the function of temperature and its height from mean sea level	02 Mark
viii)	State the use of air vessel.	
Ans	It is used to get continuous supply of liquid at uniform rate and to maintain uniform rate of flow of liquid in suction and delivery pipes. It reduces the work required to drive the pump due to reduction in accelerating heads and friction losses	01 Mark 01 Mark
b)	Attempt any <u>TWO</u> of the following:	08 Marks
i)	Explain construction & working of bourdon tube pressure gauge with neat sketch.	
Ans	Bourdon tubes are radially formed tubes with an oval cross-section. The pressure of the measuring medium acts on the inside of the tube and produces a motion in the non-clamped end of the tube. This motion is the measure of the pressure and is indicated via the movement. The C-shaped Bourdon tubes, formed into an angle of approx. 250°, can be used for pressures up to 60 bar. For higher pressures, Bourdon tubes with several superimposed windings of the same angular diameter (helical tubes) or with a spiral coil in the one plane (spiral tubes) are used.	02 Mark

		Figure shows a body immersed in the fluid. Fig.1. Horzortaly immessed Surface $Fig.1.$ Horzortaly immessed Surface (either plane or The total pressure is defined as the force exerted by a static fluid on a surface (either plane or	
			01 Mark
	Ans	Liquid Surface	02 Mark
	a)	Explain total pressure & centre of pressure acting on immersed body.	
2.		Attempt any <u>FOUR</u> of the following:	16 Marks
		h_f = Friction head loss f = Darcy resistance factor L = Length of the pipe D = Pipe diameter V = Mean velocity g = acceleration due to gravity	02 Mark
	Ans	Darcy's formula - $H_f = flv^2/2Dg$ Where:	02 Mark
	iii)	Write Darcy's formula for head loss due to friction. State the meaning of each term.	
		 3) Atmospheric pressure- It is also called barometric pressure which is the pressure within the atmosphere of Earth (or that of another planet). The standard atmosphere is a unit of pressure defined as 1013.25 mbar (101325 Pa), equivalent to 760 mm Hg. Atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the Earth's atmospheric pressure at sea level is approximately 1 atm. 4) Absolute pressure- The pressure which is measured above the absolute vacuum pressure. It is zero-referenced against a perfect vacuum, using an absolute scale, so it is equal to gauge pressure plus atmospheric pressure. 	01 Mark 01 Mark
		 a) Absolute vacuum in a tabe / container is completely evacuated then the pressure excited on the surface is zero. Such a zero pressure is called absolute vacuum pressure. 2) Gauge pressure- It is the pressure measured above the atmospheric pressure. It is zero-referenced against ambient air pressure, so it is equal to absolute pressure minus atmospheric pressure. 	01 Mark
	ii)	Describe the concept of absolute vacuum, gauge pressure, atmosphere pressure, absolute pressure 1) Absolute vacuum. If a tube / container is completely evacuated then the pressure everted	01 Mark
		Pointer Bourdon tube Tube end piece Link Toothed segment Socket	02 Mark dia.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

	surface which is given by $-P = w.A.X$ The centre of pressure is defined as the point of application of the resultant pressure on the	01 Mark
1)	surface which is given by - $h = Ig/AX + X$	
D)	Explain with neat sketch, principle of working of pitot tube.	
Ans	Principle: The pitot tube is a differential pressure measuring device. The pitot tube installed in the flow stream measures the direct pressure at the contact pitot tube hole and a second measurement is required, being of static pressure. The difference between the two measurements gives a value for dynamic pressure	02 Mark
	Stagnation pressure	
	Static pressure v stagnation point	02 Mark
-)	A pitot tube is a flow measurement device used to measure fluid flow velocity.	
c) Derive an equation to find force of impact of jet which strikes on a flat plate at right angle which is fixed.		
Ans	Jet v area=a	02 Mark
	Consider a jet of water impinging normally on a flat plate at rest as shown in figure.	
	Let,	
	a = Cross-sectional area of the jet in metre ² .	
	V = Velocity of the jet in metres per second.	
	M = Mass of water striking the plate per second.	
	\therefore M = $\rho a V kg/sec$	01 Mark
	where $\rho = \text{density of water in kg/cum}$	
	Force exerted by the jet on the plate-	
	$\mathbf{P} = \mathbf{C}$	
	1 - Change of momentum per second	

d)	Explain with neat diagram hydraulic gradient line & total energy line with its application.	
Ans	Hydraulic Gradient Line (H.G.L) It is defined as the line which gives the sum of pressure head (p/w) and datum head (z) of flowing fluid in a pipe w.r.t some reference line. OR It is the line which is obtained by connecting the top of all vertical ordinates, showing the pressure head (p/w) of a flowing fluid in a pipe from the center of the pipe.	01 Mark
	Total Energy Line (T.E.L) It is defined as the line which gives the sum of pressure head, datum head and kinetic head of a flowing fluid in a pipe w.r.t some reference line. OR It is the line which is obtained by connecting the tops of all vertical ordinates showing the sum of the pressure head and kinetic head from the center of the pipe.	01 Mark
	Diagram showing TEL and HGL A turbine in the flow reduces the energy line and a pump or fan in the line increases the energy line. $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $	01 Mark
	Application-A turbine in the flow reduces the energy line and a pump or fan in the line increases the energy line.	_01 Mark
 e) Ans	 i) The frictional resistance is proportional to velocity of flow. ii) The frictional resistance is independent of pressure. 	01 Mark for 01
	iii) The frictional resistance is proportional to the surface area in contactiv) The frictional resistance is varies with changes in temperature	point

		v) The frictional resistance is independent of the nature of surface of contact	
	f)	Define i) fluid pressure ii) pressure head, iii) pressure intensity	
	Ans	i) Fluid pressure -fluid pressure is a measurement of the force per unit area on a object in the fluid or on the surface of a closed container. This pressure can be caused by the gravity, acceleration, or by forces outside a closed container.	01 Mark
		ii) Pressure head-it is the height of a liquid column that corresponds to a column on the base of its container. It may also called static pressure head or simply static head.	01 Mark
		iii) Pressure intensity -it is a qualitative measurement in a particular flow of air, the pressure intensity might be high while the total pressure that would exist when that flow is brought to complete stop.	01 Mark
		Weight = Force Area	01 Mark
3.		Attempt any FOUR of the following:	16 Marks
	a)	Draw a layout of hydroelectric power plant & explain in brief.	
	An	$H = H_g - h_f$	
	S	HEAD RACE GROSS HEAD HEAD TO RESERVOIR):- It is water reservoir generally constructed over the river it contains lot of potential energy.	2 Marks for fig.
		ii) Penstock: - Pipes of large diameters called penstock, which carries water under high pressure from storage reservoir to the turbines. These pipes are made of steel or reinforced	2 Marks for explanation

	concrete.	
	iii) Turbines:- These are the wheels on which number of vanes are fitted and converts	
	hydraulic energy to mechanical energy.	
	iv) Tail race:- It is the channel which carries water away from turbines after the water has	
	worked on turbines. The surface of water in the tail race is also known as tail race.	
	v) Surge tank:- It is the tank provided in the path of penstock to avoid pulsating discharge at	
	inlet of turbines. During flow of water from reservoir to turbine through penstock pressure	
	surges are created to compensate these surges surge tank is provided.	
b)	Give classification of hydraulic turbine & their application.	
An	I. According to the type of energy available at inlet to the turbine	
S	1) Impulse turbine (only K.E. available at inlet) eg. Pelton wheel turbine	01 Mark
	2) Reaction turbine (only KE. & Pressure energy available at inlet) eg. Francis, Kaplan turbine	
	II. According to the head available at inlet to the turbine	
	1) Low head turbine (less than 60 m) eg. Kaplan turbine	
	2) Medium head turbine (60 m to 250 m) eg. Francis turbine	01 Mark
	3) High head turbine (above 250 m) eg. Pelton wheel turbine	
	III. According to the specific speed of the turbine	
	1) Low specific speed (less than 60) eg. Pelton wheel turbine	01 Mort
	2) Medium specific speed (60 to 400) eg. Francis turbine	
	3) High specific speed (greater than 400) eg. Kaplan turbine	
	IV. According to direction of flow through runner	
	1) Tangential flow turbine	01 Mark
	2) Radial flow turbine	
	3) Axial flow turbine	
	4) Mixed flow turbine	
c)	Explain construction and working of Pelton wheel turbine with neat sketch	
Ans		
		1 Mark for
	Construction:	construction
	The main parts of Pelton Wheel turbine are:	
	1. Penstock & Nozzle with flow regulating arrangement 2. Runner and buckets	
	3. Casing	
	4. Breaking jet	

d)	Fig. Pelton Wheel Turbine Specific acts through a distance (work) and the diverted water jet. The jet impinges on the furbine's curved blades which change the direction of the flow. The resulting changes in momentum (impulse) causes a force on the turbine blades. Since the turbine is spinning, the force acts through a distance (work) and the diverted water flow is left with diminished energy prior to hitting the turbine blades, the water's pressure (potential energy) is converted to kinetic energy by a nozzle and focused on the turbine. No pressure change occurs at the turbine blades, and the turbine blades, the water's pressure (potential energy) is converted to kinetic energy by a nozzle and focused on the turbine. No pressure change occurs at the turbine blades, and the turbine blades, the water's pressure (potential energy) is converted to kinetic energy by a nozzle and focused on the turbine. No pressure change occurs at the turbine blades, and the turbine of the sing for operation. A jet of water diameter 8 cm strikes on a curved plate at its centre with velocity of 25 m/sec. The curved plate is moving with a velocity of 9 m/sec in the direction of jet. The jet is deflected through an angle of 165°. Assuming plate smooth. Find i) Force exerted on plate i) Power of jet in KW	2 Marks for sketch 1 Mark for working
Ans	Given: Diameter of jet $= d = 8 \text{ cm} = 0.08 \text{ m}$ Velocity of jet $= v = 25 \text{ m/sec}$ Velocity of plate $= u = 9 \text{ m/sec}$ Angle of deflection $= \theta = 180^\circ - 165^\circ = 15^\circ$	
	i) Force exerted by jet on plate $F_x = \rho a (v - u)^2 (1 + \cos \theta)$ = 1000 X ($\pi/4 \times 0.08^2$) (25 - 0) ² (1 + cos 15°)	01 Marks 01 Marks
	$= 1000 \text{ A} (104 \text{ X} 0.08) (23 - 9) (1 + \cos 13)$ $\mathbf{F} = 2520 74 \text{ N}$	
	ii) Power of iet = $F_{x,y}$ u	01 Marke
	$= 2529.74 \times 9$	
	= 22.767.71 Watt $= 22.767$ KW	01 Marks
	-22,101.11 Wall -22.101 KW	

e)	Define i) Surface tension ii) Compressibility				
Ans	i) Surface tension				
	Following figure shows the two molecules of liquid at point A and B.				
	(+)				
	Fig. Intermolecular forces near a liquid surface				
	As shown in fig, molecule at point 'A' is in equilibrium condition. So molecule at 'A' is				
	equally attracted from all sides. But at point 'B' there is no liquid molecule at above side and	2 Marks			
	below it. This force on the molecules at the surface of liquid is normal to the liquid surface,				
	due to this a special layer seems to form on liquid at the surface, which is in tension and small load can be supported over it.				
	This property of liquid surface film to exert the tension is called 'Surface tension'.				
	OR Surface tension is defined as the force required in maintaining unit length of the film in equilibrium condition. It is denoted by ' σ ' (sigma).				
	ii) Compressibility				
	It is the measure of elasticity in fluid. Fluids are compressed under pressure due to change in their mass density. More mass can be accommodated in the unit volume. & when the pressure				
	is removed the fluid regain to its original volume.	2 Marks			
f)	A simple manometer containing mercury is used to measure pressure of water flowing in				
	a pipeline. The mercury level in the open tube is 60 mm higher than that as the lift limb tube. If height of water in the tube is 150 mm, determine the pressure in the pipe in terms				
	of head of water.				
Ans					
	Water S = 1				
	$h_1 = g_0 mm$ $h_2 =$	01 Mark			
	150 mm				
	Mercury S = 13.6				

$ \begin{array}{ c c c c c c } & h_1 = 150 \mm \\ h_2 = 60 \mm \\ S_1 = Specific gravity of water = 1 \\ S_2 = Specific gravity of mercury = 13.6 \\ Now, Pressure in left tube = Pressure in right tube \\ h_A + h_1 S_1 = h_2 S_2 \\ h_A + (150X 1) = (60X 13.6) \\ h_A = 666 \mm = 0.666 \mm \\ Pressure at the centre of pipe P_A = W, h_A = 9810 X 0.666 = 6533.46 \mm Nm^2 \\ \hline \\ $		$h_A = Pres$	sure of water in a pipe in mm of w	ater	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$h_1 = 150$	mm		
S ₁ = Specific gravity of water = 1 S ₂ = Specific gravity of mercury = 13.6 Now, Pressure in left tube = Pressure in right tube $h_A + h_1 S_1 = h_2 S_2$ 01 $h_A + h_1 S_1 = h_2 S_2$ 01 $h_A + (150X 1) = (60X 13.6)$ 01 $h_A = 666 \text{ nm} = 0.666 \text{ m}$ 01 Pressure at the centre of pipe $P_A = W, h_A = 9810 \times 0.666 = 6533.46 \text{ N/m}^2$ 01 Q Attempt any TWO of the following: 16 Mat 16 Mat a) Differentiate between Francis & Kaplan turbine (any eight point). 4 Ans Efficiency Less as compare to Kaplan Higher than Francis turbine Efficiency Less as compare to Kaplan Higher than Francis turbine 01 Mat Size Quite large as compare to Kaplan Compact in cross sectional area 01 Mat Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. 10 Mat Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mat Head available Requires medium range of works on very low head Point Point Head available Requires medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes		$h_2 = 60 \text{ m}$	ım		
S2 = Specific gravity of mercury = 13.6 Now, Pressure in left tube = Pressure in right tube 01 hA + h1 S1 = h2 S2 01 hA + (150X 1) = (60X 13.6) 01 hA = 666 mm = 0.666 m 01 Pressure at the centre of pipe PA = W. hA = 9810 X 0.666 = 6533.46 N/m ² 16 Ma a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Ma a) Differentiate between Francis & Kaplan turbine (Axial flow 16 Ma Type of flow Radial flow turbine Axial flow Efficiency Less as compare to Kaplan Higher than Francis turbine Losses Friction losses are higher Francis turbine Size Quite large as compare to Compact in cross sectional area Vanes Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. 01 Mar Type of shaft Shaft is may be vertical or The direction of shaft is always in vertical point Head available Requires medium range of works on very low head Point Head available Requires medium range of works on very low head Point Head available Requires medium range of specific speed High value of specific speed Runner vanes<		$S_1 = Spec$	cific gravity of water = 1		
Now, Pressure in left tube = Pressure in right tube 01 h _A + h ₁ S ₁ - h ₂ S ₂ 01 h _A + (150X 1) = (60X 13.6) 01 h _A = 666 mm = 0.666 m 01 Pressure at the centre of pipe P _A = W. h _A = 9810 X 0.666 = 6533.46 N/m ² 16 Mat a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Mat a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Mat Ans Efficiency Less as compare to Kaplan Higher than Francis turbine Efficiency Less as compare to Kaplan Higher than Francis turbine 10 Mat Size Quite large as compare to Compact in cross sectional area Number of vanes are 16 to 24 Number of vanes are 4 to 8. 01 Mat Yape of shaft Shaft is may be vertical or horizontal as per requirement. Works on very low head point Head available Requires medium range of waters are adjustable. Works on very low head point Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed Head available. Fixed runner vanes on the shaft Vanes are adjustable. <th></th> <th>$S_2 = Spec$</th> <th>cific gravity of mercury = 13.6</th> <th></th> <th></th>		$S_2 = Spec$	cific gravity of mercury = 13.6		
$h_A + h_1 S_1 = h_2 S_2$ 01 $h_A + (150X 1) = (60X 13.6)$ 01 $h_A = 666 \text{ mm} = 0.666 \text{ m}$ 01Pressure at the centre of pipe $P_A = W. h_A = 9810 \times 0.666 = 6533.46 \text{ N/m}^2$ 16 Mathematical Mathemati		Now, Pre	ssure in left tube = Pressure in right	nt tube	
h _A + (150X 1) = (60X 13.6) 01 h _A = 666 mm = 0.666 m 01 Pressure at the centre of pipe P _A = W. h _A = 9810 X 0.666 = 6533.46 N/m ² 16 Mat a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Mat a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Mat Ans Efficiency Less as compare to Kaplan Higher than Francis turbine Less as compare to Kaplan Higher than Francis turbine 10 Mat Losses Friction losses are higher Less friction losses as compare to Francis turbine 01 Mat Size Quite large as compare to Compact in cross sectional area Vanes 10 Mat Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. 01 Mat Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mat Flow rate Requires medium range of works on very low head Flow rate Requires medium range of works on very low head 01 Mat Flow rate Requires medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable.		$h_A + h_1$	$\mathbf{S}_1 = \mathbf{h}_2 \mathbf{S}_2$		01 Mark
01 h _A = 666 mm = 0.666 m Pressure at the centre of pipe P _A = W. h _A = 9810 X 0.666 = 6533.46 N/m ² 01 Q. 4 Attempt any <u>TWO</u> of the following: 16 Mat a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Ans Image: Criteria Francis Turbine Axial flow Image: Criteria Efficiency Type of flow Radial flow turbine Axial flow Efficiency Less as compare to Kaplan Higher than Francis turbine Losses Friction losses are higher Francis turbine Size Quite large as compare to Compact in cross sectional area 01 Mat Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. 01 Mat Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mat Head available Requires medium range of works on very low head Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable.		h _A + (1	50X 1) = (60X 13.6)		01 Mark
Q. 4 Attempt any <u>TWO</u> of the following: 16 Mai a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Mai a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Mai Ans Criteria Francis Turbine Kaplan Turbine Type of flow Radial flow turbine Axial flow 16 Mai Efficiency Less as compare to Kaplan Higher than Francis turbine 16 Mai Losses Friction losses are higher Francis turbine 16 Mai Size Quite large as compare to Kaplan turbine Compact in cross sectional area 16 Mai Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. 17 ppe of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mai point Head available Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed Might value of specific speed Mumer vanes Fixed runner vanes on the shaft Vanes are adjustable. 01 Mai point		$h_{\rm A} = 666$	mm = 0.666 m		01 Mark
Q. 4 Attempt any <u>TWO</u> of the following: 16 Ma a) Differentiate between Francis & Kaplan turbine (any eight point). 16 Ma Ans Ans Image: Criteria Francis Turbine Kaplan Turbine Type of flow Radial flow turbine Axial flow Image: Criteria Efficiency Less as compare to Kaplan Higher than Francis turbine turbine Image: Compare to Kaplan Higher than Francis turbine turbine Image: Compare to Kaplan Higher than Francis turbine turbine Image: Compare to Kaplan Higher than Francis turbine turbine Image: Compare to Kaplan turbine Image: Compare to Compare to Radial turbine Image: Compare to Kaplan turbine Image: Compare to Compare to Radial turbine Image: Compare to R		Pressure	at the centre of pipe $P_A = W. h_A =$	= 9810 X 0.666 = 6533.46 N/m²	01111111
a) Differentiate between Francis & Kaplan turbine (any eight point). Ans Ans Criteria Francis Turbine Kaplan Turbine Type of flow Radial flow turbine Axial flow Efficiency Less as compare to Kaplan Higher than Francis turbine Losses Friction losses are higher Less friction losses as compare to Francis turbine Size Quite large as compare to Kaplan turbine Compact in cross sectional area Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical Head available Requires medium range of water head works on very low head 01 Mar point Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes Fixed runner vanes on the shaft Vanes are adjustable. Image: specific speed	2. A	Attempt any <u>TW</u>	O of the following:		16 Marks
Ans Criteria Francis Turbine Kaplan Turbine Type of flow Radial flow turbine Axial flow Efficiency Less as compare to Kaplan turbine Higher than Francis turbine Losses Friction losses are higher Less friction losses as compare to Francis turbine Size Quite large as compare to Kaplan turbine Compact in cross sectional area Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical Head available Requires medium range of water head works on very low head Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable.	a) D	Differentiate betw	veen Francis & Kaplan turbine (any eight point).	
CriteriaFrancis TurbineKaplan TurbineType of flowRadial flow turbineAxial flowEfficiencyLess as compare to Kaplan turbineHigher than Francis turbineLossesFriction losses are higherFrancis turbineSizeQuite large as compare to Kaplan turbineCompact in cross sectional areaVanesNumber of vanes are 16 to 24Number of vanes are 4 to 8.Type of shaftShaft is may be vertical or horizontal as per requirement.The direction of shaft is always in verticalHead availableRequires medium range of water headworks on very low head01 Mar pointFlow rateRequires medium range of water headworks on very low head01 Mar pointFlow rateRequires medium range of water headWorks on very low head01 mar pointFlow rateRequires medium range of specific speedHigh value of specific speedMedium range of specific speedKunner vanesFixed runner vanes on the shaftVanes are adjustable.Nanes are adjustable.	Ans				
CriteriaFrancis TurbineKaplan TurbineType of flowRadial flow turbineAxial flowEfficiencyLess as compare to Kaplan turbineHigher than Francis turbineLossesFriction losses are higherLess friction losses as compare to Francis turbineSizeQuite large as compare to Kaplan turbineCompact in cross sectional areaVanesNumber of vanes are 16 to 24Number of vanes are 4 to 8.Type of shaftShaft is may be vertical or horizontal as per requirement.The direction of shaft is always in verticalHead availableRequires medium range of water headworks on very low head01 Mar pointFlow rateRequires medium flow rate.Requires high flow rate of waterSpecific speedMedium range of specific speedHigh value of specific speedRunner vanesFixed runner vanes on the shaftVanes are adjustable.					
Type of flow Radial flow turbine Axial flow Efficiency Less as compare to Kaplan turbine Higher than Francis turbine Losses Friction losses are higher Less friction losses as compare to Francis turbine Size Quite large as compare to Kaplan turbine Compact in cross sectional area Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mar point Head available Requires medium range of water head works on very low head 01 Flow rate Requires medium flow rate. Requires high flow rate of water Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. Image: specific speed		Criteria	Francis Turbine	Kaplan Turbine	
Efficiency Less as compare to Kaplan turbine Higher than Francis turbine Losses Friction losses are higher Less friction losses as compare to Francis turbine Size Quite large as compare to Kaplan turbine Compact in cross sectional area Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mar point Head available Requires medium range of water head works on very low head 01 Mar point Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable.		Type of flow	Radial flow turbine	Axial flow	
Losses Friction losses are higher Less friction losses as compare to Francis turbine Size Quite large as compare to Kaplan turbine Compact in cross sectional area Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mar point Head available Requires medium range of water head works on very low head 01 Mar point Flow rate Requires medium flow rate. Requires high flow rate of water point Specific speed Medium range of specific speed High value of specific speed water Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. vanes are adjustable.		Efficiency	Less as compare to Kaplan turbine	Higher than Francis turbine	
Size Quite large as compare to Kaplan turbine Compact in cross sectional area Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mar point Head available Requires medium range of water head works on very low head 1 Flow rate Requires medium flow rate. Requires high flow rate of water 1 Specific speed Medium range of specific speed High value of specific speed 1 Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. 1		Losses	Friction losses are higher	Less friction losses as compare to Francis turbine	
Vanes Number of vanes are 16 to 24 Number of vanes are 4 to 8. 01 Mar Type of shaft Shaft is may be vertical or horizontal as per requirement. The direction of shaft is always in vertical 01 Mar Head available Requires medium range of water head works on very low head 01 Mar Flow rate Requires medium flow rate. Requires high flow rate of water 01 Mar Specific speed Medium range of specific speed High value of specific speed 01 Mar Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. 01 Mar		Size	Quite large as compare to Kaplan turbine	Compact in cross sectional area	
Type of shaftShaft is may be vertical or horizontal as per requirement.The direction of shaft is always in vertical01 Mar pointHead availableRequires medium range of water headworks on very low head01Flow rateRequires medium flow rate.Requires high flow rate of waterSpecific speedMedium range of specific speedHigh value of specific speedRunner vanesFixed runner vanes on the shaftVanes are adjustable.		Vanes	Number of vanes are 16 to 24	Number of vanes are 4 to 8.	
Head available Requires medium range of water head works on very low head Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable.		Type of shaft	Shaft is may be vertical or horizontal as per requirement.	The direction of shaft is always in vertical	01 Mark for each point
Flow rate Requires medium flow rate. Requires high flow rate of water Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. b) Explain construction & working principle of multistage nump with next sketch & its		Head available	Requires medium range of water head	works on very low head	
Specific speed Medium range of specific speed High value of specific speed Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. b) Explain construction & working principle of multistage nump with next sketch & its		Flow rate	Requires medium flow rate.	Requires high flow rate of water	
Runner vanes Fixed runner vanes on the shaft Vanes are adjustable. b) Explain construction & working principle of multistage pump with neat sketch & its		Specific speed	Medium range of specific speed	High value of specific speed	
b) Explain construction & working principle of multistage pump with neat sketch & its		Runner vanes	Fixed runner vanes on the shaft	Vanes are adjustable.	
b) Explain construction & working principle of multistage nump with neat sketch & its				<u>.</u>	
annlication	b) E	Explain construct	tion & working principle of mult	istage pump with neat sketch & its	

Ans		
	FROM PIPE ON PIPE OF THE TOP THE PIPE NO. 2 OF THE TOP	02 Marks of each fig.
	 shaft or on the different shafts. i) Multistage centrifugal pump for High Head (Pumps are in Series):- To develop a high head but same discharge, the numbers of impellers are mounted in series or on the same shaft. The discharge from impeller passes through a guide passage & enters the second impeller. At the outlet of second impeller the pressure of water will be more than the pressure of water at outlet of first impeller. The pump in series arrangement is employed for delivering a relatively small quantity of liquid against high head. ii) Multistage centrifugal pump for High Discharge (Pumps are in Parallel) :-To obtain high discharge but same head pumps should be connected in parallel. Each of these pumps working separately lifts the liquid from a common sump and delivers it to a common collection pipe through which it carries to required height. If Q is the discharge capacity of one pump and there are n number of identical pumps (arranged in parallel) the total discharge is = n.Q 	02 Marks 02 Marks
 c)	Two jet strike the buckets of pelton turbine which is having shaft power as 15500 KW. The diameter of each jet is 200 mm. If net available head on turbine is 400 m. Find	
	overall efficiency of turbine assuming $C_v = 1.00$	
Ans	Shaft power = 15500 KW n = 2 H = 400 m d = 0.2 m $C_v = 1.00$ Area of jet = $\pi/4 x d^2 = (\pi/4 x 0.08^2) = 0.0314 m^2$ Velocity of each jet = V $v = c_v \sqrt{2gh}$ V = 88.59 m/sec	01 Mark

		Discharge of jet = a X v = $0.0314 \times 88.59 = 2.78 \text{ m}^3/\text{sec}$	01 Mark
		Total Discharge Q = 2 X 2.78 = $5.56 \text{ m}^3/\text{sec}$	01 Mark
		Power at inlet of turbine = W Q H = 9810 X 5.56 X 400 = 21817.44 KW	
		Overall efficiency = Shaft Power / Water Power = 15500 / 21817.44 = 0.7104	01 Mark
		Overall efficiency = 71.04%	02 Mark
			02 Mark
Q. 5		Attempt any <u>FOUR</u> of the following:	16 Marks
	a)	State any one cause of trouble given below	
	Ans	i)Pump starts and suddenly stops:	
		• improper priming	
		leakage in suction pipe	
		• air pockets in suction line	01 Marks
		Suction lift too high	
		ii)Pump consumes so much power:	
		• Speed may be high	
		• Head may be low and pump discharge is more	
		• Impeller may be rotating in wrong direction	01 Marks
		• Shaft may be bend	
		• Liquid handled may be very high viscosity	
		iii) Pump does not start:	
		Pump not properly primed	
		• Speed of prime mover too low	
		• Discharge heat too high	01 Marks
		• Suction lift too high	
		• Vapour lock in suction line	
		1v) Discharge of pump is too low:	
		• Pump not properly primed	
		• Speed of prime mover too low	01 Marks
		Discharge heat too high	
	b)	• leakage in suction pipe With the help of post indicator diagram emplois concretion and constanting in the	
	D)	reciprocating pump. What are its effects?	

Ans	Given data:	
	Contribujal Pump.	
	Rate of flow Q= 1to lit/see = 0.11 m3/see	
	N = 1440 rpm $H = 25$ m.	
	$D_1 = 250 \text{ mm}$ $B_1 = 50 \text{ mm} = 0.05 \text{ m}$	
	= 0.25 m. Nmm = 80%.	
	Rate of flow	
	O = TTD, B, Vfi	
	0.11=TTx0.25x0.05 x Vf1 :. Vf1=2.8 m/see	01 Marks
	$I_{1} = TTD_{1}N = TTX0.25 \times 1440$	
	60 60	
	111 - 18.84 miles	
	- UI - TO OF Mysee	01 Marks
	9.81×25	
	$2 \text{man} = \frac{0}{10000000000000000000000000000000000$	
	xwjaj vwjxiosz	
	$V_{W_1} = 16.27 \text{ m/see}$	
	Velocity, thankle	01 Marks
	Ne Val	
	Vie Vir, outlet velocity triagle	
	$find = \sqrt{f_1} =$	01 Marks
	JAN VERI	
	$= \frac{2 \cdot 8}{18 \cdot 84 - 16 \cdot 27} = 1 \cdot 08$	
	$\phi = 47^{\circ} 26^{\circ}$	
	Vane angle at outlet.	
 d)	What are minor losses in pipes? List of them.	
 Ance	Minor Lossos:	
AIIS:	Losses due to the local disturbances of the flow in the conduits such as changes in cross	
	section, projecting gaskets, elbows, valves and similar items are called minor losses .	01 Marks
	List: (Any THREE) (i) Loss of head at Entry, $HL = 0.5 (V/2/2g)$	
	(i) Loss of head at Entry. $HL = 0.5 (\sqrt{2/2g})$ (ii) Loss of head at Exit. $HL = (\sqrt{2/2g})$	03 Marks
	(iii) Loss of head due to sudden enlargement. HL = $(V1-V2)2/2g$	

	$\frac{P_1}{W_1} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{W_2} + \frac{V_2^2}{2g} + Z_2 - 0$	01 Mark
	$\frac{P_{1}}{W_{1}} + \frac{V_{1}^{2}}{2g} = \frac{P_{2}}{V_{2}} + \frac{V_{2}^{2}}{2g}$ $\frac{P_{1} - P_{2}}{W_{2}} = \frac{V_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g}$ $\frac{P_{1} - P_{2}}{W_{2}} = \frac{V_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g}$	01 Mark
	$\frac{P_{1}-P_{2}}{W} = difference of pressure head$ $\frac{P_{1}-P_{2}}{W} = h \qquad put in equn(2)$ $h = \frac{N_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g} \qquad (3)$ $Applying Continuity equation AIV_{1} = A_{2}V_{2} \qquad (V_{1} = \frac{A_{2}V_{2}}{A_{1}}) Substituting the value of V_{1} in equn(3) h = \frac{V_{2}^{2}}{2g} - \frac{(\frac{A_{2}/V_{1}}{A_{1}})^{2}}{2g} h = \frac{V_{2}^{2}}{2g} - \frac{(\frac{A_{1}^{2}-A_{2}^{2}}{A_{1}})}{A_{1}^{2}} V_{2}^{2} = 2gh \left(\frac{A_{1}^{2}-A_{2}^{2}}{A_{1}^{2}-A_{2}^{2}}\right) V_{2} = \int 2gh \left(\frac{A_{1}^{2}-A_{2}^{2}}{A_{1}^{2}-A_{2}^{2}}\right) = \frac{A_{1}}{(A_{1}^{2}-A_{2}^{2})}$	01 Mark
	Discharge $\Theta = A_2 Y_2$ $\Theta = A_2 A_1$ $\sqrt{A_1^2 - A_2^2} \times \sqrt{2gh}$ $\Theta = C_d \times \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \times \sqrt{2gh}$.	
f)	Explain hydraulic power transmission through pipe.	
Ans:	 Power transmission through pipes Power is transmitted through pipes by flowing water or other liquids flowing through them. Power transmitted through pipes will be dependent over the following factors as mentioned here. Weight of the liquid flowing through the pipe 	02 Marks

Force exerted by a jet of water on maring inclined plate: As shown in fig. shows a fluid jet striking 04 marks on inclined plate, which is moving with uwform velocity in the direction of the jerpipe Nozale F= Absolute velocity of the jet U= velocity of plate in the direction of jel. a = Cross-sectional area of jet. D = Angle between jet and the plate. Relative velocity with which the jet strikes the plate = (V-U) Mass of fluid striking/see on the plate= ga(Y-U) . Force exerted by jet on the moning plate final For Mass of fluid strike/see [Iwitial velocity - final Velocity] FM= SO(V-4) [(V-4)5100= 0] $F_{R} = g_{\alpha}(Y-u)^{2} \sin \vartheta$ component of this force in the direction of jet $F_x = F_n \sin \theta = \frac{3a(1-u)^2 \sin \theta \cdot \sin \theta}{2}$ $F_X = Ba So(1-4)^2 sin^2 \partial$. Work done = Salv-u) zina X 4 ii)Draw and explain velocity triangle for jet striking tangentially on an unsymmetrical curved plate.

DELIVERY PIPES CONNECTING CRANK	02 Marks
ROD B (r)	
PISTON ROD D	
L=2r ->	
Fig. Double Acting Reciprocating Pump	
 (i) Cylinder – It is the heart of reciprocating pump. It is made from cast iron, Cast steel or other metal which suitable to handle liquid flowing through it. 	02 Marks
 (ii) Piston – It is fits inside the cylinder and piston rod is connected to crank by connecting rod. (iii) Connecting rod and graph. Connecting rod course to graph for the course is a state of the course of t	
 (iii) Connecting rod and crank – Connecting rod connects piston to crank. Crank is rotated by engine or electric motor. (iv) Valves – One way valves are provided at inlet and outlet. Inlet valve admits water into 	
 cylinder while outlet valve permits exit of water from cylinder. (v) Air Vessels – In order to make uniform discharge I dome shaped metal vessels are fitted on delivery pipe. 	
Working: -i) When crank is at A, The piston is at the extreme left position in cylinder. As the crank rotates from A to C (From θ =00to θ =1800) the piston is moving towards right in cylinder. The movement of piston towards right creates a partial vacuum in cylinder. Due to this suction valve opens and water is sucked in the cylinder in piston end side while delivery	03 Marks
takes place on other side. ii) When crank is at C, The piston is at the extreme Right position in cylinder. As the crank rotates from C to A (from θ =1800to θ =3600) the piston is moving towards left in cylinder.	
Due to this delivery takes place from piston side while suction takes place on other side of piston. During each stroke when suction takes place on one side of the piston, the other side delivers the liquid	
Thus for one complete revolution of the crank there are two delivery strokes and water is delivered to the pipes by the pump during these two delivery strokes.	01 Marks
4) Feeding small boilers condensers returns.	
A Francis turbine operating under a head of 60m runs at 420 rpm, If the outer diameter	
angles at inlet and outlet, if the velocity of flow is constant and 12 m/sec and hydraulic efficiency is 80%	

