WINTER - 19 EXAMINATION			
Subject Name: Fluid Mechanics \& Machinery	Model Answer	Subject Code:	17411

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \hline \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \hline \text { Sub. } \\ & \text { Q. } \\ & \text { No. } \end{aligned}$	Answer	Marking Scheme
1.		Attempt any SIX of the following:	12 Marks
	i)	Define kinematic viscosity.	
	Ans	A quantity representing the dynamic viscosity of a fluid per unit density. The ratio of dynamic viscosity to its density	02 Mark
	ii)	Draw a neat sketch of differential manometer.	
	Ans		02 Mark
	iii)	State Bernoulli's theorem.	
	Ans	The theorem states, in effect, that the total mechanical energy of the flowing fluid, comprising the energy associated with fluid pressure, the gravitational potential energy of elevation, and the kinetic energy of fluid motion, remains constant. Bernoulli's theorem is the principle of energy conservation for ideal fluids in steady, or streamline, flow and is the basis for many engineering applications. $\mathrm{p} / \mathrm{w}+\mathrm{v}^{2} / 2 \mathrm{~g}+\mathrm{z}=$ constant where $\mathrm{p} / \mathrm{w}=$ Pressure energy, $\mathrm{v}^{2} / 2 \mathrm{~g}=$ kinetic energy, $\quad \mathrm{Z}=$ datum energy	02 Mark
	iv)	List out different types of draft tube.	

			02 Mark dia.
	ii)	Describe the concept of absolute vacuum, gauge pressure, atmosphere pressure, absolute pressure	
	Ans	1) Absolute vacuum- If a tube / container is completely evacuated then the pressure exerted on the surface is zero. Such a zero pressure is called absolute vacuum pressure. 2) Gauge pressure- It is the pressure measured above the atmospheric pressure. It is zeroreferenced against ambient air pressure, so it is equal to absolute pressure minus atmospheric pressure. 3) Atmospheric pressure- It is also called barometric pressure which is the pressure within the atmosphere of Earth (or that of another planet). The standard atmosphere is a unit of pressure defined as $1013.25 \mathrm{mbar}(101325 \mathrm{~Pa})$, equivalent to 760 mm Hg . Atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the Earth's atmospheric pressure at sea level is approximately 1 atm . 4) Absolute pressure- The pressure which is measured above the absolute vacuum pressure. It is zero-referenced against a perfect vacuum, using an absolute scale, so it is equal to gauge pressure plus atmospheric pressure.	01 Mark 01 Mark 01 Mark 01 Mark
	iii)	Write Darcy's formula for head loss due to friction. State the meaning of each term.	
	Ans	Darcy's formula - $\mathrm{H}_{\mathrm{f}}=\mathrm{flv}{ }^{2} / 2 \mathrm{Dg}$ Where: $\mathrm{h}_{\mathrm{f}}=$ Friction head loss $\quad \mathrm{f}=$ Darcy resistance factor $\mathrm{L}=$ Length of the pipe $\mathrm{D}=$ Pipe diameter $\mathrm{V}=$ Mean velocity $\quad \mathrm{g}=$ acceleration due to gravity	02 Mark 02 Mark
2.		Attempt any FOUR of the following:	16 Marks
	a)	Explain total pressure \& centre of pressure acting on immersed body.	
	Ans	Figure shows a body immersed in the fluid. The total pressure is defined as the force exerted by a static fluid on a surface (either plane or	02 Mark 01 Mark
		Page No	/ N

	curved) when the fluid comes in contact with the surface. This force is always normal to the surface which is given by - $\mathrm{P}=$ w.A.X The centre of pressure is defined as the point of application of the resultant pressure on the surface which is given by $-\mathrm{h}=\mathrm{Ig} / \mathrm{AX}+\mathrm{X}$	01 Mark
b)	Explain with neat sketch, principle of working of pitot tube.	
Ans	Principle: The pitot tube is a differential pressure measuring device. The pitot tube installed in the flow stream measures the direct pressure at the contact pitot tube hole and a second measurement is required, being of static pressure. The difference between the two measurements gives a value for dynamic pressure A pitot tube is a flow measurement device used to measure fluid flow velocity.	02 Mark 02 Mark
c)	Derive an equation to find force of impact of jet which strikes on a flat plate at right angle which is fixed.	
Ans	Consider a jet of water impinging normally on a flat plate at rest as shown in figure. Let, $\mathrm{a}=$ Cross-sectional area of the jet in metre ${ }^{2}$. $\mathrm{V}=$ Velocity of the jet in metres per second. $\mathrm{M}=$ Mass of water striking the plate per second. $\therefore \mathrm{M}=\rho \mathrm{aV} \mathrm{kg} / \mathrm{sec}$ where $\rho=$ density of water in $\mathrm{kg} / \mathrm{cum}$ Force exerted by the jet on the plate- $\mathrm{P}=$ Change of momentum per second $=($ Mass striking the plate per second) x (Change in velocity) $=\mathrm{M}(\mathrm{V}-0)=\mathrm{MV}=\rho a \mathrm{~V} . \mathrm{V}$. $\therefore \mathrm{P}=\rho \mathrm{aV}^{2}$ Newton	02 Mark 01 Mark 01 Mark

\qquad

d)	Explain with neat diagram hydraulic gradient line \& total energy line with its application.	
Ans	Hydraulic Gradient Line (H.G.L) It is defined as the line which gives the sum of pressure head $(\mathrm{p} / \mathrm{w})$ and datum head (z) of flowing fluid in a pipe w.r.t some reference line. OR It is the line which is obtained by connecting the top of all vertical ordinates, showing the pressure head (p / w) of a flowing fluid in a pipe from the center of the pipe. Total Energy Line (T.E.L) It is defined as the line which gives the sum of pressure head, datum head and kinetic head of a flowing fluid in a pipe w.r.t some reference line. OR It is the line which is obtained by connecting the tops of all vertical ordinates showing the sum of the pressure head and kinetic head from the center of the pipe. Diagram showing TEL and HGL A turbine in the flow reduces the energy line and a pump or fan in the line increases the energy line. Application-A turbine in the flow reduces the energy line and a pump or fan in the line increases the energy line.	01 Mark 01 Mark 01 Mark
e)	State laws of fluid friction for laminar flow. (any four)	
Ans	i) The frictional resistance is proportional to velocity of flow. ii) The frictional resistance is independent of pressure. iii) The frictional resistance is proportional to the surface area in contact iv) The frictional resistance is varies with changes in temperature	01 Mark for 01 point

\qquad

		v) The frictional resistance is independent of the nature of surface of contact	
	f)	Define i) fluid pressure ii) pressure head, iii) pressure intensity	
	Ans	i) Fluid pressure-fluid pressure is a measurement of the force per unit area on a object in the fluid or on the surface of a closed container. This pressure can be caused by the gravity, acceleration, or by forces outside a closed container. ii) Pressure head-it is the height of a liquid column that corresponds to a column on the base of its container. It may also called static pressure head or simply static head. iii) Pressure intensity-it is a qualitative measurement in a particular flow of air, the pressure intensity might be high while the total pressure that would exist when that flow is brought to complete stop.	01 Mark 01 Mark 01 Mark 01 Mark
3.		Attempt any FOUR of the following:	16 Marks
	a)	Draw a layout of hydroelectric power plant \& explain in brief.	
	$\begin{aligned} & \mathrm{An} \\ & \mathrm{~S} \end{aligned}$	Layout of Hydraulic Power plant i) Dam (Reservoir):- It is water reservoir generally constructed over the river it contains lot of potential energy. ii) Penstock: - Pipes of large diameters called penstock, which carries water under high pressure from storage reservoir to the turbines. These pipes are made of steel or reinforced	2 Marks for fig. 2 Marks for explanation

\qquad

	concrete. iii) Turbines:- These are the wheels on which number of vanes are fitted and converts hydraulic energy to mechanical energy. iv) Tail race:- It is the channel which carries water away from turbines after the water has worked on turbines. The surface of water in the tail race is also known as tail race. v) Surge tank:- It is the tank provided in the path of penstock to avoid pulsating discharge at inlet of turbines. During flow of water from reservoir to turbine through penstock pressure surges are created to compensate these surges surge tank is provided.	
b)	Give classification of hydraulic turbine \& their application.	
$\begin{aligned} & \text { An } \\ & \text { s } \end{aligned}$	I. According to the type of energy available at inlet to the turbine 1) Impulse turbine (only K.E. available at inlet) eg. Pelton wheel turbine 2) Reaction turbine (only KE. \& Pressure energy available at inlet) eg. Francis, Kaplan turbine II. According to the head available at inlet to the turbine 1) Low head turbine (less than 60 m) eg. Kaplan turbine 2) Medium head turbine (60 m to 250 m) eg. Francis turbine 3) High head turbine (above 250 m) eg. Pelton wheel turbine III. According to the specific speed of the turbine 1) Low specific speed (less than 60) eg. Pelton wheel turbine 2) Medium specific speed (60 to 400) eg. Francis turbine 3) High specific speed (greater than 400) eg. Kaplan turbine IV. According to direction of flow through runner 1) Tangential flow turbine 2) Radial flow turbine 3) Axial flow turbine 4) Mixed flow turbine	
c)	Explain construction and working of Pelton wheel turbine with neat sketch	
Ans	Construction: The main parts of Pelton Wheel turbine are: 1. Penstock \& Nozzle with flow regulating arrangement 2. Runner and buckets 3. Casing 4. Breaking jet	1 Mark for construction

\qquad

\qquad

e)	Define i) Surface tension ii) Compressibility	
Ans	i) Surface tension Following figure shows the two molecules of liquid at point A and B. Fig. Intermolecular forces near a liquid surface As shown in fig, molecule at point ' A ' is in equilibrium condition. So molecule at ' A ' is equally attracted from all sides. But at point ' B ' there is no liquid molecule at above side and consequently there is a net downward force on the molecule due to attraction of the molecule below it. This force on the molecules at the surface of liquid is normal to the liquid surface, due to this a special layer seems to form on liquid at the surface, which is in tension and small load can be supported over it. This property of liquid surface film to exert the tension is called 'Surface tension'. OR Surface tension is defined as the force required in maintaining unit length of the film in equilibrium condition. It is denoted by ' σ ' (sigma). ii) Compressibility It is the measure of elasticity in fluid. Fluids are compressed under pressure due to change in their mass density. More mass can be accommodated in the unit volume \& when the pressure is removed the fluid regain to its original volume.	2 Marks 2 Marks
f)	A simple manometer containing mercury is used to measure pressure of water flowing in a pipeline. The mercury level in the open tube is $\mathbf{6 0} \mathbf{~ m m}$ higher than that as the lift limb tube. If height of water in the tube is $\mathbf{1 5 0} \mathbf{~ m m}$, determine the pressure in the pipe in terms of head of water.	
Ans		01 Mark

\qquad

Ans	Two-stage Pumps with Impellers in Series Pumps in Parallel Multistage of centrifugal pumps:- If the centrifugal pump consists of two or more impellers then pump is called multistage of centrifugal pump. The impellers are mounted on the same shaft or on the different shafts. i) Multistage centrifugal pump for High Head (Pumps are in Series):- To develop a high head but same discharge, the numbers of impellers are mounted in series or on the same shaft. The discharge from impeller passes through a guide passage \& enters the second impeller. At the outlet of second impeller the pressure of water will be more than the pressure of water at outlet of first impeller. The pump in series arrangement is employed for delivering a relatively small quantity of liquid against high head. ii) Multistage centrifugal pump for High Discharge (Pumps are in Parallel) :-To obtain high discharge but same head pumps should be connected in parallel. Each of these pumps working separately lifts the liquid from a common sump and delivers it to a common collection pipe through which it carries to required height. If Q is the discharge capacity of one pump and there are n number of identical pumps (arranged in parallel) the total discharge is $=n . \mathrm{Q}$	02 Marks of each fig. 02 Marks 02 Marks
c)	Two jet strike the buckets of pelton turbine which is having shaft power as 15500 KW . The diameter of each jet is 200 mm . If net available head on turbine is $\mathbf{4 0 0} \mathbf{~ m}$. Find overall efficiency of turbine assuming $\mathrm{C}_{\mathrm{v}}=\mathbf{1 . 0 0}$	
Ans	$\begin{aligned} & \text { Shaft power }=15500 \mathrm{KW} \\ & \mathrm{n}=2 \\ & \mathrm{H}=400 \mathrm{~m} \\ & \mathrm{~d}=0.2 \mathrm{~m} \\ & \mathrm{C}_{\mathrm{v}}=1.00 \\ & \text { Area of jet }=\pi / 4 \times \mathrm{d}^{2}=\left(\pi / 4 \times 0.08^{2}\right)=0.0314 \mathrm{~m}^{2} \\ & \text { Velocity of each jet }=\mathrm{V} \\ & V=C_{v} \sqrt{2 g h} \\ & \mathrm{~V}=88.59 \mathrm{~m} / \mathrm{sec} \end{aligned}$	01 Mark

\qquad

		$\begin{aligned} & \text { Discharge of jet }=\mathrm{aXv}=0.0314 \times 88.59=2.78 \mathrm{~m}^{3} / \mathrm{sec} \\ & \text { Total Discharge } \mathrm{Q}=2 \times 2.78=5.56 \mathrm{~m}^{3} / \mathrm{sec} \\ & \text { Power at inlet of turbine }=\text { W Q H }=9810 \times 5.56 \times 400=21817.44 \mathrm{KW} \\ & \text { Overall efficiency }=\text { Shaft Power } / \text { Water Power }=15500 / 21817.44=0.7104 \\ & \text { Overall efficiency }=\mathbf{7 1 . 0 4} \% \end{aligned}$	01 Mark 01 Mark 01 Mark 02 Mark 02 Mark
$\begin{aligned} & \mathrm{Q} . \\ & 5 \end{aligned}$		Attempt any FOUR of the following:	16 Marks
	a)	State any one cause of trouble given below	
	Ans	i)Pump starts and suddenly stops: - improper priming - leakage in suction pipe - air pockets in suction line - Suction lift too high ii)Pump consumes so much power: - Speed may be high - Head may be low and pump discharge is more - Impeller may be rotating in wrong direction - Shaft may be bend - Liquid handled may be very high viscosity iii) Pump does not start: - Pump not properly primed - Speed of prime mover too low - Discharge heat too high - Suction lift too high - Vapour lock in suction line iv) Discharge of pump is too low: - Pump not properly primed - Speed of prime mover too low - Discharge heat too high - leakage in suction pipe	01 Marks 01 Marks 01 Marks 01 Marks
	b)	With the help of neat indicator diagram, explain separation and cavitation in the reciprocating pump. What are its effects?	

\qquad / N
Ans
\qquad

Ans	Given data: Contrifugal Pump. Rate of flow $\theta=1$ to $\mathrm{Lit} / \mathrm{sec}=0.11 \mathrm{~m}^{3} / \mathrm{sec}$ $\begin{aligned} N & =1440 \mathrm{rpm} & & H=25 \mathrm{~m} . \\ D_{1} & =250 \mathrm{~mm} & & B_{1}=50 \mathrm{~mm}=0.05 \mathrm{~m} \\ & =0.25 \mathrm{~m} . & & \eta_{\text {man }}=80 \% \\ \phi & =? & & \end{aligned}$ Rate of flow $\begin{aligned} Q & =\pi D_{1} B_{1} V f_{1} \\ 0.11 & =\pi \times 0.25 \times 0.05 \times v f_{1} \quad \therefore V f_{1}=2.8 \mathrm{~m} / \mathrm{sec} \\ u_{1} & =\frac{\pi D, N}{60}=\frac{\pi \times 0.25 \times 1440}{60} \\ \therefore u_{1} & =18.84 \mathrm{~m} / \mathrm{sec} \\ \eta_{\text {man }} & =\frac{g H}{V w_{1} u_{1}} \quad \therefore 0.8=\frac{9.81 \times 25}{V w_{1} \times 18.85} \\ \therefore V w_{1} & =16.27 \mathrm{~m} / \mathrm{sec} \end{aligned}$ Velocty uitriangle outlet velocty triayle $\begin{aligned} \tan \phi & =\frac{Y f_{1}}{U_{1}-V_{w_{1}}}= \\ & =\frac{2.8}{18.84-16.27}=1.08 . \\ \phi & =47^{\circ} 26^{\prime \prime} \end{aligned}$ Vane angle at outlet.	01 Marks 01 Marks 01 Marks 01 Marks
d)	What are minor losses in pipes? List of them.	
Ans:	Minor Losses:- Losses due to the local disturbances of the flow in the conduits such as changes in cross section, projecting gaskets, elbows, valves and similar items are called minor losses. List: (Any THREE) (i) Loss of head at Entry. $\mathrm{HL}=0.5(\mathrm{~V} 2 / 2 \mathrm{~g})$ (ii) Loss of head at Exit. $\mathrm{HL}=(\mathrm{V} 2 / 2 \mathrm{~g})$ (iii) Loss of head due to sudden enlargement. $\mathrm{HL}=(\mathrm{V} 1-\mathrm{V} 2) 2 / 2 \mathrm{~g}$	01 Marks 03 Marks

	$\begin{equation*} \frac{p_{1}}{w_{1}}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w_{2}}+\frac{v_{2}{ }^{2}}{2 g}+z_{2} \tag{1} \end{equation*}$ $Z_{1}=Z_{2}=$ pipe is horrontal $\begin{align*} & \frac{P_{1}}{w_{1}}+\frac{V_{1}{ }^{2}}{2 g}=\frac{P_{2}}{Y_{2}}+\frac{V_{2}{ }^{2}}{2 g} \\ & \frac{P_{1}-P_{2}}{W}=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}{ }^{2}}{2 g} \tag{2} \end{align*}$ $\therefore \frac{P_{1}-P_{2}}{\omega}=$ difference of pressure head. $\frac{P_{1}-P_{2}}{\omega}=h \quad \therefore \quad$ put in edun (2) $\begin{equation*} h=\frac{V_{2}{ }^{2}}{2 g}-\frac{V_{1}{ }^{2}}{2 g} \tag{3} \end{equation*}$ Applying continuty equation $A_{1} V_{1}=A_{2} V_{2} \quad \therefore V_{1}=\frac{A_{2} V_{2}}{A_{1}}$ Substituting the value of V_{1}^{\prime} in edun (3) $\begin{aligned} & h=\frac{V_{2}{ }^{2}}{2 g}-\frac{\left(\frac{A_{2} / V_{2}}{A_{1}}\right)^{2}}{2 g} \\ & h=\frac{V_{2}^{2}}{2 g}\left(\frac{A_{1}^{2}-A_{2}^{2}}{A_{1}^{2}}\right) \\ & \therefore V_{2}{ }^{2}=2 g h\left(\frac{A_{1}^{2}}{A_{1}^{2}-A_{2}{ }^{2}}\right) \\ & V_{2}=\sqrt{2 g h\left[\frac{A_{1}^{2}}{A_{1}^{2}-A_{2}^{2}}\right]=\frac{A_{1}}{\sqrt{A_{1}^{2}-A_{2}}} \lambda \sqrt{2 g h}} \end{aligned}$ Discharge $Q=A_{2} X_{2}$ $\begin{aligned} & \quad Q=\frac{A_{2} \frac{A_{1}}{\sqrt{A_{1}^{2}-A_{2}^{2}}} \times \sqrt{2 g h}}{\text { Oact }=C_{d} \times \frac{A_{1} A_{2}}{\sqrt{A_{1}^{2}-A_{2}^{2}}} \times \sqrt{2 g h}} . \end{aligned}$	01 Mark 01 Mark 01 Mark
f)	Explain hydraulic power transmission through pipe.	
Ans:	Power transmission through pipes Power is transmitted through pipes by flowing water or other liquids flowing through them. Power transmitted through pipes will be dependent over the following factors as mentioned here. - Weight of the liquid flowing through the pipe	02 Marks

\qquad

		- Total head available at the end of the pipe Now we will consider a tank with which a pipe AB is connected. Let us consider the following terms from figure. $\mathrm{L}=$ Length of the pipe $\mathrm{D}=$ Diameter of the pipe $\mathrm{H}=$ Total head available at the inlet of the pipe $\mathrm{V}=$ Velocity of flow in pipe $\mathrm{h}_{\mathrm{f}}=$ Loss of head due to friction $\mathrm{f}=$ Co-efficient of friction Power transmitted at the outlet of the pipe will be determined with the help of following formula as mentioned here. $P=\frac{\rho g}{1000} \times \frac{\pi}{4} d^{2} \times V\left(H-\frac{4 f L V^{2}}{d \times 2 g}\right) \mathrm{kW}$ Efficiency of power transmission Efficiency of power transmission will be determined with the help of following formula as mentioned here. $\begin{aligned} \eta & =\frac{\text { Power available at outlet of the pipe }}{\text { Power supplie at the inlet of the pipe }} \\ & =\frac{\text { Weight of water per sec } \times \text { Head available at outlet }}{\text { Weight of water per sec } \times \text { Head at inlet }} \\ & =\frac{W \times\left(H-h_{f}\right)}{W \times H}=\frac{H-h_{f}}{H} . \end{aligned}$ Power transmitted through a pipe will be maximum, when the head loss due to friction will be one-third of the total head at inlet. Loss of head $\mathrm{h}_{\mathrm{f}}=\mathrm{H} / 3$	01 Mark 01 Mark
$\begin{aligned} & \hline \mathbf{Q} . \\ & 6 \\ & \hline \end{aligned}$		Attempt any TWO of the following:	16 Marks
	a)	i) Derive an expression for the force exerted by a jet of water on moving inclined plate	

\qquad

Force exerted by a jet of water on moving inclined plate:

As shown in fig. shows a flue jet striking an inclined plate, which is moving with un form velooty in the direction of the rel..

$u=$ velocity of plate in the direction of gel
$a=$ cross-sectional area of jet
$\theta=$ Angle between jet and the plate.
Relative velooty with which the jet strikes the plate $=(v-u)$

Mass of flue striking/see on the plate $=\rho a(y-u)$
\therefore Force exerted by jet on the moving plate
$F_{X}=$ Mass of fluid strike/see [initial velooty - final $F_{x}=\rho_{0}(v-u)[(v-u) \sin \theta=0]$
$F_{x}=\rho_{a}(y-u)^{2} \sin \theta$
componat of this frore in the direction of j et $F_{x}=F_{n} \sin \theta=\rho a(v-u)^{2} \sin \theta \cdot \sin \theta$.
$F_{x}=\nabla_{A} \rho_{a}(x-u)^{2} \sin ^{2} \theta$.
Work done $=\rho a(v-u)^{2} \sin \theta \times u$

\qquad

